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Abstract
In this paper we formulate multi-target tracking (MTT)

as a rank-1 tensor approximation problem and propose an
�1 norm tensor power iteration solution. In particular, a
high order tensor is constructed based on trajectories in
the time window, with each tensor element as the affinity
of the corresponding trajectory candidate. The local as-
signment variables are the �1 normalized vectors, which are
used to approximate the rank-1 tensor. Our approach pro-
vides a flexible and effective formulation where both pair-
wise and high-order association energies can be used ex-
pediently. We also show the close relation between our
formulation and the multi-dimensional assignment (MDA)
model. To solve the optimization in the rank-1 tensor ap-
proximation, we propose an algorithm that iteratively pow-
ers the intermediate solution followed by an �1 normaliza-
tion. Aside from effectively capturing high-order motion in-
formation, the proposed solver runs efficiently with proved
convergence. The experimental validations are conducted
on two challenging datasets and our method demonstrates
promising performances on both.

1. Introduction
Multi-target tracking (MTT) is critical for many appli-

cations, ranging from vision-based surveillance to human-

computer interaction. Roughly speaking, existing ap-

proaches can be sorted into two categories: sequential track-

ing and association-based tracking. The former tracks mul-

tiple targets with observations till the current frame, while

the latter collects a batch of evidences within a time span

and treat tracking as a multi-frame multiple target associ-

ation1 problem. Sequential tracking is suitable for online

tasks [6, 24], but sometimes meets problems when deal-

ing with target occlusions. By contrast, association-based

tracking [21, 26, 25, 26, 18, 16, 5, 2] recently becomes pop-

ular, since it uses batch observations to reduce the associ-

ation ambiguity and takes benefit from recent advances in

1Through the paper, (multi-frame) association and (multi-dimensional)

assignment have the same meaning, they are used alternately later.

Figure 1. Relation of tensor and association, with a 4-frame as-

sociation as an example. (a) Association candidates. Each global

trajectory constitutes of 3 local associations. (b) 3-order trajectory

tensor. Each trajectory has a corresponding tensor item computed

from the trajectory affinity. (c) Rank-1 tensor approximation. Re-

sulting vectors Ṽ (1), Ṽ (2), Ṽ (3) are real-value solutions of local

assignment variables V (1), V (2), V (3).

object detection [9, 13].

Many association-based models can be formulated as

a multi-dimensional assignment (MDA) problem [19, 11].

However, the integer optimization in MDA is NP-hard for

three or higher dimensional association in general. Some

alternative works evade the global association by using hi-

erarchical strategies [15, 7], the optimum local associations

are achieved first and used to obtain longer tracks later.

Network flow methods [18, 26, 5] formulate MDA as the

max-flow/min-cut optimization, and globally optimal solu-

tion with polynomial time complexity is available. These

methods are however restricted to the use of pairwise cost

and could not benefit from rich multiple-frame cues.

In this work, we propose a tensor based approach for

multi-frame multi-target association. First, we construct a

high-order tensor from all trajectory candidates over a time

span, as illustrated in Figure 1. Then, we show that the rank-

1 approximation of this tensor has the same energy formu-

lation as the multi-dimensional assignment. Finally, an �1
tensor power iteration with row/column unit norm is intro-

duced to solve the approximation problem.

The proposed tensor-based solution has two major ad-

vantages. First, it enables us to capture information across

multiple frames up to the entire trajectory. As a result,

our algorithm easily integrates powerful and discriminative
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cues such as high order motion information and high or-

der appearance variation. Second, the proposed iterative

solution has low computation complexity and its conver-

gence proof is provided in this paper. To validate the pro-

posed method, we apply it to multi-target tracking using two

challenging datasets, one containing wide area motion se-

quences and the other containing public area surveillance

videos. Promising results of the proposed approach are ob-

served on both datasets.

The rest of the paper is structured as follows. Related

work is given in Section 2. Tensor formulation and our ap-

proach are described in Section 3 and Section 4 respectively.

Experimental results are presented in Section 5, and Section

6 concludes the paper.

2. Related work
Study of data association has a long history, with early

research focusing on radar target tracking [3], where Multi-

ple Hypothesis Tracking (MHT) [21] is the classic method.

With a batch of observations, MHT finds all possible asso-

ciation combinations and selects the most likely association

set as the optimal solution. In general, MHT optimization

is an NP-hard problem and the computation is prohibitive

when the numbers of objects and frames are large.

Multiple target association across multiple frames can be

formulated as the multiple dimensional assignment prob-

lem. Suppose a sequence of K frames with each frame has

N observations, the formulation of MDA is presented as

max
N∑

i1=1

...
N∑

iK=1

ai1...iKxi1...iK , (1)

s.t.

{ ∑
i1

. . .
∑
ij−1

∑
ij+1

. . .
∑
iK

xi1...iK = 1, 1 ≤ j ≤ K

xi1...iK ∈ {0, 1}, 1 ≤ i1, . . . , iK ≤ N
(2)

where ai1...iK is the affinity of the trajectory {i1, ..., iK}
whose label xi1...iK is 1 when the trajectory is true and 0
otherwise; ij denotes the observation index in j-th frame.

Two-frame association is a special case of MDA, and ex-

act solutions with polynomial time such as Hungarian algo-

rithm are available. However, the solution is NP-hard when

the association is computed over three or more frames. It

is impractical to achieve the global optimum solution when

no assumption is used. However, there exist some approx-

imate solutions, by using semi-definite programming [22],

Lagrange relaxation [11] etc. When the cost of the trajec-

tory is decomposed as the product of pairwise terms, MDA

can be formulated as a network flow problem, which can

be solved by using linear programming [16], shortest path

algorithms [5], etc. Such network flow formulation, while

having global optimal solutions with polynomial time com-

plexity, is limited to use pairwise affinity and misses high

order kinematic information.

Sampling-based approaches (eg. Markov Chain Monte

Carlo Data Association [17, 4]) provide an alternative

to find the global solution. However, they typically re-

quire large computational cost, especially for the high-

dimensional state estimation in MDA. Furthermore, tuning

the parameters to obtain a fast convergence is always non-

trivial. Other approaches for solving MDA include greedy

search [23, 25] and hierarchical target association [15, 7].

Our work is closely related to the iterative approximate so-

lution proposed in [8], which iteratively solves two-frame

assignments in turn while keeping all other assignments

fixed. Our approach shares a similar procedure, but we use

the tensor framework and propose an analytical iterative so-

lution. In addition, the association ambiguity is retained in

our iteration, which reduces the association errors.

3. Tensor formulation

In this section, we give a brief introduction about ten-

sor and its rank-1 approximation. A tensor is the high di-

mensional generalization of a matrix. For a K-order ten-

sor2 S ∈ R
I1×I2×···×IK , each element is represented as

si1...ik...iK and 1 ≤ ik ≤ Ik. In the tensor terminology,

each dimension of a tensor is associated with a mode. Like

matrix-vector and matrix-matrix multiplication, tensor has

similar operations, we give the following definition.

Definition 1 The n-mode product of a tensor S ∈
R

I1×...In−1×In×...IK and a matrix E ∈ R
In×Jn , denoted

by S ⊗n E, is a new tensor B ∈ R
I1×...In−1×Jn×...IK . The

notation is represented as

B = S ⊗n E ,

bi1...in−1jnin+1...iK =
In∑

in=1

si1...in−1in...iKeinjn .
(3)

In particular, the n-mode product of S and a vector Π ∈
R

In×1, denoted by S ⊗n Π, is the K−1 order tensor

(S ⊗n Π)i1...in−1in+1...iK =

In∑
in=1

si1...in−1in...iKπin . (4)

3.1. Rank-1 tensor approximation

Before we introduce Rank-1 tensor approximation, the

notation of Rank-1 tensor is given first. If the K order

tensor S is computed as the outer product of K vectors

Π(1),Π(2), ...,Π(K), we call S a rank-1 tensor. Specifically,

we denote the rank-1 tensor as

S = Π(1) ∗Π(2) ∗ · · · ∗Π(K), (5)

2Through the whole paper, by default we use font such as S for a tensor,

S a matrix, S a vector and s a scalar number.
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and(
Π(1)∗Π(2)∗. . .∗Π(K)

)
i1i2...iK

= π
(1)
i1

π
(2)
i2
. . . π

(K)
iK

, (6)

where Π(k) denotes the k-th (1 ≤ k ≤ K) vector and π
(k)
ik

denotes the ik-th (1 ≤ ik ≤ Ik) element of Π(k).

With the above definition, the problem of rank-1 approx-

imation for tensor S is formulated as following:

Problem 1 Given a real K order tensor S ∈
R

I1×I2×···×IK , find K unit-norm vectors Π =
{Π(1),Π(2), . . . ,Π(K)} and a scalar λ to minimize
the Frobenius norm square

min
Π

f(λ,Π) = min
λ,Π
‖S − λΠ(1)∗Π(2)∗. . .∗Π(K)‖2F

= min
λ,Π

∑
i1...iK

(
si1...iK−λπ(1)

i1
π
(2)
i2
...π

(K)
iK

)2

.
(7)

Problem 1 can be solved with various techniques such as

Lagrange multipliers [10] or least-squares [20]. With some

derivations ([10, 20]), the optimization in (7) has the fol-

lowing equivalent form

min
λ,Π

∥∥S − λΠ(1) ∗Π(2) ∗ ... ∗Π(K)
∥∥2

F

= min
Π

(
‖S‖2F−

∣∣S⊗1Π
(1)⊗2Π

(2)...⊗K Π(K)
∣∣2) .

(8)

This naturally leads to the following theorem:

Theorem 1 The minimization of the function (7) over the
unit-norm vectors Π = {Π(1),Π(2), ...,Π(K)} is equivalent
to the maximization over g(Π) defined as

g(Π) = |S ⊗1 Π
(1) ⊗2 Π

(2)...⊗K Π(K)|2

=

( ∑
i1i2...iK

si1i2...iKπ
(1)
i1

π
(2)
i2

...π
(K)
iK

)2

.
(9)

To maximize (9), tensor power iteration ([10, 20]) is pro-

posed with a sound convergence proof. Though there is no

guarantee for the algorithm to reach the global optimum, it

always attains satisfactory solutions in graph matching ob-

served in [12]. It also gives a solution very close to the

optimum when initialized cleverly ([20]).

3.2. Relations to Multi-Dimensional Assignment

In this section, we show the rank-1 tensor approximation

has the similar optimization formulation with MDA, with

an appropriate tensor item definition.

First, we reformulate the Eq. (1). Each trajectory (global

association) is decomposed as a sequence of edges (two-

frame association), which is formulated as

xi1i2...iK = ei1i2ei2i3 ...eiK−1iK , (10)

subjects to the new constraints:⎧⎪⎪⎨⎪⎪⎩
∑
in

einin+1 = 1, n ∈ {1, 2, ...,K−1}∑
in+1

einin+1 = 1, n ∈ {1, 2, ...,K−1}
einin+1 ∈ {0, 1}, n ∈ {1, 2, ...,K−1}

(11)

where einin+1 is the element of the two-frame association

matrix E(n) = (einin+1). Similarly, the affinity representa-

tion is reformulated as Eq. (12). Note the affinity remains

depending on the entire trajectory but with a different sub-

script, i.e.

ai1i2...iK = si1i2,i2i3,...,iK−1iK , (12)

which will be defined soon.

We vectorize (e.g. by column concatenation) E(n) into a

vector, which we called local assignment variable Π(n), the

optimization problem (1) is rewritten as

max
N2∑
l1

N2∑
l2

...
N2∑
lK−1

sl1l2...lK−1π
(1)
l1

π
(2)
l2

...π
(K−1)
lK−1 , (13)

where sl1l2...lK−1 is defined as

sl1l2...lK−1 =

{
al1 l2...lK−1 lK−1 , if Ω is true

0, otherwise
(14)

In (14), “l” and “l” denote the row and column index of the

l-th element of the vector Π, in the matrix E; and Ω is the

condition set defined as

Ω : {l2 = l1, l3 = l2, ..., lK−1 = lK−2} . (15)

By placing constraints on row and column indices of

consecutive two-frame associations using (14), formula-

tions (1) and (13) are equivalent to each other. Also, we

note that the affinity values s and the association variables

π in (13) are non-negative, thus the equivalence between (9)

and (13) is self-evident.

However, the constraints over Π in (9) and that in (13)

are different. Specifically, Π in tensor approximation must

have the �2 unit norm, while Π in MDA consumes inte-

ger values with the row and column �1 unit norm. In the

next section, we propose a row/column �1 unit norm tensor

power iteration. With this extension, the tensor approxima-

tion can be considered as the counterpart of MDA in the

real-value domain.

An example illustrating the relation between rank-1 ten-

sor approximation and MDA is given in Figure 1. It shows

that (1) tensor elements correspond to global associations;

and (2) vectors approximating the rank-1 tensor are real so-

lutions of local assignment variables. Finally, for an intu-

itive view of Eqn. (7), it aims to minimize the element-wise
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Algorithm 1 Tensor based multi-target association

1: Input. M frame observation sequence.

t0: Start frame, K:Number of a batch frames

2: Output: target associations

3: while t0 +K−1 ≤M do
4: Collect a batch of K frames observations Φ =

{O(t0), O(t0 + 1), ..., O(t0 +K−1)}
5: Generate two-frame association hypotheses.

6: Generate global trajectory hypotheses.

7: Compute the trajectory affinities and construct the

K−1 order tensor S .

8: Initialize the approximate vectors.

9: �1 row/column unit norm tensor power iteration.

10: Solution: Discretize the approximate vectors.

11: t0 ← t0 +K−1
12: end while

reconstruction error between the the trajectory tensor and

the reconstructed tensor, which is calculated as the outer

product of local assignment vectors. In particular, for a tra-

jectory with a high affinity, the optimization tries to make a

high-value outer product to match its affinity. Consequently,

the higher the affinity a trajectory has, the more likely it will

be picked up in the final solution.

4. Tensor Based Multi-Target Association

In this section, we introduce the tensor based multi-target

tracking approach, and Algorithm 1 outlines the framework.

Generally, multi-target association is performed with the

batch way. When K frame observations are available, asso-

ciation hypotheses (trajectories) are generated first. With all

these hypotheses, a tensor is constructed by computing the

trajectory affinities. Then, the most important step is the �1
norm tensor power solution. We highlight the tensor-based

multi-target association in the following parts and present

details about object detection in the experiment part.

4.1. Relaxed Optimization

We now relax the optimization (13) by allowing different

numbers of objects for different frames, resulting in differ-

ent numbers of local associations, denoted as Ik, 1 ≤ k ≤
K−1. Further, we use “soft” association variables to make

the optimization more feasible. We now have

max

I1∑
l1

I2∑
l2

...

IK−1∑
lK−1

sl1l2...lK−1π
(1)
l1

π
(2)
l2

...π
(K−1)
lK−1 , (16)

s.t.

⎧⎪⎪⎨⎪⎪⎩
∑
in

einin+1 = 1, n ∈ {1, 2, ...,K−1}∑
in+1

einin+1 = 1, n ∈ {1, 2, ...,K−1}
0 ≤ einin+1

≤ 1, n ∈ {1, 2, ...,K−1}
(17)

Algorithm 2 Tensor power iteration with �1 unit norm

1: Input: K − 1 order tensor S ∈ R
I1×I2×...×IK−1 .

2: Output: �1 unit norm vectors Π(1), ...,Π(K−1).

3: Initialization: Π
(1)
0 , ...,Π

(K−1)
0 ; Iteration Num: j ← 0.

4: repeat
5: Π̂

(1)
j+1=(S ⊗2 Π

(2)
j ⊗3 Π

(3)
j ...⊗K−1 Π

(K−1)
j ) ◦Π(1)

j

6: Π
(1)
j+1=Π̂

(1)
j+1/‖Π̂(1)

j+1‖1
7: Π̂

(2)
j+1=(S ⊗1 Π

(1)
j+1 ⊗3Π

(3)
j ...⊗K−1 Π

(K−1)
j )◦Π(2)

j

8: Π
(2)
j+1=Π̂

(2)
j+1/‖Π̂(2)

j+1‖1
9: · · ·

10: Π̂
(K−1)
j+1 =(S⊗1Π

(1)
j+1⊗2Π

(2)
j+1...⊗K−2Π

(K−2)
j+1 )◦Π(K−1)

j

11: Π
(K−1)
j+1 =Π̂

(K−1)
j+1 /‖Π̂(K−1)

j+1 ‖1
12: j ← j + 1
13: until convergence

Note that the original tensor power iteration implied in

Theorem 1 is designed for �2 unit norm, thus not suitable

for solving (16). Instead, we propose a new algorithm in the

following to adapt the �1 row/column unit norm constraint.

4.2. �1 Unit Norm Power Iteration

To address the issue raised from the �1 norm constraint,

we advocate an �1 unit norm power iteration algorithm to

solve (16). The basic idea is to iteratively update the solu-

tion by tensor powering followed by an �1 unit normaliza-

tion. The procedure for general rank-1 tensor approxima-

tion is presented in Algorithm 2, where “◦” indicates the

Hadamard product (element-wise product). Detailed con-

vergence proof is presented in the following.

We first assume the tensor item sl1l2...lK−1 and the ap-

proximate vectors Π are non-negative, thus the optimization

of (9) is equivalent to the following optimization

max
Π

g(Π) = max
Π

∑
l1...lK−1

sl1...lK−1π
(1)
l1

...π
(K−1)
iK−1 . (18)

For clear expression, we denote the k-th vector at the n-

th iteration as Π(k)(n), which has elements π
(k)
lk

(n). Con-

sider the iteration on Π(1)(n), with all other vectors fixed,

we has following proposition.

Proposition 1 For an iteration step (19),

π
(1)
l1
(n+1)=

π
(1)
l1

(n)

C(1)

∑
l2...lK−1

sl1...lK−1π
(2)
l2
(n) . . . π

(K−1)
lK−1 (n),

(19)

where C(1)=
∑

l1...lK−1
sl1...lK−1π

(1)
l1

(n) . . . π
(K−1)
lK−1 (n) is the �1

normalization factor, we have

g(Π(1)(n+ 1),Π(2)(n), . . . ,Π(K−1)(n))
≥ g(Π(1)(n),Π(2)(n), . . . ,Π(K−1)(n)).

(20)
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Proof. We make two notations W = (w1, . . . , wI1)
T and

U = (u1, . . . , uI1)
T , and I1 is the length of Π(1). The

definitions of two notations are given as⎧⎨⎩ wl1 =
∑

l2...lK

sl1l2...lkπ
(2)
l2

(n) . . . π
(K−1)
lK−1 (n)

π
(1)
l1

(n) = ul1 ∗ ul1

(21)

With above notations, we have following equation

g(Π(1)(n),Π(2)(n), ...,Π(K−1)(n))
=

∑
l1...lK−1

sl1l2...lK−1ul1ul1π
(2)
l2
(n)...π

(K−1)
lK−1 (n)

= 〈U,U ◦W 〉 ,
(22)

where ‘〈·〉’ and ‘◦’ denote the inner product and the

Hadamard product respectively. With the norm constraint

‖U‖22 = ‖Π(1)(n)‖1 = 1, the Cauchy-Schwarz inequality

gives

g(Π(1)(n), ...,Π(K−1)(n)) = 〈U,U ◦W 〉
≤‖U‖2 ‖U◦W‖2= ‖U◦W‖2 .

(23)

With the formulation (19), the new score is presented as

g(Π(1)(n+ 1),Π(2)(n), ...,Π(K−1)(n))
=

〈
Π(1)(n+ 1),W

〉
= 1

C(1)

〈
Π(1)(n) ◦W,W

〉
= 1

C(1) 〈U ◦W,U ◦W 〉 = ‖U◦W‖22
g(Π(1)(n),...,Π(K−1)(n))

(24)

By combining formulation (23) and (24), we prove the

inequality (20). �
The convergence proof on the iterations of vectors

Π(k)(n) (1 < k < K) has the similar form, thus is ig-

nored here. Combine results for all k, we have the proposed

�1 unit norm iteration algorithm converges to a (local) ex-

treme.

Algorithm 2 gives the �1 unit norm vector solution. We

note the solution in (16) has matrix row and column �1 unit

norm, so we make an adaption in the normalization. Set the

association problem (16) as an example, the �1 unit norm

tensor iteration for Π(1) has the formulation as

Π̂
(1)
j+1 = (S⊗2Π

(2)
j ⊗3Π

(3)
j ...⊗K−1Π

(K−1)
j )◦Π(1)

j . (25)

Followed by row �1 normalization

epq =
êpq∥∥Ê(p, :)

∥∥
1

=
êpq∑
q êpq

, p ∈ {1, 2, ...}, (26)

where êpq is the element of Ê, which is the folded matrix

of vector Π̂
(1)
j+1. epq has the similar meaning. The itera-

tions of other vectors follow the similar normalization. The

row/column �1 normalization operation has no effect to the

total convergence, which is illustrated in Appendix A.

4.3. Hypothesis generation

We follow the traditional approaches to set a bound for

association generation. Basically, we make an association

hypothesis between two object candidates from two con-

secutive frames only when they are spatially close to each

other. This strategy is popular in multi-target tracking, since

making all associations neither practical nor meaningful.

For implementation, we select a distance threshold to guar-

antee the inclusion of all true associations. Consequentially,

the threshold is application dependent.

Finally, an important issue in hypothesis generation is

the management of special events, such as target entrance

(reappearance) and exit (occlusion). For handling this issue,

in each frame we include two dummy targets, a source and

a sink, to generate the entrance and exit association for each

real target.

4.4. Tensor computation

The tensor S is constructed based on the global asso-

ciation hypothesis, with the trajectory affinities as the ten-

sor elements. Given different affinity representations, there

are different optimization formulations. For example, if

the affinity sl1l2...lK−1 can be decomposed as sl1l2...lK−1 =∑
i=1,...,K−1 s

∗
li
, where s∗ denotes the two-frame associa-

tion affinity, the objective (16) can be reformulated as

I1∑
l1

I2∑
l2

· · ·
IK−1∑
lK−1

sl1l2...lK−1π
(1)
l1

π
(2)
l2

. . .π
(K−1)
lK−1

=
(∏
k �=1

Ik
) I1∑
l1

s∗l1π
(1)
l1
+. . .+

( ∏
k �=K−1

Ik
)IK−1∑
lK−1

s∗lK−1π
(K−1)
lK−1 .

(27)

Consequently, the two-dimensional assignment is a special

case of the tensor framework.

When the affinity is computed as the product of pairwise

costs, i.e. sl1l2...lK−1 = s∗l1s
∗
l2
. . . s∗lK−1 , the score in (16)

can be rewritten as

I1∑
l1

· · ·
IK−1∑
lK−1

sl1...lK−1π
(1)
l1

. . . π
(K−1)
lK−1

=
I1∑
l1

s∗l1π
(1)
l1

I2∑
l2

s∗l2π
(2)
l2
· · ·

IK−1∑
lK−1

s∗lK−1π
(K−1)
lK−1

(28)

We note (28) is the same as the formulation in network

flow ([5]), thus network flow is a special case of the pro-

posed tensor framework.

To summarize, tensor approximation provides a flexible

framework to take advantage of global and local association

energy. Detailed representation about the affinity computa-

tion is presented in the experiment section.

4.5. Initialization and termination

The initial point is important for tensor iteration. In

our work, we make the uniform initialization. For exam-
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ple, when one target has 4 association candidates, the ini-

tial value for each candidate is 1/4. The algorithm termi-

nates when the predetermined iteration number is reached,

or when the gain of the objective function is below a thresh-

old.

The solution given by tensor power iteration is real-

value, which must be discretized to meet the integer and

one-to-one mapping constraints in the assignment. To lever-

age the conflicts between different local association candi-

dates, we treat the real-value solutions as the costs for cor-

responding association candidates and feed them into a bi-

partite problem. Then, we apply the Hungarian algorithm

to obtain the binary output.

5. Experiments

We test the proposed approach on two challenging

datasets. One is the wide aerial motion imagery (WAMI):

CLIF [1], with which we implement multiple vehicle track-

ing. The other is the pedestrian walking sequences used

in [8, 14], we called it PSUdata.

5.1. CLIF data

Our first experiment is conducted on the Columbus

Large Image Format (CLIF) dataset ([1]) for multiple mov-

ing targets tracking. The dataset is challenging in the fol-

lowing aspects: 1) large image format (4016 × 2672), 2)

large camera and target motion, 3) tiny target occupy (4∼70

pixels), 4) similar target appearances (gray image), 5) low

frame rate sampling (≤2 fps) and 6) a large mount of targets

(dozens to hundreds).

In this experiment, we compare our approach with the

other two approaches. One is the iterated conditional modes
(ICM)-like algorithm presented in ([8]), which we denote

as “ ICM-like”. The other is the classical Hungarian assign-

ment. Three methods are tested on three sequences, each

constitutes of 100 frames (50 seconds). One sequence de-

scribes the heavy traffic scene, with more than 200 vehicles

on the road. The other two sequences are more sparse, but

there are still more than 80 targets in each frame. We note

there is no ground truth about CLIF dataset, therefore we

spend much time on labeling the three sequences.

Vehicle detection in the wide area surveillance (WAS)

constitutes of two components, motion detection and object

classification. First, background modeling with median fil-

ter is performed and used to obtain foreground blobs. Sec-

ond, the trained SVM classifier using HOG [9] features is

applied to remove false positives.

The affinity of a trajectory is defined as

sl1l2...lK−1 = al1al2 ...alK−1ml1l2...lK−1 , (29)

where alt is the affinity of the local association lt and is

computed using histogram appearance and bounding box

Table 1. Evaluation results on the CLIF dataset. Sparse scene:

Seq1 and Seq 2. Dense scene: Seq3.

Correct match percentage Wrong match percentage

Ours ICM Hun Ours ICM Hun

Seq1 91.1 83.1 75.8 11.9 16.5 25.2

Seq2 92.1 89.6 86.8 9.4 10.3 11.3

Seq3 91.4 87.3 83.3 9.4 12.9 16.5

area features; ml1l2...lK−1
is the global motion affinity de-

fined as

ml1...lK−1∝
K−2∏
t=1

exp
( UltU

T
lt+1

‖Ult‖‖Ult+1‖
+

2‖Ult‖‖Ult+1‖
‖Ult‖2+‖Ult+1‖2

)
, (30)

where Ult is the velocity vector of association lt. We set K
as 5 in both our approach and ICM-like.

We use the same affinity (29) in our approach and ICM-

like, and alt is used as the cost in Hungarian algorithm. The

quantitative results are presented in Table 1. The correct
match percentage Pc and wrong match percentage Pw are

computed as equation (31)

Pc = 100×
∑

t cm(t)∑
t g(t)

, Pw = 100×
∑

t wm(t)∑
t g(t)

, (31)

where cm(t) and wm(t) represent numbers of correct and

wrong associations (ID switch) in frame t, g(t) denotes the

number of ground truth targets at frame t.
Among the three algorithms, Hungarian assignment per-

forms the worst, since it is the two-dimensional local solu-

tion and the high-order motion is not captured. Further, our

approach performs better than ICM-like. One reason lies

in that the association ambiguity is retained in the iteration

process in our approach till final decision.

Figure 2 gives the multi-vehicle tracking trajectories of

our approach. It can be seen that the application is espe-

cially difficult, with a large amount of tiny and confusing

targets. Despite the difficulty, most trajectories provided by

our algorithm are correct.

5.2. PSUdata

PSUdata constitutes of two sequences of trajectories

from pedestrians walking in an atrium. One is relatively

sparse, with about 3∼5 people per frame. The other is a

dense sequence with more than 20 people per frame, thus

more difficult. A major challenge of PSUdata is the ab-

sence of appearance information, which is often used by

pedestrian tracking algorithms.

In this experiment, we compare the proposed tensor-

based association with ICM-like. We use the same affinity

in [8] defined as

s = E0 − Econt − Ecurv

= E0−η
K∑
i=2

‖pi−pi−1‖−
K−1∑
i=2

‖pi+1+pi−1−2pi‖ , (32)
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Figure 2. Vehicle tracking with the proposed approach. Top: dense traffic scene. Bottom: sparse scene. Red line indicates tracking results

with a rightward motion direction and blue is the opposite. Best viewed with color printing and enlarged size.

Table 2. Evaluation results on the sparse scene of the PSUdata

Correct match percentage Wrong match percentage

Ours ICM Ours ICM

3fps 99.99 99.95 0.00 0.00

2fps 99.98 99.97 0.00 0.01

1fps 99.45 98.87 0.50 0.97

Table 3. Evaluation results on the dense scene of the PSUdata
Correct match percentage Wrong match percentage

Ours ICM Ours ICM

3fps 99.94 99.91 0.05 0.08

2fps 99.78 99.74 0.20 0.24

1fps 96.98 93.63 3.01 6.26

where η is the weighting parameter (set as 0.5); pi is the

target position in frame i; E0 is a large constant to make the

affinity positive; Econt penalizes large position jumps be-

tween successive point pair; and Ecurv defines the constant-

velocity motion model. We use the 6 frames as a batch in

both our approach and ICM-like.

The quantitative results3 are presented in Tables 2 and 3,

where we used the same metric (31) to evaluate the perfor-

mance of two approaches. It can be seen that our method

performs better than ICM-like in most cases, especially in

the difficult 1fps dense scenarios. The large motion offsets

of targets in the low frame-rate dense scene cause multiple

association possibilities, which confuse the association al-

gorithms. Our approach deals with the problem by retaining

3Our implementation of ICM-like generates similar but not identical

results as the original one [8]. We list results from our implementation

since [8] only reports wrong percentage but not correct percentage.

Figure 3. Multi-target association results of two approaches on

PSUdata. Left half for sparse data and right half for dense as-

sociation. Far left: tensor-based association, with 0 ID switch.

Second from left: ICM-like association, with 4 ID switches. Sec-

ond from right: tensor-based association, with 9 ID switches. Far

right: ICM-like association, with 23 ID switches.

the association ambiguity till the final binarization stage,

thus acquires a better result than does ICM-like. The per-

formance gains of our approach in sparse and higher frame-

rate sequences are small, since the results of ICM-like are

close to saturation, and there are less association ambigui-

ties for the data too.

The qualitative experiment is presented in Figure 3. It

can be seen our approach performs better than the ICM-like

method in both sparse and dense scenarios.
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5.3. Complexity analysis

Both our approach and ICM-like iterate on the global tra-

jectory. The global affinity table is computed firstly. Tensor

based association has a computation complexity of O(fn)
in each iteration, n is the length of the table (i.e., number

of non-zero items) and f is the number of frames. By con-

trast, ICM-like has a complexity of O(mn), where m is the

total number of two-frame association candidates. Because

the iteration on each variable in our approach only needs

lookup-table operations, while the iteration of ICM-like on

each variable needs the global search across the table. Gen-

erally, our approach is more efficient since f � m.

6. Conclusion
In this work, we first consider the global trajectory as

the high-order tensor item, and formulate the multiple di-

mensional assignment task as the (row/column) constrained

tensor approximation problem. Further, an �1 unit norm

tensor power iteration algorithm is proposed to solve the

optimization, and we provide the convergence proof. The

two features in our approach, using global trajectory affin-

ity and maintaining the association ambiguity, advance the

global association performance. Experiments on two chal-

lenging datasets demonstrate the excellent capability of our

approach.
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A. Power iteration for row/column unit norm
Given a matrix E ∈ R

M×N , constitutes of elements epq(1 ≤
p ≤ M, 1 ≤ q ≤ N). We represent the unfolding vector as Π,

which is organized as equation (33).

Π = (E(1, ·),E(2, ·), ...,E(M, ·))
= (e11, .., e1N , e21, .., e2N , ..., eM1, .., eMN ).

(33)

We borrow the definition of W in (21), and formulate it as (34),

where Wp ∈ R
1×N (1 ≤ p ≤ M) .

W = (w1, w2, ..., wM×N ) = (W1, ...,WM ). (34)

With the formulation (33) and (34), the score is represented as

g(Π(1), ...,Π(K−1)) =
∑

l1...lK−1
sl1...lK−1π

(1)
l1

...π
(K−1)
lK−1

= 〈Π(1),W 〉 =
M∑
p=1

〈E(p, ·),Wp〉.
(35)

It can be seen the total score constitutes of M partial scores.

As each partial score has a raise (no decrease) after the �1 unit

norm iteration, the total score converges to the extreme with each

row/column unit iteration.
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