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Abstract

Combining foreground images from multiple views by
projecting them onto a common ground-plane has been
recently applied within many multi-object tracking ap-
proaches. These planar projections introduce severe arti-
facts and constrain most approaches to objects moving on a
common 2D ground-plane. To overcome these limitations,
we introduce the concept of an occupancy volume – ex-
ploiting the full geometry and the objects’ center of mass
– and develop an efficient algorithm for 3D object track-
ing. Individual objects are tracked using the local mass
density scores within a particle filter based approach, con-
strained by a Voronoi partitioning between nearby track-
ers. Our method benefits from the geometric knowledge
given by the occupancy volume to robustly extract fea-
tures and train classifiers on-demand, when volumetric in-
formation becomes unreliable. We evaluate our approach
on several challenging real-world scenarios including the
public APIDIS dataset. Experimental evaluations demon-
strate significant improvements compared to state-of-the-
art methods, while achieving real-time performance.

1. Introduction
Motivated by numerous applications, such as visual

surveillance or sports analysis, considerable research has

been made in the area of tracking objects from video se-

quences. For single object tracking, various successful ap-

proaches have been proposed, even for robustly handling

heavy changes in appearance (e.g., [2]), or geometry (e.g.,

[11]). In contrast, multi-object tracking (e.g., [5, 9, 19]) is

still a challenging problem. As soon as the object density is

high and objects are occluding each other, the positions of

single instances cannot be determined reliably.

One way to deal with this problem is to take advantage

of multiple cameras. In general, these approaches (e.g.,

[8, 10, 13, 16, 17]) assume overlapping views observing the

same 3D scene by exploiting constraints like objects mov-

ing on a common ground-plane, a known number of objects,

or that two objects cannot occupy the same position at the

Figure 1: Homography-based approaches (e.g., accumulat-

ing projections of foreground segmentations at a common

ground-plane) often cause severe artifacts and cannot han-

dle out-of-plane motion (e.g., the person standing on the

chair).

same time. These constraints are typically referred to as

closed-world assumptions [14]. Very often, such methods

apply change detection in a first step to estimate the fore-

ground likelihood of each pixel (e.g., [10, 16, 17]). Then,

this information is fused exploiting the common ground-

plane assumption by either computing a score map [10, 16]

or by estimating axes intersections [17].

One of the main limitations of these methods, as illus-

trated in Figure 1, is that the planar projections are only

valid for the ground-plane, resulting in unreliable projec-

tions for points not lying on the ground-plane. Furthermore,

these projections generate ghosting artifacts that have to

be handled. In order to overcome these limitations, epipo-

lar constraints (e.g., [25]) or volumetric 3D reconstructions

(e.g., [6, 12, 21]) are exploited in the tracking process.

Inspired by the idea of using 3D scene structure for mul-

tiple object tracking, we propose a robust and real-time

capable approach relying on geometric information as a

primary cue and using appearance information only on-

demand, as opposed to [12, 21]. For that purpose, we intro-

duce the concept of an occupancy volume, which is based

on local mass densities of a coarse 3D reconstruction of the

objects’ visual hull. The usage of the local mass density

reduces noise and artifacts of the visual hull. This allows

to derive an occupancy map, which represents the objects’

mass center on the ground-plane for robustly estimating the

objects’ (x, y) coordinates using a particle filter approach
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(a) Input image. (b) Reconstructed visual hull. (c) Reprojected occupancy volume. (d) Derived occupancy map.

Figure 2: We reconstruct the visual hull from foreground segmentations of input images (a,b), which allows for computing

the occupancy volume visualized in (c), where bright colors indicate high local mass densities. The occupancy volume allows

for deriving an occupancy map (d) used for robust tracking using particle filtering in combination with Voronoi partitioning.

in combination with Voronoi partitioning. The correspond-

ing z coordinate is then determined using the occupancy

volume in a subsequent step. Therefore, in contrast to exist-

ing approaches, we are not limited to objects moving on a

common ground-plane, which allows for robust tracking of

complex scenes, e.g., people stepping on ladders, jumping,

etc. Additionally, we exploit the 3D scene structure in com-

bination with the tracking results to on-line collect samples

for each individual object. This appearance information can

be used to resolve collisions by training discriminative ap-

pearance models on-demand.

2. Volumetric Tracking

Tracking algorithms which project 2D image informa-

tion onto a common ground-plane suffer from ghosting ar-

tifacts introduced from the planar projections as shown in

Figure 1. To overcome this problem, in the following, we

propose a novel multiple camera, multiple object tracking

approach exploiting 3D geometric information, which is il-

lustrated in Figure 2.

As a first step, we generate an occupancy volume (see

Figure 2c) based on the local mass densities of the 3D vi-

sual hull reconstruction (see Figure 2b), which will be in-

troduced and discussed more detailed in Section 2.1. From

these occupancy volumes we then estimate occupancy maps

(see Figure 2d) and perform the actual tracking step, which

is split into two parts to significantly reduce the computa-

tional complexity. First, we estimate the targets’ coordi-

nates within the Cartesian plane, followed by the estima-

tion of the corresponding z coordinates. Therefore, we re-

fer to this as (2+1)D tracking, which allows for an efficient

approximation of an otherwise computationally expensive

search within the 3D hypotheses space. By exploiting the

3D occupancy volume, we are able to obtain exact 3D lo-

cation estimates and furthermore, are not constrained by

the common ground-plane assumption. This is described

in more detail in Section 2.2. Additionally, as discussed

in Section 2.3, we exploit the 3D scene structure to collect

samples for learning an appearance model on-demand to

resolve ambiguous situations, where a correct assignment

solely based on the geometric information cannot be en-

sured, e.g., whenever targets move too close to each other

(see Figure 3).

2.1. 3D Occupancy Volume

Given the foreground segmentations of each camera

view (e.g., obtained from standard background subtraction

techniques, such as [24]), we reconstruct the visual hull

[20]. For that purpose, we adapt Shape from Silhouette

[7, 22], to be applicable for reconstructing the visual hulls

of objects not visible in all views. Note that Shape from

Silhouette is able to handle the constraints imposed by stan-

dard multiple camera networks, i.e., wide baselines, sig-

nificantly different viewing angles (opposing camera posi-

tions), and a low number of overlapping views.

In order to reconstruct the visual hull, the scene is dis-

cretized into a set V of x×y×z voxels. Every voxel vi ∈ V
is reprojected into each camera view where the voxel is vis-

ible and set to occupied, i.e., vi = 1, if it projects into the

foreground silhouettes, or carved away (i.e., set to back-

ground, vi = 0) otherwise. A major advantage of such a

voxel-based representation is that it imposes no assumption

about the scene planarity, e.g., no common ground-plane is

assumed, and thus are perfectly suited for tracking scenar-

ios, where the objects of interest exhibit challenging poses,

as can bee seen in Figure 2a.

The visual hull reconstruction is sensitive to noise, i.e.,

missing or false positive foreground segmentations cause

holes in the volume or ghost artifacts. To overcome this

problem, we propose an occupancy volume which incor-

porates information about the voxel’s neighborhood. Thus,

we are more robust to noisy reconstructions. The 3D occu-

pancy volume can be derived from the visual hull by com-

puting the local mass density m for every voxel vi, as

m(vi) =

∑
vj∈Nvi

vj

|Nvi |
, (1)
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where the local neighborhood Nvi depends on the objects

of interest. For example when considering persons, one can

observe that people tend to align their torso upright, e.g.,

while standing, walking, and even while crouching. Thus,

for the task of tracking humans, we define the neighborhood

by a cuboid as

Nvi =
{
vj | |vj,x − vi,x| ≤ r ∧ |vj,y − vi,y| ≤ r

∧ |vj,z − vi,z| ≤ h

2

}
, (2)

where vi,x, vi,y, vi,z denote the x, y, z coordinate of the i-th
voxel, respectively. By choosing h ≥ 3r, we increase the

emphasis on the vertical neighborhood and thus incorporate

the upright alignment of the human torso. Furthermore, by

defining the neighborhood relationship as an axis-aligned

cuboid, we can use efficient integral image representations

for computing the mass densities. The mass density defines

a likelihood relationship on the position of an object’s cen-

ter, i.e., the objects’ mass centers correspond to high local

density values within the occupancy volume.

Although ghost artifacts may occur during reconstruc-

tion of the visual hull, their effects are significantly reduced

by computing the local mass densities (e.g., see Figure 2c).

In general, the mass densities of ghosts vary over time, i.e.,

these masses are unstable and their masses are lower com-

pared to real objects. The lower mass densities in combina-

tion with the closed-world assumption that objects enter and

leave the scene at known locations (i.e., they cannot sud-

denly appear in the middle of the scene) allow for handling

ghost artifacts robustly. See Section 2.4 for more details.

2.2. Tracking using the Occupancy Volume

Now, having estimated the occupancy volume, we derive

a top view occupancy map M by assigning the maximum

local mass density value along the z axis for a given (x, y)
coordinate (see Figure 2d). The actual tracking step is then

performed using a particle filtering approach [15] on M.

We therefore estimate the target state xi
t = [x, y, vx, vy]

�

of each object, where (x, y) is the object’s location within

the Cartesian plane, and (vx, vy) describes the object’s ve-

locity. Given the mass density observations zt of the oc-

cupancy map, the posterior probability p(xi
t|zt) is approxi-

mated using a finite set of weighted particles {x̂i
t, w

i
t}.

The particle filter sketched so far works well for single

instances, however, collisions of multiple objects cannot be

handled. In fact, if objects move close to each other, the

respective modes at the occupancy map may coalesce into

a single blob, once their visual hulls cannot be separated.

Thus, collision handling techniques, such as the iterative

repulsion scheme [26], are required. However, by exploit-

ing the assumption that multiple objects cannot occupy the

same location in space at the same time, inspired by [18],

we can use an efficient approach based on Voronoi parti-

tioning of the hypotheses space (see Figure 2d).

Using the current set of N coordinate estimates P =
{P1, . . . , PN}, Pi = (xi, yi), we partition the occupancy

map M into a set C of pairwise-disjoint convex regions

Ci = {m ∈ M | d(m,Pi) ≤ d(m,Pj), ∀j �= i},
where d(·) is the Euclidean distance function. Accord-

ing to [18], given the current Voronoi partitioning, the ob-

jects’ states become conditionally independent and the pos-

terior probability conditioned on C can be formulated as

p(Xt|z1:t, Ct) = Πip(x
i
t|z1:t, Ct), where Xt is the con-

catenation of all objects’ states, i.e., the joint-state. This

implies that given the Voronoi partitioning, each object can

be tracked by a single-object tracker restricted to its corre-

sponding partition. In order to restrict a particle filter’s state

transition to its respective partition, we use a mask function

derived from the partitioning. The partitioning is of special

importance if a target is fully occluded by other objects, i.e.,

not visible in any camera view. Hence, the particle filter

keeps the correct position and cannot drift to nearby modes

on the occupancy map.

After estimating the objects’ locations within the xy
plane, the final step to obtain the full 3D coordinates is

to compute the corresponding z coordinate. Therefore, we

search for the mass center along the z axis within a local

neighborhood of the corresponding xy estimate. This addi-

tionally allows for correctly tracking objects which exhibit

out-of-plane motion.

2.3. Resolving Geometric Ambiguities

So far, the proposed algorithm operates solely on the

geometric information derived from the binary foreground

segmentations. However, in real-world scenarios it is often

not possible to correctly assign identities using pure geo-

metric information (see Figure 3). To cope with this prob-

lem, we develop a merge-split approach.

First, we identify potential conflicts between the objects

Qi = {j | d(Pi, Pj) < τc, ∀j �= i}, where a robust identity

assignment for objects within a radius τc on the occupancy

map cannot be guaranteed based on the geometric informa-

tion. Second, for each involved object we train a discrimi-

native one-vs-all classifier, considering only conflicted ob-

jects, using on-line collected training samples. We use L2-

regularized logistic regression classifiers which solve the

unconstrained optimization problem

min
w

1

2
w�w + C

∑
i

ξ (w; fi, yi), (3)

where ξ = log
(
1 + e−yiw

�fi
)

is the loss function, fi are

the on-line collected samples for the corresponding objects,

yi ∈ {−1,+1}, and C > 0 is a penalty parameter.

We exploit the 3D scene structure to identify occlusions

in the individual views and thus extract only valuable sam-
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(a) t = 1046. (b) t = 1051. (c) t = 1054. (d) t = 1060.

Figure 3: Sample merge-split situation at the APIDIS

dataset. The colors of the visual results (top) and Voronoi

partitions on M (bottom) correlate. During an attack sit-

uation (a,b), the tracker starts drifting (c). By using the

discriminative classifier, the trajectories are correctly re-

established (d), preventing an identity switch.

ples, i.e., samples where the corresponding object is fully

visible. As features we use histograms over the hue and

saturation channels of the HSV color space extracted at the

torso region, as illustrated by the white overlay in Figure 3.

The samples are stored in bags of Nf features per object

and updated using a first-in-first-out strategy to account for

changing appearance of the objects. Furthermore, we keep

separate bags for each camera to ensure robustness in spite

of different illumination conditions and to avoid complex

color calibration.

While several trackers are in a conflicted state, i.e., vol-

umes are merged, their particle filters share one coalesced

maximum. To reduce the complexity of resolving the am-

biguities, we exploit the Voronoi partitioning. In particular,

we search for separate local maxima onM, restricted by the

Voronoi partitions of the involved objects (split). Based on

the estimated posterior probability of the logistic regression

classifiers we can robustly re-assign the conflicted trackers

given the appearance information.

2.4. Automatic Initialization and Cancellation

In order to initialize and cancel trajectories, we define

entry regions near the entrances of the scenes, similar to re-

lated approaches, such as [3]. This also conforms to the

closed-world assumption that objects cannot suddenly ap-

pear at the middle of the scene, as applied to reduce the

effect of ghosts in the visual hull reconstruction.

For the automatic initialization, we observe the occu-

pancy map at the defined entry areas by extracting maxi-

mally stable extremal regions [23]. For each candidate re-

gion, we compare whether its mass density corresponds to

that of an average human. Before assigning a new tracker,

we match the appearance model of the entering person

against those of objects which left the scene previously by

using the χ2 distance. Upon a valid match, the entering

Dataset NC Frames NO FPS Resolution

APIDIS 7 1500 12 25 1600× 1200

CHAP 4 3760 5 20 1024× 768

LEAF 1 4 1800 4 20 1024× 768

LEAF 2 4 2400 5 20 1024× 768

MUCH 4 2400 5 20 1024× 768

POSE 4 1820 6 20 1024× 768

TABLE 4 1760 5 20 1024× 768

Table 1: Dataset characteristics indicating the number of

cameras NC , the total number of frames, the maximum

number of simultaneously visible objects NO, as well as the

frame rate (FPS) and the resolution of the video streams.

object is assigned the known identity, otherwise a new tra-

jectory is initialized.

3. Results and Evaluations
In the following, we demonstrate our proposed multi-

ple object tracker on several challenging real-world people

tracking scenarios.

3.1. Datasets

To evaluate our approach and to compare it to the state-

of-the-art, we use the publicly available APIDIS1 dataset

and six additional scenarios which we provide2 for further

academic use. The latter were recorded at our laboratory

with a tracking region of approximately 7m × 4m, using

4 static Axis P1347 cameras. Although the cameras were

placed slightly above head-level, at approximately 2.9m, all

sequences exhibit significant occlusions. Table 1 summa-

rizes the technical characteristics of the evaluated datasets,

which impose the following challenges:

APIDIS. The public APIDIS dataset shows a basketball

game monitored by 7 cameras. This dataset contains vari-

ous challenges like heavy occlusions, densely crowded sit-

uations as well as complex articulations, or abrupt motion

changes. Further challenges are caused by the similar ap-

pearance of all players of a team, as well as strong shad-

ows and reflections on the floor. Furthermore, some cam-

eras share almost the same viewpoint, e.g., cameras 1 and

7, which provides nearly no additional visual information.

Similar to [1], we evaluate the performance on the left-

half of the basketball court, as this side is covered by the

larger number of cameras, i.e., cameras 1, 2, 4, 5, and 7.

This results in a tracking region of about 15m× 15m.

Changing Appearances (CHAP). This sequence depicts

a standard surveillance scenario, where 5 people move un-

constrained within a laboratory. Throughout the scene, the

1http://www.apidis.org/Dataset/
2http://lrs.icg.tugraz.at/download#lab6
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people change their visual appearance by putting on jackets

with significantly different colors than their sweaters. Since

people move close to each other after changing their ap-

pearance, these situations impose additional challenges to

color based object tracking approaches, as fixed color mod-

els cannot deal with changing appearances.

Leapfrogs (LEAF 1 & 2). These scenarios depict

leapfrog games where players leap over each other’s

stooped backs. Specific challenges of these sequences are

the spatial proximity of players, out-of-plane motion, and

difficult poses. Furthermore, two people may share the

same xy position while performing a leapfrog which vio-

lates the closed-world assumption used for the Voronoi par-

titioning, as discussed in Section 2.2.

Musical Chairs (MUCH). This sequence shows 4 people

playing musical chairs (also known as Going to Jerusalem)

and a non-playing moderator who starts and stops the

recorded music. Due to the nature of this game, this se-

quence exhibits fast motions, as well as crowded situations,

e.g., when all players race to the available chairs. Fur-

thermore, sitting on the chairs is a rather unusual pose for

typical surveillance scenarios and violates the commonly

used constraint of standing persons. Additionally, regard-

ing background modeling, there are dynamic background

items, i.e., the chairs which are removed after each round,

as well as a static foreground object, i.e., the moderator is

standing almost still throughout the whole sequence.

POSE. This sequence shows up to 6 people in various

poses, such as standing, walking, kneeling, crouching,

crawling, sitting, and stepping on ladders. Additionally to

these poses, which again violate common tracking assump-

tions such as upright standing pedestrians or a common

ground-plane, a changing background illumination causes

further challenges w.r.t. robust foreground segmentation.

TABLE. This scenario exhibits significant out-of-plane

motion as up to 5 people walk and jump over a table. Addi-

tional challenges are introduced by densely crowded situa-

tions and frequent occlusions.

3.2. Evaluation Metrics

For evaluation, we compute the standard CLEAR mul-

tiple object tracking performance metrics [4], i.e., Multi-
ple Object Tracking Accuracy and Precision (MOTA and

MOTP). The precision metric MOTP evaluates the align-

ment of true positive trajectories w.r.t. the ground truth. We

compute the distance between tracker hypotheses and an-

notated ground truth objects on the ground-plane to allow

a comparison between different approaches. The reported

MOTP values are measured in meters, where lower values

indicate a better alignment with the ground truth. The ac-

curacy metric MOTA is derived from 3 error ratios, namely

the ratio of false positives, the ratio of false negatives (i.e.,

missed objects), as well as the ratio of identity switches.

Higher MOTA values indicate a better performance, with 1
representing a perfect tracking result.

We manually annotated every 10th frame for the labo-

ratory scenarios and used the provided ground truth data

for the APIDIS dataset. A tracker hypothesis is considered

valid if it lies within a radius defined by a distance threshold

τd of an annotated ground truth position. Note that this dis-

tance threshold also defines the upper bound on the reported

precision metric MOTP.

3.3. Comparison to State-of-the-Art

We compare our proposed tracking algorithm to the

state-of-the-art K-Shortest Paths (KSP) tracker3 [3]. This

tracker operates on a discretized top view representation

(grid) and uses peaked probabilistic occupancy maps, which

denote the probability that an object is present at a specific

grid position. Similar to the original formulation, we obtain

the input probability maps using the publicly available im-

plementation4 of the probabilistic occupancy map (POM)

detector [10].

In order to ensure a fair comparison, we use the same

foreground segmentations as input to both, our tracking al-

gorithm and the POM detector. For KSP/POM, we divide

the top view representation into a grid of 40 cm × 40 cm

cells. The spatial distance between the cell centers was var-

ied from 10 cm to 20 cm. We set the maximum number of

iterations for the POM detector to 1000 and varied its input

parameters σ (which accounts for the quality of the fore-

ground segmentations) and the prior probability. Based on

the POM results, we additionally evaluated the KSP tracker

with varying input parameters, i.e., different limits on the

maximum movement between consecutive frames, as well

as different entry point setups. The best performing results

are reported and used as a baseline for comparison.

3.4. Results and Discussion

Table 2 lists the performance metrics on the individual

datasets, while illustrative results5 are shown in Figure 4.

For computing the metrics, we set the distance threshold to

τd = 0.5m. As can be seen from the overall scores, our

proposed algorithm achieves state-of-the-art performance

at standard visual surveillance scenarios (e.g., CHAP and

LEAF 1), whereas we outperform the KSP tracker at more

complex scenarios, i.e., APIDIS, LEAF 2, MUCH, POSE,

and TABLE.

3http://cvlab.epfl.ch/software/ksp/
4http://cvlab.epfl.ch/software/pom/
5Additional tracking results are included in the supplemental material.
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Dataset τd [m] Algorithm MOTP [m] MOTA TP FP FN IDS FPS NA

APIDIS 0.50

Proposed 0.205 0.675 656 88 172 9 4.42 27

Prop. w/o Color 0.211 0.597 625 121 202 10 6.16 -

KSP/POM 0.231 0.490 607 156 220 46 80.70, 0.03 -

CHAP 0.50

Proposed 0.102 0.994 1555 2 6 1 9.89 9

Prop. w/o Color 0.102 0.719 1316 193 241 4 12.67 -

KSP/POM 0.167 0.952 1607 50 21 7 43.49, 0.02 -

LEAF 1 0.50

Proposed 0.107 0.991 464 2 2 0 9.88 14

Prop. w/o Color 0.107 0.721 436 83 44 7 10.34 -

KSP/POM 0.169 0.976 495 6 1 5 63.84, 0.04 -

LEAF 2 0.50

Proposed 0.097 0.916 930 41 41 0 7.65 48

Prop. w/o Color 0.116 0.727 856 115 117 34 9.04 -

KSP/POM 0.175 0.819 913 87 66 24 229.77, 0.05 -

MUCH 0.50

Proposed 0.111 0.977 783 9 9 0 12.08 12

Prop. w/o Color 0.116 0.736 694 99 99 11 13.21 -

KSP/POM 0.218 0.754 770 139 32 26 185.28, 0.06 -

POSE 0.50

Proposed 0.123 0.944 485 14 14 0 10.27 12

Prop. w/o Color 0.128 0.822 456 42 44 3 12.99 -

KSP/POM 0.201 0.555 427 156 31 17 132.49, 0.05 -

TABLE 0.50

Proposed 0.112 0.898 599 30 28 6 8.03 34

Prop. w/o Color 0.120 0.818 577 56 51 7 9.60 -

KSP/POM 0.210 0.719 573 105 58 14 208.51, 0.07 -

Table 2: Performance evaluation. For each evaluated dataset, we report the precision metric MOTP (lower is better) and

accuracy metric MOTA (higher is better), as well as the total number of true positives (TP), false positives (FP), false

negatives (misses, FN), and identity switches (IDS). The best values for each evaluation and each criterion are highlighted.

Furthermore, we report the runtime performance in frames per second (FPS), as well as the total number of ambiguous

situations NA, i.e., how often groups of people cannot be distinguished by the geometric information alone (only applicable

for the proposed method). Please refer to the text for details.

Similar to [1], we observed a large number of false pos-

itives of the POM detector if noisy foreground segmenta-

tions are used as input, e.g., caused by changing illumina-

tion. Furthermore, in situations where people exhibit chal-

lenging poses, missed detections occur frequently. In such

situations, the KSP tracker is often not able to link the true

positive detections correctly or starts drifting after several

frames of missed detections. These issues can be seen by

the significantly lower tracking accuracy at the APIDIS,

POSE, and TABLE scenarios. In contrast to KSP, our ap-

proach is able to handle such complex poses and articula-

tions more robust by exploiting the volumetric information.

Considering the high number of identity switches, the

KSP tracker obviously suffers from the missing color infor-

mation, especially in crowded scenarios. For fair compari-

son, we evaluated the proposed approach without discrim-

inative appearance models for resolving geometrically am-

biguous situations (reported as Prop. w/o Color), i.e., trajec-

tory assignment is solely based on the geometric informa-

tion derived from the occupancy volume. As the local mass

densities provide valuable cues for tracking, we still achieve

better performances on more complex scenarios compared

to the KSP approach, even without using additional color

information. By additionally using a discriminative classi-

fier to resolve these ambiguous situations, we achieve ex-

cellent tracking results, especially w.r.t. the number of iden-

tity switches - e.g., the single identity switch at the CHAP

scenario occurs after a person leaves the tracking region,

changes his clothes outside, and then re-enters the scene.

Regarding the precision metrics, the proposed approach

achieves very accurate results, i.e., the average distance be-

tween real object positions and estimated positions is ap-

proximately 10 cm. Since the KSP tracker is based on a

discretized top view representation, it is constrained by the

spatial resolution of the grid. However, as it operates off-

line on a graph built over all frames, it cannot handle arbi-

trarily dense grids due to memory limitations. In contrast,

our voxel-based approach operates on-line and can be used

with high resolution volumes, i.e., we set the voxel size to

1 cm× 1 cm× 5 cm for the evaluated scenarios.

As can be seen from the reported metrics on the APIDIS

dataset, we still achieve very accurate and precise tracking

results, despite the challenges caused by shadowing effects

and heavy reflections, as well as the complex and fast move-

ment of the players. Although the on-line sample collec-

tion facilitates correctly tracking players of different teams,

identity switches occur due to the similar appearance of

players within a team. Therefore, more discriminative vi-
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sual features specifically designed for sports analysis, e.g.,

obtained via jersey number recognition, may further im-

prove the overall performance on this scenario.

3.5. Runtime Performance

Table 2 contains the runtime performance in fps evalu-

ated on a standard PC with a 3.2 GHz Intel CPU, 16 GB

RAM, and a GeForce GTX580. We achieve frame rates of

up to 12 fps for standard tracking scenarios, although only

the visual hull reconstruction and the occupancy volume are

computed on the GPU, exploiting the inherent parallelism.

Note that the reconstruction volume used for the APIDIS

dataset is approximately 8 times larger than for the remain-

ing scenarios, which causes the lower frame rate.

The KSP tracker achieves very high frame rates due to

the efficient shortest path computation. We report the run-

times for those KSP/POM configurations which achieve the

best tracking performance. Thus, the reported frame rates

vary for scenarios with similar input data, as the KSP run-

time depends on the spatial grid density.

In contrast, the POM detector exhibits a significantly

lower frame rate caused by the high resolution of the in-

put images, as well as the required parameter configura-

tions to handle the noisy foreground segmentations. Hence,

the combination of KSP and POM does not achieve real-

time capability on the evaluated scenarios. Furthermore,

the KSP tracker requires the detection probabilities for all

time steps in advance for constructing the underlying graph

structure. Thus, it can only be computed off-line, whereas

the proposed approach works completely on-line at high

frame rates.

4. Conclusion
We proposed a real-time capable multi-object tracking

approach based on local mass densities of visual hull re-

constructions. In contrast to existing tracking approaches

for calibrated camera networks with partially overlapping

views, we are not constrained by the common ground-plane

assumption and additionally reduce artifacts rising from

noisy foreground masks. In particular, individual objects

are tracked using the local mass density scores within a

particle filter framework, constraining nearby trackers by

a Voronoi partitioning. Furthermore, we continuously ex-

ploit the reconstructed 3D information to robustly extract

features on-line. These features are used to train discrim-

inative classifiers in situations where pure geometric in-

formation becomes unreliable. To demonstrate the bene-

fits of our proposed approach, we generated several chal-

lenging datasets and additionally evaluated our approach

on the publicly available APIDIS basketball dataset. In

both cases, state-of-the-art methods can be outperformed in

terms of precision and accuracy, as well as runtime. Fu-

ture work will concentrate on extracting different features

to allow for more robust handling of objects with similar

appearance (e.g., relevant for APIDIS).
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