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Abstract

The ubiquitous availability of Internet video offers the vi-
sion community the exciting opportunity to directly learn lo-
calized visual concepts from real-world imagery. Unfortu-
nately, most such attempts are doomed because traditional
approaches are ill-suited, both in terms of their computa-
tional characteristics and their inability to robustly contend
with the label noise that plagues uncurated Internet content.
We present CRANE, a weakly supervised algorithm that is
specifically designed to learn under such conditions. First,
we exploit the asymmetric availability of real-world train-
ing data, where small numbers of positive videos tagged
with the concept are supplemented with large quantities of
unreliable negative data. Second, we ensure that CRANE
is robust to label noise, both in terms of tagged videos that
fail to contain the concept as well as occasional negative
videos that do. Finally, CRANE is highly parallelizable,
making it practical to deploy at large scale without sacri-
ficing the quality of the learned solution. Although CRANE
is general, this paper focuses on segment annotation, where
we show state-of-the-art pixel-level segmentation results on
two datasets, one of which includes a training set of spa-
tiotemporal segments from more than 20,000 videos.

1. Introduction

The ease of authoring and uploading video to the Internet

creates a vast resource for computer vision research, par-

ticularly because Internet videos are frequently associated

with semantic tags that identify visual concepts appearing

in the video. However, since tags are not spatially or tem-

porally localized within the video, such videos cannot be

directly exploited for training traditional supervised recog-

nition systems. This has stimulated significant recent in-

terest in methods that learn localized concepts under weak

supervision [11, 16, 20, 25]. In this paper, we examine the

problem of generating pixel-level concept annotations for

weakly labeled video.

Spatiotemporal segmentation

Semantic object segmentation

Figure 1. Output of our system. Given a weakly tagged video (e.g.,

“dog”) [top], we first perform unsupervised spatiotemporal seg-

mentation [middle]. Our method identifies segments that corre-

spond to the label to generate a semantic segmentation [bottom].

To make our problem more concrete, we provide a rough

pipeline of the overall process (see Fig. 1). Given a video

weakly tagged with a concept, such as “dog”, we process it

using a standard unsupervised spatiotemporal segmentation

method that aims to preserve object boundaries [3, 10, 15].

From the video-level tag, we know that some of the seg-

ments correspond to the “dog” concept while most prob-

ably do not. Our goal is to classify each segment within

the video either as coming from the concept “dog”, which

we denote as concept segments, or not, which we denote

as background segments. Given the varied nature of Inter-

net videos, we cannot rely on assumptions about the rela-

tive frequencies or spatiotemporal distributions of segments

from the two classes, neither within a frame nor across the

video; nor can we assume that each video contains a sin-

gle instance of the concept. For instance, neither the dog in

Fig. 1 nor most of the objects in Fig. 10 would be separable

from the complex background by unsupervised methods.

There are two settings for addressing the segment an-
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notation problem, which we illustrate in Fig. 2. The first

scenario, which we term transductive segment annotation
(TSA), is studied in [23]. This scenario is closely re-

lated to automatically annotating a weakly labeled dataset.

Here, the test videos that we seek to annotate are compared

against a large amount of negative segments (from videos

not tagged with the concept) to enable a direct discrimina-

tive separation of the test video segments into two classes.

The second scenario, which we term inductive segment an-
notation (ISA), is studied in [11]. In this setting, a seg-

ment classifier is trained using a large quantity of weakly la-

beled segments from both positively- and negatively-tagged

videos. Once trained, the resulting classifier can be ap-

plied to any test video (typically not in the original set).

We observe that the TSA and ISA settings parallel the dis-

tinction between transductive and inductive learning, since

the test instances are available during training in the for-

mer but not in the latter. Our proposed algorithm, Concept

Ranking According to Negative Exemplars (CRANE), can

operate under either scenario and we show experimental re-

sults demonstrating its clear superiority over previous work

under both settings.

Our contributions can be organized into three parts.

1. We present a unified interpretation under which a

broad class of weakly supervised learning algorithms

can be analyzed.

2. We introduce CRANE, a straightforward and effective

discriminative algorithm that is robust to label noise

and highly parallelizable. These properties of CRANE

are extremely important, as such algorithms must han-

dle large amounts of video data and spatiotemporal

segments.

3. We introduce spatiotemporal segment-level annota-

tions for a subset of the YouTube-Objects dataset [20],

and present a detailed analysis of our method com-

pared to other methods on this dataset for the trans-

ductive segment annotation scenario. To promote re-

search into this problem, we make our annotations

freely available.1 We also compare CRANE directly

against [11] on the inductive segment annotation sce-

nario and demonstrate state-of-the-art results.

2. Related Work
Several methods have recently been proposed for

high-quality, unsupervised spatiotemporal segmentation of

videos [3, 10, 15, 30, 31]. The computational efficiency

of some of these approaches [10, 31] makes it feasible to

segment large numbers of Internet videos. Several recent

works have leveraged spatiotemporal segments for a vari-

ety of tasks in video understanding, including event detec-

tion [12], human motion volume generation [17], human

1Annotations and additional details are available at the project website:

https://sites.google.com/site/segmentannotation/.
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Figure 2. Overview of transductive and inductive segment anno-

tation. In the former (TSA), the proposed algorithm (CRANE) is

evaluated on weakly labeled training data; in the latter (ISA), we

train a classifier and evaluate on a disjoint test set. TSA and ISA

have parallels to transductive and inductive learning, respectively.

activity recognition [2], and object segmentation [11, 13].

Drawing inspiration from these, we also employ such seg-

ments as a core representation in our work.

Lee et al. [13] perform object segmentation on unanno-

tated video sequences. Our approach is closer to that of

Hartmann et al. [11], where object segmentations are gen-

erated on weakly labeled video data. Whereas [11] largely

employ variants on standard supervised methods (e.g., lin-

ear classifiers and multiple-instance learning), we propose a

new way of thinking about this weakly supervised problem

that leads to significantly superior results.

Discriminative segment annotation from weakly labeled

data shares similarities with Multiple Instance Learning

(MIL), on which there has been considerable research (e.g.,

[5, 28, 32, 33]). In MIL, we are given labeled bags of in-

stances, where a positive bag contains at least one posi-

tive instance, and a negative bag contains no positive in-

stances. MIL is more constrained than our scenario, since

these guarantees may not hold due to label noise (which is

typically present in video-level tags). In particular, algo-

rithms must contend with positive videos that actually con-
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Figure 3. Spatiotemporal segments computed on “horse” and

“dog” video sequences using [10]. Segments with the same color

correspond across frames in the same sequence.

tain no concept segments as well as rare cases where some

concept segments appear in negative videos.

There is increasing interest in exploring the idea of learn-

ing visual concepts from a combination of weakly super-

vised images and weakly supervised video [1, 6, 14, 19, 21,

26]. Most applicable to our problem is recent work that

achieves state-of-the-art results on bounding box annotation

in weakly labeled 2D images [23]. We show that this “neg-

ative mining” method can also be applied to segment anno-

tation. Direct comparisons show that CRANE outperforms

negative mining and is more robust to label noise.

3. Weakly Supervised Segment Annotation
As discussed earlier, we start with spatiotemporal seg-

ments for each video, such as those shown in Fig. 3. Each

segment is a spatiotemporal (3D) volume that we represent

as a point in a high-dimensional feature space using a set of

standard features computed over the segment.

More formally, for a particular concept c, we are given a

dataset {〈s1, y1〉, ..., 〈sN , yN 〉}, where si is segment i, and

yi ∈ {−1, 1} is the label for segment i, with the label be-

ing positive if the segment was extracted from a video with

concept c as a weak label, and negative otherwise. We de-

note the set P to be the set of all instances with a positive

label, and similarlyN to be the set of all negative instances.

Since our negative data was weakly labeled with concepts

other than c, we can assume that the segments labeled as

negative are (with rare exceptions) correctly labeled. Our

task then is to determine which of the positive segments P
are concept segments, and which are background segments.

We present a generalized interpretation of transductive

segment annotation, which leads to a family of meth-

ods that includes several common methods and previous

works [23]. Consider the pairwise distance matrix (in the

high-dimensional feature space) between all of the seg-
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Figure 4. Visualization of pairwise distance matrix between seg-

ments for weakly supervised annotation. See text for details.

ments si from both the positive and negative videos, for a

particular concept c. Across the rows and columns, we or-

der the segments from P first, followed by those from N .

Within P , we further order the concept segments Pc ⊂ P
first, followed by the background segments Pb = P \ Pc.

This distance matrix is illustrated in Fig. 4. The blocks A, B
and C correspond to intra-class distances among segments

from Pc, Pb, and N , respectively. The block circumscrib-

ing A and B corresponds to the distances among P . Note

that A and B are hidden from the algorithm, since deter-

mining the membership of Pc is the goal of TSA. We can

now analyze a variety of weakly supervised approaches in

this framework.

Rather than solely studying TSA as the problem of par-

titioning P , we find it fruitful to also consider the related

problem of ranking the elements of P in decreasing order

of a score, S(si) such that top-ranked elements correspond

to Pc; thresholding at a particular rank generates a partition.

Co-segmentation/Clustering. Co-segmentation [27] ex-

ploits the observation that concept segments across videos

are similar, but that background segments are diverse. The

purest variants of this approach are unsupervised and do not

require N and can operate solely on the top-left 2×2 sub-

matrix. The hope is that the concept segments form a dom-

inant cluster/clique in feature space.

Kernel density estimation for N . This principled ap-

proach to weakly supervised learning exploits the insight

that the (unknown) distribution of background segments

Pb must be similar to the (known) distribution of nega-

tive segments N , since the latter consists almost entirely

of background segments. Accordingly, we construct a non-

parametric model of the probability density PN (x) gener-

ated from the latter (block C) and employ it as a proxy for

the former (block B). Then, elements from P that lie in

high-density regions of PN (.) can be assumed to come from

Pb, while those in low-density regions are probably the con-

cepts Pc that we seek. A natural algorithm for TSA is thus

to rank the elements si ∈ P according to PN (si).

In practice, we estimate PN using kernel density esti-
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mation, with a Gaussian kernel whose σ is determined us-

ing cross-validation so as to maximize the log likelihood

of generating N . In our interpretation, this corresponds to

building a generative model according to the information in

block C of the distance matrix, and scoring segments ac-

cording to:

SKDE(si) = −PN (si) = − 1

|N |
∑
z∈N

N
(

dist(si, z);σ
2
)
,

(1)

where N(·;σ2) denotes a zero-mean multivariate Gaussian

with isotropic variance of σ2.

Supervised discriminative learning with label noise.
Standard fully supervised methods, such as Support Vector

Machines (SVM), learn a discriminative classifier to sepa-

rate positive from negative data, given instance-level labels.

Such methods can be shoehorned into the weakly super-

vised setting of segment annotation by propagating video-

level labels to segments. In other words, we learn a discrim-

inative classifier to separate P from N , or the upper 2×2

submatrix vs. block C. Unfortunately, since P = Pc ∪ Pb,

this approach treats the background segments from posi-

tively tagged videos, Pb (which are typically the majority),

as label noise. Nonetheless, such approaches have been

reported to perform surprisingly well [11], where linear

SVMs trained with label noise achieve competitive results.

This may be because the limited capacity of the classifier is

unable to separate Pb fromN and therefore focuses on sep-

arating Pc fromN . In our experiments, methods that tackle

weakly labeled segment annotation from a more principled

perspective significantly outperform these techniques.

Negative Mining (MIN). Siva et al.’s negative mining

method [23], which we denote as MIN, can be interpreted

as a discriminative method that operates on block D of the

matrix to identify Pc. Intuitively, distinctive concept seg-

ments are identified as those among P whose nearest neigh-

bor among N is as far as possible. Operationally, this leads

to the following score for segments:

SMIN(si) = min
t∈N

(
dist(si, t)

)
. (2)

Following this perspective on how various weakly super-

vised approaches for segment annotations relate through the

distance matrix, we detail our proposed algorithm, CRANE.

4. Proposed Method: CRANE
Like MIN, our method, CRANE, operates on block

D of the matrix, corresponding to the distances between

weakly tagged positive and negative segments. Unlike

MIN, CRANE iterates through the segments inN , and each

such negative instance penalizes nearby segments inP . The

intuition is that concept segments in P are those that are far
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Figure 5. Intuition behind CRANE. Positive instances are less

likely to be concept segments if they are near many negatives. The

green box contrasts CRANE with MIN [23] as discussed in text.

from negatives (and therefore less penalized). While one

can envision several algorithms that exploit this theme, the

simplest variant of CRANE can be characterized by the fol-

lowing segment scoring function:

SCRANE(si) = −
∑
z∈N

1
[
si = argmin

t∈P

(
dist(t, z)

)]

· fcut

(
dist(si, z)

)
, (3)

where 1(·) denotes the indicator function and fcut(·) is a

cutoff function over an input distance.

Fig. 5 illustrates the intuition behind CRANE. Back-

ground segments in positive videos tend to fall near one

or more segments from negative videos (in feature space).

The nearest neighbor to every negative instance is assigned

a penalty fcut(.). Consequently, such segments are ranked

lower than other positives. Since concept segments are

rarely the closest to negative instances, they are typically

ranked higher. Fig. 5 also shows how CRANE is more ro-

bust than MIN [23] to label noise among negative videos.

Consider the points in the green box shown at the top right

of the figure. Here, the unknown segment, si, is very close

to a negative instance that may have come from an incor-

rectly tagged video. This single noisy instance will cause

MIN to irrecoverably reject si. By contrast, CRANE will

just assign si a small penalty for its proximity and in the

absence of corroborating evidence from other negative in-

stances, si’s rank will not change significantly.

Before detailing the specifics of how we apply CRANE

to transductive and inductive segment annotation tasks, we

discuss some properties of the algorithm that make it partic-

ularly suitable to practical implementations. First, as men-

tioned above, CRANE is robust to noise, whether from in-

correct labels or distorted features, confirmed in controlled

experiments (see Section 5.1). Second, CRANE is explic-

itly designed to be parallelizable, enabling it to employ

large numbers of negative instances. Motivated by Siva et
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al. [23]’s observation regarding the abundance of negative

data, our proposed approach enforces independence among

negative instances (i.e., explicitly avoids using the data from

block C of the distance matrix). This property enables

CRANE’s computation to be decomposed over a large num-

ber of machines simply by replicating the positive instances,

partitioning the (much larger) negative instances, and triv-

ially aggregating the resulting scores.

4.1. Application to transductive segment annotation

Applying CRANE to transductive segment annotation is

straightforward. We generate weakly labeled positive and

negative instances for each concept. Then we use CRANE

to rank all of the segments in the positive set according to

this score. Thresholding the list at a particular rank creates

a partitioning into Pc and Pb; sweeping the threshold gen-

erates the precision/recall curves shown in Fig. 6.

4.2. Application to inductive segment annotation

In the inductive segment annotation task, for each con-

cept, we are given a large number of weakly tagged pos-

itive and negative videos, from which we learn a set of

segment-level classifiers that can be applied to arbitrary

weakly tagged test videos. Inductive segment annotation

can be decomposed into a two-stage problem. The first

stage is identical to TSA. In the second stage, the most

confident predictions for concept segments (from the first

stage) are treated as segment-level labels. Using these and

our large set of negative instances, we train a standard fully

supervised classifier. To evaluate the performance of ISA,

we apply the trained classifier to a disjoint test set and gen-

erate precision/recall curves, such as those shown in Fig. 8.

5. Experiments
To evaluate the different methods, we score each seg-

ment in our test videos, rank segments in decreasing order

of score and compute precision/recall curves. As discussed

above, the test videos for TSA are available during training,

whereas those for ISA are disjoint from the training videos.

5.1. Transductive segment annotation (TSA)

To evaluate transductive segment annotation, we use the

YouTube-Objects (YTO) dataset [20], which consists of

videos collected for 10 of the classes from the PASCAL Vi-

sual Objects Challenge [8]. We generate a groundtruthed

test set by manually annotating the first shot from each

video with segment-level object annotations, resulting in a

total of 151 shots with a total of 25,673 frames (see Table 1)

and 87,791 segments. We skip videos for which the object

did not occur in the first shot and shots with severe under-

segmentation problems. Since there is increasing interest

in training image classifiers using video data [20, 24], our

Class Shots Frames Class Shots Frames

Aeroplane 9 1423 Cow 20 2978

Bird 6 1206 Dog 27 3803

Boat 17 2779 Horse 17 3990

Car 8 601 Motorbike 11 829

Cat 18 4794 Train 18 3270

Total Shots 151 Total Frames 25673

Table 1. Details for our annotations on the YouTube-Objects

dataset [20]. Note that each shot comes from a different video,

as we do not annotate multiple shots in the same video.

hope is to identify methods that can “clean” weakly super-

vised video to generate suitable data for training supervised

classifiers for image challenges such as PASCAL VOC.

Implementation details. We represent each segment using

the following set of features: RGB color histograms quan-

tized over 20 bins, histograms of local binary patterns com-

puted on 5×5 patches [18, 29], histograms of dense optical

flow [4], heat maps computed over an 8×6 grid to repre-

sent the (x, y) shape of each segment (averaged over time),

and histograms of quantized SIFT-like local descriptors ex-

tracted densely within each segment. For negative data,

we sample 5000 segments from videos tagged with other

classes; our experiments show that additional negative data

increases computation time but does not significantly affect

results for any of the methods on this dataset.

We use the L2 distance for the distance function in rel-

evant methods, and for the cutoff function in CRANE, we

simply use a constant, fcut(·) = 1. Experiments with cut-

off functions such as step, ramp and Gaussian show that the

constant performs just as well and requires no parameters.

Direct comparisons. We compare CRANE against sev-

eral methods. MIL refers to Multiple Instance Learning, the

standard approach for problems similar to our scenario. In

our experiments, we use the MILBoost algorithm with ISR

criterion [28], and sparse boosting with decision stumps [7]

as the base classifier. MIN refers to the method of [23],

which uses the minimum distance for each positive instance

as the score for the instance. KDE refers to Kernel Density

Estimation, which estimates the probability distribution of

the negatives, and then computes the probability that each

positive instance was generated from this distribution.

Discussion. Fig. 6 shows that our method outperforms all

other methods in overall precision/recall. In particular, we

perform much better for the “aeroplane”, “dog”, “horse”,

and “train” classes. Interestingly, for the “cat” class, MIL

performs very well whereas all other methods do poorly. By

visualizing the segments (see Fig. 7), we see that in many

videos, the cat and background segments are very similar in

appearance. MIL is able to focus on these minor differences

while the others do not. MIN [23] performs second best on

this task after CRANE. However, because it only considers
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Figure 6. Direct comparison of several approaches for transductive segment annotation on the YouTube-Objects dataset [20].

CRANE MIL

Figure 7. Visualizations of instances for the “cat” class where MIL

is better able to distinguish between the similar looking concept

and background segments (see text for details).

the minimum distance from a positive instance to a negative

instance, it is more susceptible to label noise.

The transductive segment annotation scenario is useful

for directly comparing various weakly supervised learning

methods in a classifier-independent manner. However, TSA

is of limited practical use as it requires that each segment

from every input video be compared against the negative

data. By contrast, ISA assumes that once a segment-level

concept model has been learned (using sufficient data to

span the concept’s intra-class variability), the model can be

applied relatively efficiently to arbitrary input videos.

5.2. Inductive segment annotation (ISA)

For the task of inductive segment annotation, where we

learn a segment-level classifier from weakly labeled video,

we use the dataset introduced by [11], as this dataset con-

tains a large number of weakly labeled videos and deals ex-

actly with this task. This dataset consists of 20,000 Internet

videos from 8 classes: “bike”, “boat”, “card”, “dog”, “he-

licopter”, “horse”, “robot”, and “transformer”. Additional

videos from several other tags are used to increase the set

of negative background videos. These videos are used for

training, and a separate, disjoint set of test videos from these

8 concept classes is used for evaluation.

Implementation details. Due to the computational lim-

itations of the MIL baseline, we limit the training set to

200,000 segments, equally divided among samples from

P and N . For segment features, we use RGB color his-

tograms and histograms of local binary patterns. For both

CRANE and MIN, we retain the top 20% of the ranked

segments from P as positive training data for the sec-

ond stage segment classifier. To simplify direct compar-

isons, we use k-nearest neighbor (kNN) as the second-stage

classifier, with k=20 and probabilistic output for x gen-

erated as the ratio to closest negative vs. closest positive:

minn∈N ||x− n||/minp∈P ||x− p||.
Direct comparisons. In addition to several of the stronger

methods from the TSA task, we add two baselines for the

ISA task: (1) kNN denotes the same second-stage classi-

fier, but using all of the data P ∪ N ; (2) SVM refers to a

linear support vector machine implemented using LIBLIN-

EAR [9] that was reported to do well by [11] on their task.

Discussion. Fig. 8 shows that CRANE significantly outper-

forms the others in overall precision/recall and dominates

in most of the per-class comparisons. In particular, we see

strong gains (except on “dog”) vs. MIL, which is impor-

tant because [11] was unable to show significant gains over

MIL on this dataset. SVM trained with label noise performs

worst, except for a few low-recall regions where SVM does

slightly better, but no method performs particularly well.

Fig. 9 (top) examines how CRANE’s average precision

on ISA varies with the fraction of retained segments. As

expected, if we retain too few segments, we do not span

the intra-class variability of the target concept; conversely,

retaining too many concepts risks including background

segments and consequently corrupting the learned classi-

fier. Fig. 9 (bottom) shows the effect of additional training

data (with 20% retained segments). We see that average

precision improves quickly with training data and plateaus

248624862488



Figure 8. Direct comparison of several methods for inductive segment annotation using the object segmentation dataset [11].

Figure 9. Average precision as we vary CRANE’s fraction of re-

tained segments [top] and number of training segments [bottom].

around 0.4 once we exceed 100,000 training segments.

Fig. 10 shows example successes and failures for

CRANE under both TSA and ISA settings. We stress that

these results (unlike those in [11]) are the raw outputs of in-

dependent segment-level classification and employ no intra-

segment post-processing to smooth labels. Observations on

successes: we segment multiple non-centered objects (top-

left), which is difficult for GrabCut-based methods [22]; we

highlight the horse but not the visually salient ball, improv-

ing over [11]; we find the speedboat but not the moving

water. CRANE can occasionally fail in clutter (top right) or

when segmentations are of low quality (cruise ship + water).

6. Conclusion
We introduce CRANE, a surprisingly simple yet effec-

tive algorithm for annotating spatiotemporal segments from

video-level labels. We also present a generalized interpre-

tation based on the distance matrix that serves as a taxon-

omy for weakly supervised methods and provides a deeper

understanding of this problem. We describe two related

scenarios of the segment annotation problem (TSA and

ISA) and present comprehensive experiments on published

datasets. CRANE outperforms the recent methods [11, 23]

as well as our baselines on both TSA and ISA tasks.

There are many possible directions for future work. In

particular, CRANE is only one of a family of methods that

exploit distances between weakly labeled instances for dis-

criminative ranking and classification. Much of the distance

matrix remains to be fully leveraged and understanding how

best to use the other blocks is an interesting direction.
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