
Deformable Spatial Pyramid Matching for Fast Dense Correspondences

Jaechul Kim1 Ce Liu2 Fei Sha3 Kristen Grauman1

Univ. of Texas at Austin1 Microsoft Research New England2 Univ. of Southern California3

{jaechul,grauman}@cs.utexas.edu celiu@microsoft.com feisha@usc.edu

Abstract

We introduce a fast deformable spatial pyramid (DSP)
matching algorithm for computing dense pixel correspon-
dences. Dense matching methods typically enforce both ap-
pearance agreement between matched pixels as well as ge-
ometric smoothness between neighboring pixels. Whereas
the prevailing approaches operate at the pixel level, we pro-
pose a pyramid graph model that simultaneously regular-
izes match consistency at multiple spatial extents—ranging
from an entire image, to coarse grid cells, to every sin-
gle pixel. This novel regularization substantially improves
pixel-level matching in the face of challenging image vari-
ations, while the “deformable” aspect of our model over-
comes the strict rigidity of traditional spatial pyramids. Re-
sults on LabelMe and Caltech show our approach outper-
forms state-of-the-art methods (SIFT Flow [15] and Patch-
Match [2]), both in terms of accuracy and run time.

1. Introduction

Matching all the pixels between two images is a long-
standing research problem in computer vision. Traditional
dense matching problems—such as stereo or optical flow—
deal with the “instance matching” scenario, in which the
two input images contain different viewpoints of the same
scene or object. More recently, researchers have pushed the
boundaries of dense matching to estimate correspondences
between images with different scenes or objects. This ad-
vance beyond instance matching leads to many interest-
ing new applications, such as semantic image segmenta-
tion [15], image completion [2], image classification [11],
and video depth estimation [10].

There are two major challenges when matching generic
images: image variation and computational cost. Compared
to instances, different scenes and objects undergo much
more severe variations in appearance, shape, and back-
ground clutter. These variations can easily confuse low-
level matching functions. At the same time, the search
space is much larger, since generic image matching permits
no clean geometric constraints. Without any prior knowl-

edge on the images’ spatial layout, in principle we must
search every pixel to find the correct match.

To address these challenges, existing methods have
largely focused on imposing geometric regularization on
the matching problem. Typically, this entails a smoothness
constraint preferring that nearby pixels in one image get
matched to nearby locations in the second image; such con-
straints help resolve ambiguities that are common if match-
ing with pixel appearance alone. If enforced in a naive way,
however, they become overly costly to compute. Thus, re-
searchers have explored various computationally efficient
solutions, including hierarchical optimization [15], random-
ized search [2], 1D approximations of 2D layout [11], spec-
tral relaxations [13], and approximate graph matching [5].

Despite the variety in the details of prior dense matching
methods, we see that their underlying models are surpris-
ingly similar: minimize the appearance matching cost of
individual pixels while imposing geometric smoothness be-
tween paired pixels. That is, existing matching objectives
center around pixels. While sufficient for instances (e.g.,
MRF stereo matching [17]), the locality of pixels is prob-
lematic for generic image matching; pixels simply lack the
discriminating power to resolve matching ambiguity in the
face of visual variations. Moreover, the computational cost
for dense pixels remains a bottleneck for scalability.

To address these limitations, we introduce a deformable
spatial pyramid (DSP) model for fast dense matching.
Rather than reason with pixels alone, the proposed model
regularizes match consistency at multiple spatial extents—
ranging from an entire image, to coarse grid cells, to every
single pixel. A key idea behind our approach is to strike a
balance between robustness to image variations on the one
hand, and accurate localization of pixel correspondences
on the other. We achieve this balance through a pyramid
graph: larger spatial nodes offer greater regularization when
appearance matches are ambiguous, while smaller spatial
nodes help localize matches with fine detail. Furthermore,
our model naturally leads to an efficient hierarchical opti-
mization procedure.

To validate our idea, we compare against state-of-the-
art methods on two datasets, reporting results for pixel la-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.299

2305

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.299

2305

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.299

2307



bel transfer and semantic segmentation tasks. Compared
to today’s strongest and most widely used methods, SIFT
Flow [15] and PatchMatch [2]—both of which rely on a
pixel-based model—our method achieves substantial gains
in matching accuracy. At the same time, it is noticeably
faster, thanks to our coarse-to-fine optimization and other
implementation choices.

2. Background and Related Work

We review related work on dense matching, and explain
how prior objectives differ from ours.

Traditional matching approaches aim to estimate very
accurate pixel correspondences (e.g., sub-pixel error for
stereo matching), given two images of the same scene
with slight viewpoint changes. For such accurate local-
ization, most methods define the matching cost on pixels.
In particular, the pixel-level Markov random field (MRF)
model, combined with powerful optimization techniques
like graph-cut or belief propagation, has become the de
facto standard. It casts matching as a graph optimization
problem, where pixels are nodes, and edges between neigh-
boring nodes reflect the existence of spatial constraints be-
tween them [4]. The objective consists of a data term for
each pixel’s matching cost and a smoothness term for the
neighbors’ locations.

Unlike traditional instance matching, recent work at-
tempts to densely match images containing different scenes.
In this setting, the intra-class variation across images is of-
ten problematic (e.g., imagine computing dense matches
between a sedan and a convertible). Stronger geomet-
ric regularization is one way to overcome the matching
ambiguity—for example, by enforcing geometric smooth-
ness on all pairs of pixels, not just neighbors [3, 13] (see
Fig. 1(c)). However, the increased number of pairwise con-
nections makes them too costly for dense pixel-level corre-
spondences, and more importantly, they lack the multi-scale
regularization we propose.

The SIFT Flow algorithm pioneered the idea of dense
correspondences across different scenes [15]. For effi-
ciency, it uses a multi-resolution image pyramid together
with a hierarchical optimization technique inspired by clas-
sic flow algorithms. At first glance it might look similar to
our spatial pyramid, but in fact its objective is quite dif-
ferent. SIFT Flow relies on the conventional pixel-level
MRF model: each pixel defines a node, and graphs from
different resolutions are treated independently. That is, no
graph edges span between pyramid levels. Although pixels
from different resolution levels cover different spatial ex-
tents, they still span sub-image (local) regions even at the
coarsest resolution. In contrast, our model explicitly ad-
dresses both global (e.g., an entire image) and local (e.g.,
a pixel) spatial extents, and nodes are linked between pyra-
mid levels in the graph. Compare Figures 1(a) and (b). In

� �

� �

�������	 �
�

�



 �����	��� ���������	
�����
�����

�

���	��� ���	��

�
������������ ������������ �����
����
���
Figure 1. Graph representations of different matching models. A
circle denotes a graph node and its size represents its spatial extent.
Edges denote geometric distortion terms. (a) Deformable spatial
pyramid (proposed): uses spatial support at various extents. (b)
Hierarchical pixel model [15]: the matching result from a lower
resolution image guides the matching in the next resolution. (c)
Full pairwise model [3, 13]: every pair of nodes is linked for strong
geometric regularization (though limited to sparse nodes). (d)
Pixel model with implicit smoothness [2]: geometric smoothness
is enforced in an indirect manner via a spatially-constrained cor-
respondence search (dotted lines denote no explicit links). Aside
from the proposed model (a), all graphs are defined on a pixel grid.

addition, SIFT Flow defines the matching cost at each pixel
node by a single SIFT descriptor at a given (downsampled)
resolution, which risks losing useful visual detail. In con-
trast, we define the matching cost of each node using multi-
ple descriptors computed at the image’s original resolution,
thus preserving richer visual information.

The PatchMatch algorithm computes fast dense corre-
spondences using a randomized search technique [2]. For
efficiency, it abandons the usual global optimization that
enforces explicit smoothness on neighboring pixels. In-
stead, it progressively searches for correspondences; a re-
liable match at one pixel subsequently guides the matching
locations of its nearby pixels, thus implicitly enforcing ge-
ometric smoothness. See Figure 1(d).

Despite the variations in graph connectivity, computa-
tion techniques, and/or problem domains, all of the above
approaches share a common basis: a flat, pixel-level objec-
tive. The appearance matching cost is defined at each pixel,
and geometric smoothness is imposed between paired pix-
els. In contrast, the proposed deformable spatial pyramid
model considers both matching costs and geometric regu-
larization within multiple spatial extents. We show that this
substantial structure change has dramatic impact on the ac-
curacy and speed of dense matching.

Rigid spatial pyramids are well-known in image classi-
fication, where histograms of visual words are often com-

230623062308



pared using a series of successively coarser grid cells at
fixed locations in the images [12, 20]. Aside from our focus
on dense matching (vs. recognition), our work differs sub-
stantially from the familiar spatial pyramid, since we model
geometric distortions between and across pyramid levels in
the matching objective. In that sense, our matching relates
to deformable part models in object detection [7] and scene
classification [16]. Whereas all these models use a few tens
of patches/parts and target object recognition, our model
handles millions of pixels and targets dense pixel matching.

The use of local and global spatial support for image
alignment has also been explored for mosaics [18] or lay-
ered stereo [1]. For such instance matching problems, how-
ever, it does not provide a clear win over pixel models in
practice. In contrast, we show it yields substantial gains
when matching generic images of different scenes, and our
regular pyramid structure enables an efficient solution.

3. Approach

We first define our deformable spatial pyramid (DSP)
graph for dense pixel matching (Sec. 3.1). Then, we define
the matching objective we will optimize on that pyramid
(Sec. 3.2). Finally, we discuss technical issues, focusing on
efficient computation (Sec. 3.3).

3.1. Pyramid Graph Model

To build our spatial pyramid, we start from the entire
image and divide it into four rectangular grid cells and keep
dividing until we reach the predefined number of pyramid
levels (we use 3). This is a conventional spatial pyramid as
seen in previous work. However, in addition to those three
levels, we further add one more layer, a pixel-level layer,
such that the finest cells are one pixel in width.

Then, we represent the pyramid with a graph. See Fig-
ures 1 (a) and 2. Each grid cell and pixel is a node, and
edges link all neighboring nodes within the same level, as
well as parent-child nodes across adjacent levels. For the
pixel level, however, we do not link neighboring pixels;
each pixel is linked only to its parent cell. This saves us
a lot of edge connections that would otherwise dominate
run-time during optimization.

3.2. Matching Objective

Now, we define our matching objective for the proposed
pyramid graph. We start with a basic formulation for match-
ing images at a single fixed scale, and then extend it to
multi-scale matching.

Fixed-Scale Matching Objective Let pi = (xi, yi) de-
note the location of node i in the pyramid graph, which is
given by the node’s center coordinate. Let ti = (ui, vi) be
the translation of node i from the first to the second image.
We want to find the optimal translations of each node in the

������

� ����

��	
��������������
�������� �	�������������

Figure 2. Sketch of our DSP matching method. First row shows
image 1’s pyramid graph; second row shows the match solution on
image 2. Single-sided arrow in a node denotes its flow vector ti;
double-sided arrows between pyramid levels imply parent-child
connections between them (intra-level edges are also used but not
displayed). We solve the matching problem at different sizes of
spatial nodes in two layers. Cells in the grid-layer (left three im-
ages) provide reliable (yet fast) initial correspondences that are ro-
bust to image variations due to their larger spatial support. Guided
by the grid-layer initial solution, we efficiently find accurate pixel-
level correspondences (rightmost image). Best viewed in color.

first image to match it to the second image, by minimizing
the energy function:

E(t) =
∑

i

Di(ti) + α
∑

i,j∈N

Vij(ti, tj), (1)

where Di is a data term, Vij is a smoothness term, α is a
constant weight, and N denotes pairs of nodes linked by
graph edges. Recall that edges span across pyramid levels,
as well as within pyramid levels.

Our data term Di measures the appearance matching cost
of node i at translation ti. It is defined as the average dis-
tance between local descriptors (e.g, SIFT) within node i in
the first image to those located within a region of the same
scale in the second image after shifting by ti:

Di(ti) =
1

z

∑

q

min(‖d1(q) − d2(q + ti)‖1, λ), (2)

where q denotes pixel coordinates within a node i from
which local descriptors were extracted, z is the total num-
ber of descriptors, and d1 and d2 are descriptors extracted at
the locations q and q + ti in the first and second image, re-
spectively. For robustness to outliers, we use a truncated L1
norm for descriptor distance with a threshold λ. Note that
z = 1 at the pixel layer, where q contains a single point.

The smoothness term Vij regularizes the solution by pe-
nalizing large discrepancies in the matching locations of
neighboring nodes: Vij = min(‖ti − tj‖1, γ). We again
use a truncated L1 norm with a threshold γ.

How does our objective differ from the conventional
pixel-wise model? There are three main factors. First of all,

230723072309



�
����������
����
��� ������������
����
���
Figure 3. Comparing our fixed- and multi-scale matches. For vis-
ibility, we show matches only at a single level in the pyramid. In
(a), the match for a node in the first image remains at the same
fixed scale in the second image. In (b), the multi-scale objective
allows the size of each node to optimally adjust when matched.

graph nodes in our model are defined by cells of varying
spatial extents, whereas in prior models they are restricted
to pixels. This allows us to overcome appearance match
ambiguities without committing to a single spatial scale.
Second, our data term aggregates many local SIFT matches
within each node, as opposed to using a single match at each
individual pixel. This greatly enhances robustness to image
variations. Third, we explicitly link the nodes of different
spatial extents to impose smoothness, striking a balance be-
tween strong regularization by the larger nodes and accurate
localization by the finer nodes.

We minimize the main objective function (Eq. 1) using
loopy belief propagation to find the optimal correspondence
of each node (see Sec. 3.3 for details). Note that the result-
ing matching is asymmetric, mapping all of the nodes in the
first image to some (possibly subset of) positions in the sec-
ond image. Furthermore, while our method returns matches
for all nodes in all levels of the pyramid, we are generally
interested in the final dense matches at the pixel level. They
are what we will use in the results.

Multi-Scale Extension Thus far, we assume the matching
is done at a fixed scale: each grid cell is matched to another
region of the same size. Now, we extend our objective to
allow nodes to be matched across different scales:

E(t, s) =
∑

i

Di(ti, si) + α
∑

i,j∈N

Vij(ti, tj) + β
∑

i,j∈N

Wij(si, sj).

(3)

Eq. 3 is a multi-scale extension of Eq. 1. We add a scale
variable si for each node and introduce a scale smoothness
term Wij = ‖si − sj‖1 with an associated weight constant
β. The scale variable is allowed to take discrete values from
a specified range of scale variations (to be defined below).
The data term is also transformed into a multi-variate func-
tion defined as:

Di(ti, si) =
1

z

∑

q

min(‖d1(q)− d2(si(q + ti))‖1, λ),

(4)

where we see the corresponding location of descriptor d2

for a descriptor d1 is now determined by a translation ti

followed by a scaling si.
Note that we allow each node to take its own optimal

scale, rather than determine the best global scale between
two images. This is beneficial when an image includes both
foreground and background objects of different scales, or
when individual objects have different sizes. See Figure 3.

Dense correspondence for generic image matching is of-
ten treated at a fixed scale, though there are some multi-
scale implementations in related work. PatchMatch has
a multi-scale extension that expands the correspondence
search range according to the scale of the previously found
match [2]. As in the fixed-scale case, our method has the ad-
vantage of modeling geometric distortion and match consis-
tency across multiple spatial extents. While we handle scale
adaptation through the matching objective, one can alterna-
tively consider representing each pixel with a set of SIFTs at
multiple scales [9]; that feature could potentially be plugged
into any matching method, including ours, though its ex-
traction time is far higher than typical fixed-scale features.
Our multi-scale matching is efficient and works even with
fixed-scale features.

3.3. Efficient Computation

For dense matching, computation time is naturally a big
concern for scalability. Here we explain how we maintain
efficiency both through our problem design and some tech-
nical implementation details.

There are two major components that take most of the
time: (1) computing descriptor distances at every possible
translation and (2) optimization via belief propagation (BP).
For the descriptor distances, the complexity is O(mlk),
where m is the number of descriptors extracted in the first
image, l is the number of possible translations, and k is the
descriptor dimension. For BP, we use a generalized dis-
tance transform technique, which reduces the cost of mes-
sage passing between nodes from O(l2) to O(l) [8]. Even
so, BP’s overall run-time is O(nl), where n is the number
of nodes in the graph. Thus, the total cost of our method is
O(mlk+nl) time. Note that n, m, and l are all on the order
of the number of pixels (i.e., ∼ 105 − 106); if solving the
problem at once, it is far from efficient.

Therefore, we use a hierarchical approach to improve
efficiency. We initialize the solution by running BP for
a graph built on all the nodes except the pixel-level ones
(which we will call first-layer), and then refine it at the pixel
nodes (which we will call second-layer). In Figure 2, the
first three images on the left comprise the first layer, and the
fourth depicts the second (pixel) layer.

Compared to SIFT Flow’s hierarchical variant [15], ours
runs an order of magnitude faster, as we will show in the re-
sults. The key reason is the two methods’ differing match-

230823082310



ing objectives: ours is on a pyramid, theirs is a pixel model.
Hierarchical SIFT Flow solves BP on the pixel grids in the
image pyramid; starting from a downsampled image, it pro-
gressively narrows down the possible solution space as it
moves to the finer images, reducing the number of possible
translations l. However, n and m are still on the order of the
number of pixels. In contrast, the number of nodes in our
first-layer BP is just tens. Moreover, we observe that sparse
descriptor sampling is enough for the first-layer BP: as long
as a grid cell includes ∼100s of local descriptors within it,
its average descriptor distance for the data term (Eq. 2) pro-
vides a reliable matching cost. Thus, we don’t need dense
descriptors in the first-layer BP, substantially reducing m.

In addition, our decision not to link edges between pixels
(i.e., no loopy graph at the pixel layer) means the second-
layer solution can be computed very efficiently in a non-
iterative manner. Once we run the first-layer BP, the optimal
translation ti at a pixel-level node i is simply determined
by: ti = arg min

t

(Di(t) + αVij(t, tj)), where a node j is

a parent grid cell of a pixel node i, and tj is a fixed value
obtained from the first-layer BP.

Our multi-scale extension incurs additional cost due to
the scale smoothness and multi-variate data terms. The for-
mer affects message passing; the latter affects the descriptor
distance computation. In a naive implementation, both lin-
early increase the cost in terms of the number of the scales
considered. For the data term, however, we can avoid re-
peating computation per scale. Once we obtain Di(ti, si =
1.0) by computing the pairwise descriptor distance at si =
1.0, it can be re-used for all other scales; the data term
Di(ti, si) at scale si maps to Di((si−1)q+siti, si = 1.0)
of the reference scale (see supplementary file for details).
This significantly reduces computation time, in that SIFT
distances dominate the BP optimization since m is much
higher than the number of nodes in the first-layer BP.

4. Results

The main goals of the experiments are (1) to evaluate
raw matching quality (Sec. 4.1), (2) to validate our method
applied to sematic segmentation (Sec. 4.2), and (3) to verify
the impact of our multi-scale extension (Sec. 4.3).

We compare our deformable spatial pyramid (DSP) ap-
proach to state-of-the-art dense pixel matching methods,
SIFT Flow [15] (SF) and PatchMatch [2] (PM), using the
authors’ publicly available code. We use two datasets: the
Caltech-101 and LabelMe Outdoor (LMO) [14].

Implementation details: We fix the parameters of our
method for all experiments: α = 0.005 in Eq. 1, γ = 0.25,
and λ = 500. For multi-scale, we set α = 0.005 and
β = 0.005 in Eq. 3. We extract SIFT descriptors of 16x16
patch size at every pixel using VLFeat [19]. We apply PCA
to the extracted SIFT descriptors, reducing the dimension to

Approach LT-ACC IOU LOC-ERR Time (s)
DSP (Ours) 0.732 0.482 0.115 0.65

SIFT Flow [15] 0.680 0.450 0.162 12.8
PatchMatch [2] 0.646 0.375 0.238 1.03

Table 1. Object matching on the Caltech-101. We outperform the
state-of-the-art methods in both matching accuracy and speed.

Approach LT-ACC Time (s)
DSP (Ours) 0.706 0.360

SIFT Flow [15] 0.672 11.52
PatchMatch [2] 0.607 0.877

Table 2. Scene matching on the LMO dataset. We outperform the
current methods in both accuracy and speed.

20. This reduction saves about 1 second per image match
without losing matching accuracy.1 For multi-scale match,
we use seven scales between 0.5 and 2.0—we choose the
search scale as an exponent of 2

i−4

3 , where i = 1, ..., 7.

Evaluation metrics: To measure image matching qual-
ity, we use label transfer accuracy (LT-ACC) between pixel
correspondences [14]. Given a test and an exemplar image,
we transfer the annotated class labels of the exemplar pixels
to the test ones via pixel correspondences, and count how
many pixels in the test image are correctly labeled.

For object matching in Caltech-101 dataset, we also use
the intersection over union (IOU) metric [6]. Compared to
LT-ACC, this metric allows us to isolate the matching qual-
ity for the foreground object, separate from the irrelevant
background pixels.

We also evaluate the localization error (LOC-ERR) of
corresponding pixel positions. Since there are no available
ground-truth pixel matching positions between images, we
obtain pixel locations using an object bounding box: pixel
locations are given by the normalized coordinates with re-
spect to the box’s position and size. For details, please see
the supplementary file.

4.1. Raw Image Matching Accuracy

In this section, we evaluate raw pixel matching quality in
two different tasks: object matching and scene matching.

Object matching under intra-class variations: For this
experiment, we randomly pick 15 pairs of images for each
object class in the Caltech-101 (total 1,515 pairs of images).
Each image has ground-truth pixel labels for the foreground
object. Table 1 shows the result. Our DSP outperforms
SIFT Flow by 5 points in label transfer accuracy, yet is
about 25 times faster. We achieve a 9 point gain over Patch-
Match, in about half the runtime. Our localization error and
IOU scores are also better.

1We use the same PCA-SIFT for ours and PatchMatch. For SIFT Flow,
however, we use the authors’ custom code to extract SIFT; we do so be-
cause we observed SIFT Flow loses accuracy when using PCA-SIFT.

230923092311



��
�

�
��
�

��
�

�
��

��

Figure 4. Example object matches per method. In each match example (rows 2-4), the left image shows the result of warping the second
image to the first via pixel correspondences, and the right one shows the transferred pixel labels for the first image (white: fg, black:
bg). We see that ours works robustly under image variations like background clutter (1st and 2nd examples), appearance change (4th and
5th ones). Further, even when objects lack texture (3rd example), ours finds reliable correspondences, exploiting global object structure.
However, the single-scale version of our method fails when objects undergo substantial scale variation (6th example). Best viewed in color.

�
��
�

��
��
�

�
�

��
��

Figure 5. Example scene matches per method. Displayed as in Fig. 4, except here the scenes have multiple labels (not just fg/bg). Pixel
labels are marked by colors, denoting one of the 33 classes in the LMO dataset. Best viewed in color.

Figure 4 shows example matches by the different meth-
ods. We see that DSP works robustly under image varia-
tions like appearance change and background clutter. On
the other hand, the two existing methods—both of which
rely on only local pixel-level appearance—get lost under
the substantial image variations. This shows our spatial
pyramid graph successfully imposes geometric regulariza-
tion from various spatial extents, overcoming the matching
ambiguity that can arise if considering local pixels alone.
We also can see some differences between the two ex-
isting models. PatchMatch abandons explicit geometric
smoothness for speed. However, this tends to hurt matching
quality—the matching positions of even nearby pixels are
quite dithered, making the results noisy. On the other hand,
SIFT Flow imposes stronger smoothness by MRF connec-
tions between nearby pixels, providing visually more pleas-
ing results. In effect, DSP combines the strengths of the
other two. Like PatchMatch, we remove neighbor links in
the pixel-level optimization for efficiency. However, we can
do this without hurting accuracy since larger spatial nodes
in our model enforce a proper smoothness on pixels.

Scene matching: Whereas the object matching task is
concerned with foreground/background matches, in the
scene matching task each pixel in an exemplar is annotated
with one of multiple class labels. Here we use the LMO
dataset, which annotates pixels as one of 33 class labels
(e.g., river, car, grass, building). We randomly split the test
and exemplar images in half (1,344 images each). For each
test image, we first find the exemplar image that is its near-
est neighbor in GIST space. Then, we match pixels between
the test image and the selected exemplar. When measuring
label transfer accuracy, we only consider the matchable pix-
els that belong to the classes common to both images. This
setting is similar to the one in [14].

Table 2 shows the results.2 Again, our DSP outperforms
the current methods. Figure 5 compares some example
scene matches. We see that DSP better preserves the scene
structure; for example, the horizons (1st, 3rd, and 4th ex-
amples) and skylines (2nd and 5th) are robustly estimated.

2The IOU and LOC-ACC metrics assume a figure-ground setting, and
hence are not applicable here.

231023102312



Approach LT-ACC IOU
DSP (Ours) 0.868 0.694

SIFT Flow [15] 0.820 0.641
PatchMatch [2] 0.816 0.604

Table 3. Figure-ground segmentation results in Caltech-101.

�
��
�

��
���

Figure 6. Example figure-ground segmentations on Caltech-101.

4.2. Semantic Segmentation by Matching Pixels

Next, we apply our method to a semantic segmentation
task, following the protocol in [14]. To explain briefly, we
match a test image to multiple exemplar images, where pix-
els in the exemplars are annotated by ground-truth class la-
bels. Then, the best matching scores (SIFT descriptor dis-
tances) between each test pixel and its corresponding exem-
plar pixels define the class label likelihood of the test pixel.
Using this label likelihood, we use a standard MRF to as-
sign a class label to each pixel. See [14] for details. Build-
ing on this common framework, we test how the different
matching methods influence segmentation quality.

Category-specific figure-ground segmentation: First,
we perform binary figure-ground segmentation on Caltech.
We randomly select 15/15 test/exemplar images from each
class. We match a test image to exemplars from the
same class, and perform figure-ground segmentation with
an MRF as described above. Table 3 shows the result. Our
DSP outperforms the current methods substantially. Fig-
ure 6 shows example segmentation results. We see that
our method successfully delineates foreground objects from
confusing backgrounds.

Multi-class pixel labeling: Next, we perform semantic
segmentation on the LMO dataset. For each test image, we
first retrieve an initial exemplar “shortlist”, following [14].
The test image is matched against only the shortlist exem-
plars to estimate the class likelihoods.3 We test three differ-
ent ways to define the shortlist: (1) using the ground truth
(GT), (2) using GIST neighbors (GIST), and (3) using an
SVM to classify the images into one of the 8 LMO scene

3Our test/exemplar split, shortlist, and MRF are all identical to those
in [14], except we do not exploit any prior knowledge (e.g., likelihood of
possible locations of each class in the image) to augment the cost function
of the MRF. Instead, we only use match scores in order to most directly
compare the impact of the three matching methods.

Approach LT-ACC (GT) LT-ACC (GIST) LT-ACC (SVM)
DSP (Ours) 0.868 0.745 0.761

SIFT Flow [15] 0.834 0.759 0.753
PatchMatch [2] 0.761 0.704 0.701

Table 4. Semantic segmentation results on the LMO dataset.

����� � ������ ���� �� ��

Figure 7. Example semantic segmentations on the LMO dataset.
Our DSP and SIFT Flow (SF) both work reasonably on this
dataset, though our segmentation is more consistent to the image’s
scene layout (e.g., the first and the third row). On the other hand,
PatchMatch (PM) results are quite noisy. The last row shows our
failure case, where we fail to segment small objects (cars).

categories, and then retrieving GIST neighbors among only
exemplars from that scene label (SVM).

Table 4 shows the results. The segmentation accuracy
depends on the shortlist mechanism, for all methods. When
using ground-truth annotations to choose the shortlist, our
method clearly outperforms the others. On the other hand,
when using automatic methods to generate the shortlist
(GIST and SVM), our gain becomes smaller. This is be-
cause (1) the shortlist misses reasonable exemplar images
that share class labels with the test image and (2) SIFT fea-
tures may not be strong enough to discriminate confusing
classes in a noisy shortlist—some classes (e.g., grass, field,
and tree) are too similar to be distinguished by SIFT match
scores alone. Again, our method is more efficient; 15-20
times faster than SIFT Flow, and about twice as fast as Patch
Match. Figure 7 shows example segmentation results.

4.3. Multi-scale Matching

Finally, we show the results of our multi-scale formu-
lation. For this experiment, we test using the same image
pairs from Caltech as used in Sec. 4.1. We compare our
multi-scale method to various baselines, including all the
fixed-scale methods in the previous section and PatchMatch

231123112313



1 1.2 1.4 1.6 1.8 2
0.55

0.6

0.65

0.7

0.75

0.8
Accuracy over scale variations

Scale variations

A
cc

u
ra

cy

 

 

DSP−MS
PM−MS
DSP−SS
PM−SS
SF−SS

Figure 8. Matching accuracy as a function of scale variations. MS
and SS denote multi-scale and single-scale, respectively.

with its multi-scale option on.
Figure 8 plots the matching accuracy as a function of

scale variation. The scale variation between two objects
is defined by: max(O1,O2)

min(O1,O2) , where O1 and O2 are the size
of matched objects in the first and the second image re-
spectively. We see that the curves from multi-scale meth-
ods (DSP-MS and PM-MS) are flatter than the single-scale
ones, verifying their relative scale tolerance. In addition,
our multi-scale method (DSP-MS) outperforms multi-scale
PatchMatch (PM-MS) by a substantial margin. However,
we also see our curve is not perfectly flat across the scale
changes. This is because scale is not the only factor that af-
fects the matching. In fact, as scale variation increases, we
observe that objects undergo more variations in viewpoint
or shapes as well, making the matching more challenging.

Figure 9 shows some matching examples by our multi-
scale method, compared to our single-scale counterpart.
The examples show that our multi-scale matching is flex-
ible to scale variations.

5. Conclusion

We introduced a deformable spatial pyramid model for
dense correspondences across different objects or scenes.
Through extensive evaluations, we showed that (1) various
spatial supports by our spatial pyramid improve matching
quality, striking a balance between geometric regulariza-
tion and accurate localization, (2) our pyramid structure per-
mits efficient hierarchical optimization, enabling fast dense
matching, and (3) our model can be extended into a multi-
scale setting, working flexibly under scale variations. As
such, compared to the existing methods that rely on a flat
pixel-based model, we achieve substantial gains in both
matching accuracy and runtime. We share our code at
http://vision.cs.utexas.edu/projects/dsp.

Acknowledgements: This research is supported in part
by ONR N00014-12-1-0068.

References
[1] S. Baker, R. Szeliski, and P. Anandan. A Layered Approach to Stereo

Reconstruction. In CVPR, 1998.

�
��
�

�	
�

!
��
��


��
�
��
�	
!�
��
�

Figure 9. Example matching results by our multi-scale matching.
For comparison, we also show results from our fixed-scale ver-
sion. Our multi-scale method successfully finds the correct scale
between objects, providing accurate matching. On the other hand,
a single-scale one prefers the fixed size between objects, causing
gross errors: e.g., in the 3rd example, Snoopy matches to a globe
since they have similar size.

[2] C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstein. The Gen-
eralized PatchMatch Correspondence Algorithm. In ECCV, 2010.

[3] A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recog-
nition Low Distortion Correspondences. In CVPR, 2005.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Min-
imization via Graph Cuts. PAMI, 23(11), 2001.

[5] O. Duchenne, A. Joulin, and J. Ponce. A Graph-matching Kernel for
Object Categorization. In ICCV, 2011.

[6] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. IJCV, 88(2),
2010.

[7] P. Felzenswalb, D. McAllester, and D. Ramanan. A Discriminatively
Trained Multiscale Deformable Part Model. In CVPR, 2008.

[8] P. Felzenszwalb and D. Huttenlocher. Efficient Belief Propagation
for Early Vision. IJCV, 70(1), 2006.

[9] T. Hassner, V. Mayzels, and L. Zelnik-Manor. On SIFTs and Their
Scales. In CVPR, 2012.

[10] K. Karsch, C. Liu, and S. Kang. Depth Extraction from Video Using
Non-parametric Sampling. In ECCV, 2012.

[11] J. Kim and K. Grauman. Asymmetric Region-to-Image Matching for
Comparing Images with Generic Object Categories. In CVPR, 2010.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-
tures: Spatial Pyramid Matching for Recognizing Natural Scene Cat-
egories. In CVPR, 2006.

[13] M. Leordeanu and M. Hebert. A Spectral Technique for Correspon-
dence Problems using Pairwise Constraints. In ICCV, 2005.

[14] C. Liu, J. Yuen, and A. Torralba. Nonparametric Scene Parsing via
Label Transfer. PAMI, 33(12), 2011.

[15] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Correspondence
across Different Scenes and Its Applications. PAMI, 33(5), 2011.

[16] M. Pandey and S. Lazebnik. Scene Recognition and Weakly Super-
vised Object Localization with Deformable Part-Based Models. In
ICCV, 2011.

[17] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense
Two-frame Stereo Correspondence Algorithms. IJCV, 47, 2002.

[18] H. Shum and R. Szeliksi. Construction and Refinement of Panoramic
Mosaics with Global and Local Alignment. In ICCV, 1998.

[19] VLFeat Open Source Library. http://www.vlfeat.org/.
[20] D. Xu, T. Cham, S. Yan, and S. Chang. Near Duplicate Image Iden-

tification with Spatially Aligned Pyramid Matching. In CVPR, 2008.

231223122314


