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Abstract

In underwater imagery, the image formation process in-
cludes refractions that occur when light passes from wa-
ter into the camera housing, typically through a flat glass
port. We extend the existing work on physical refraction
models by considering the dispersion of light, and derive
new constraints on the model parameters for use in calibra-
tion. This leads to a novel calibration method that achieves
improved accuracy compared to existing work. We describe
how to construct a novel calibration device for our method
and evaluate the accuracy of the method through synthetic
and real experiments.

1. Introduction
Underwater stereo camera systems have been used for

many years in applications such as marine biology and ar-

chaeology, and are becoming more common as the technol-

ogy improves. One of the main difficulties for computer

vision is refraction caused by the camera housing. This in-

troduces distortions in the image that depend on the scene

distance and cannot be modelled exactly as a radial distor-

tion, but are often approximated as such [10, 11].

Recently there has been increasing interest in applying

a physically correct model of refraction to improve the ac-

curacy of stereo reconstructions [1, 5, 6, 11]. Agrawal et
al. provided important new insights into the properties of

this model that greatly simplify the calibration procedure

compared to earlier efforts [1]. Building upon these results,

we further characterize the flat refraction camera model by

studying the dispersion of light, which is the phenomenon

where light refracts at a different angle depending on its

wavelength. While previous authors regarded dispersion as

a minor problem to be ignored [9], we show that the dis-

parate light paths can be exploited in a manner similar to

triangulation, thereby increasing calibration accuracy.

In this paper we first show that dispersion provides addi-

tional constraints on the parameters of the refraction model,

and explain how they can be used in calibration. Next we

Figure 1. Flat refraction camera model with n layers. The refrac-

tive index of each layer varies with the wavelength of light, result-

ing in a different path for each wavelength. All paths from a single

object point lie on a common plane containing the refraction axis.

demonstrate how to perform the calibration in practice, in-

cluding the construction of a calibration device using inex-

pensive parts. Lastly, we provide an experimental evalua-

tion of our method using both simulated and real data. We

develop an original procedure to obtain ground truth values

for real data, which is missing in previous works on under-

water camera calibration.

2. Related work

Treibitz et al. analyzed the case of a single refraction at a

flat air-water interface, and showed that such a camera sys-

tem does not have a single viewpoint. They developed a

calibration procedure to find the unknown distance between

the camera center and the interface, assuming that the inter-

face is parallel to both the image plane and the checkerboard

calibration pattern. The distance to the calibration pattern

must also be physically measured [11].

Sedlazeck and Koch developed a more flexible cali-

bration method that does not require a calibration object,

and also accounts for two refractions when the port of the

camera housing is thick. However, their method is time-

consuming because it relies heavily on nonlinear optimiza-
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tions, and the accuracy on real data is not analyzed [8].

There have been several different approaches to 3D re-

construction with explicit consideration of refraction. For

example, Gedge et al. augmented the standard epipolar ge-

ometry with a refractive ray-tracing component [5]. Chang

and Chen derived closed-form solutions for structure-from-

motion assuming known vertical direction. Chari and Sturm

showed the existence of a fundamental matrix for two cam-

eras sharing a common refractive interface, but their analy-

sis is theoretical and has not been developed into an algo-

rithm [3].

A recent paper by Agrawal et al. showed that the flat

refraction camera model corresponds to an axial camera.

With this realization, they formulated a calibration frame-

work that can handle multi-layer refraction models uni-

formly through a set of linear constraints on the model pa-

rameters. The resulting method still uses nonlinear opti-

mization, but produces initial estimates efficiently by solv-

ing a set of linear systems while only assuming that the cal-

ibration object geometry is known [1]. Subsequently, Sed-

lazeck and Koch applied these results in a new analysis-by-

synthesis approach coupled with an evolution algorithm for

optimization [6].

Our work also builds on the framework by Agrawal et
al., but unlike Sedlazeck and Koch, we do not focus on the

optimization method. Instead, we examine the properties

of the refraction camera model with respect to the disper-

sion of light, and find that by taking these properties into

account, we can achieve greater calibration accuracy than if

they were ignored.

3. Flat refraction model
We first describe the flat refraction camera model and its

parameters. An example application which fits this model

is a perspective camera placed in a watertight housing with

a flat glass port.

Consider figure 1, which illustrates a pinhole perspective

camera observing a scene through n ≥ 1 parallel refraction

layers. Each refraction layer i = 1, ..., n is defined by a

thickness di and a refractive index μi,λ, which may depend

on the wavelength λ of light. The distance between the cam-

era and the first layer is given by d0, and the refraction axis

A is the vector from the camera center that is perpendicular

to all of the refraction layers.

The goal of calibration is to estimate some or all of these

parameters. In this paper we assume that n and μi,λ are

known from the construction of the camera system and its

operating environment (Agrawal et al. show how refractive

indices can also be estimated [1]). Moreover, if the camera

is placed in an underwater housing, the thickness of the port

is often known. We therefore focus on estimating A and one

or more layer thicknesses di.
Refraction at the interface between adjacent layers of

dissimilar materials takes place according to Snell’s law.

The incident and refracted rays as well as the surface nor-

mal lie in a common plane, which means that the entire light

path lies on a single “plane of refraction” [1].

3.1. Dispersion of light

In most common substances, the index of refraction

varies with the wavelength of the incident light. (By wave-

length, we mean the wavelength in a vacuum.) A single ray

of polychromatic light will be refracted into multiple rays

depending on the wavelength components. In the context

of the flat refraction camera model, this implies that a sin-

gle physical point will be imaged at multiple image points.

Consequently, the location of the physical point can be tri-

angulated given that the model parameters are known, or a

constraint on the parameters can be obtained given that the

point location is known.

For underwater imaging, the refracting medium is wa-

ter. According to Daimon et al., distilled water at 19◦C has

a refractive index that varies from 1.332 for 656nm light,

to 1.343 for 404nm light [4]. While the variation appears

small, the resulting angular difference is sufficient to be

measured by a typical consumer camera.

In the flat refraction model discussed above, for one re-

fraction (n = 1) the amount of dispersion can be charac-

terized as the solution of a quartic equation. Figure 2 (left)

shows the plane of refraction for a ray passing through the

refraction interface at (0, q) and reaching an object point

(d1, p + q); without loss of generality we assume d0 = 1.

The refractive indices for this ray are μ0,a and μ1,a on the

left and right sides of the interface respectively. Consider

another ray with different refractive indices μ0,b, μ1,b pass-

ing through the same object point but refracting at a differ-

ent location (0, q + δ). Snell’s law gives:

μ0,a
q√

q2 + 1
= μ1,a

p√
p2 + d21

, (1)

μ0,b
q + δ√

(q + δ)2 + 1
= μ1,b

p− δ√
(p− δ)2 + d21

. (2)

Squaring and rearranging (2) gives

(μ2
0,b − μ2

1,b)q
2
δp

2
δ + μ2

0,bq
2
δd

2
1 − μ2

1,bp
2
δ = 0 (3)

where qδ = q + δ and pδ = p − δ. Solving (1) for p and

substituting into (3) gives a quartic equation in δ in terms

of q, d1, and the refractive indices. On the other hand, if

δ and q are known, then one can view this as a quadratic

equation in d1 for triangulating the object point. Figure 2

(right) shows how δ varies with q and d1 for the underwater

calibration case.

For two or more refractions, analytic equations become

more difficult to derive as the polynomial degree increases

[1]. It is noteworthy that most transparent materials exhibit
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Figure 2. (Left) Geometric analysis of the dispersion, μ1,b > μ0,b, μ1,a > μ0,a, and μ0,b/μ1,b < μ0,a/μ1,a. (Right) Amount of dispersion

for various settings of q and d1, for μ0 ,a= μ 0,b = 1, μ1 ,a= 1 .332, μ 1,b = 1 .343 .

“normal dispersion” where the refractive index increases as

the light wavelength decreases. This implies that there will

be nonzero dispersion for all rays not perpendicular to the

refraction layers.

4. Calibration
In this section we develop constraint equations using dis-

persion for calibration. A key idea from Agrawal et al. is

that the refraction axis A can be estimated first, which then

allows the layer thicknesses to be found by solving a linear

system of equations [1].

By considering the dispersion of light, we obtain a new

and effective constraint on A. We show how to incorporate

dispersion as a form of triangulation in estimating the layer

thicknesses, and also in a final nonlinear optimization step

to refine the estimated parameters.

4.1. Axis estimation

Consider a coordinate system with the origin at the cam-

era center, where we describe image points by ray directions

from the origin. Let va,vb be unit vectors for the directions

of two rays of different wavelengths a, b, and suppose they

correspond to a single point in the scene. Both rays must

lie on the same plane of refraction containing the refraction

axis A, which passes through the camera center. Therefore,

if the refractive indices differ for the two wavelengths such

that va �= vb, we have the following dispersion constraint:

Dispersion : (va × vb)
�A = 0 . (4)

Stacking two or more equations from distinct points yields

a linear system, which we solve to find A by the method of

least squares. Unlike Agrawal et al.’s work, this constraint

does not involve the coordinates of scene points at all, and

the residual being minimized is the sine of the angle be-

tween the axis and the plane of refraction. In contrast, the

8-point algorithm proposed by Agrawal et al. uses a single

linear system to solve for both the refraction axis and the

calibration object pose [1], even though the two quantities

are not inherently related.

Image and measurement noise

Since the effect of dispersion can be quite small, we added a

preprocessing step in our implementation to reduce the im-

pact of random noise. Denote the image point correspond-

ing to va by x and the point corresponding to vb by (x+w).
For convenience of notation, let image points be in R

3 with

zero third coordinate.

Before applying (4), we compute a new point pair

{y, (y+w)} as an “average” within a local neighborhood.

Suppose we have k pairs of points {xi, (xi +wi)}i=1:k in

the neighborhood, with each pair defining a line that is the

projection of the corresponding plane of refraction. In the

absence of noise, these lines must all pass through a point

u where the image plane and the refraction axis intersect.

Let w = 1
k

∑k
i=1 wi be the average line direction, then we

have that

(u− xi)×wi = 0 ∀i⇒ u×w =
1

k

k∑
i=1

xi ×wi , (5)

where the implication follows by summing over i. Now we

constrain the line {y, (y +w)} to also pass through u:

(u− y)×w = 0⇒ u×w = y ×w . (6)

Substituting (6) into (5) eliminates u and gives a linear

equation for y. There are infinitely many solutions, so we

find one that is “close” to the original point pair by choos-

ing y on the line perpendicular to w and passing through

the centroid of the point neighborhood. The image points

{y, (y +w)} are then back-projected into rays and used in

the dispersion constraint.

In both our simulated and real data experiments we

found that that this averaging procedure works very well.

The neighborhood radius was set manually to 6% of the im-

age width, typically encompassing around 20 point pairs.
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4.2. Layer thicknesses

Suppose that the geometry of the points P on the cali-

bration object are known. With appropriate estimates of the

refraction axis A, object rotation R, and object translation

t⊥ in the plane perpendicular to the axis, Agrawal et al.
showed that the thicknesses of the refraction layers can be

formulated as a linear system (Eqn. (9) in [1]).

We follow their method, but incorporate a form of trian-

gulation through the use of multiple wavelengths of light.

As discussed in Section 4.1, a single object point projects

to multiple image points when dispersion is present. More

formally, if F is a function that projects a 3D point X to a

point q on the refractive surface closest to the camera, then

for two different wavelengths a and b we define the wave-

length triangulation constraint:

Triangulation :

{
qa = F (X, μ0,a, . . . , μn,a)
qb = F (X, μ0,b, . . . , μn,b)

(7)

where the di and A parameters are the same in both cases

and are omitted for clarity. This constraint is imposed sim-

ply by including all rays for each object point in the linear

system for layer thicknesses (as well as in the linear system

for recovering object pose, described below). The geometry

is depicted in Figure 1, and Figure 3 (bottom left) displays

an actual photograph of object points under the influence of

dispersion.

Recovering object pose

In Agrawal et al.’s solution for finding the refraction layer

thicknesses, the required object pose parameters R and t⊥
are computed together with A through the “coplanarity con-

straint” (Eqn. (5) in [1]). We show that the constraint equa-

tions can be simplified significantly to obtain these param-

eters by assuming that A is known (see Section 4.1). The

coplanarity constraint states that each camera ray v and its

corresponding object point P, after being transformed into

camera coordinates, must lie on a plane of refraction con-

taining the refraction axis:

(RP+ t)�(A× v) = 0 (8)

⇔ [
P� ⊗ v� v�]︸ ︷︷ ︸

B

[
E(1:9)

s

]
= 0 (9)

where ⊗ denotes the Kronecker product, E = [A]×R and

s = A × t, and subscripts in parentheses denote matrix

elements taken column-wise. Since the refraction axis is

known, we can rotate the coordinate system such that A is

aligned with the positive z-axis. Let r1, ...r9 be the entries

of R, then with such a transformation we have

E =

⎡
⎣−r2 −r5 −r8

r1 r4 r7
0 0 0

⎤
⎦ , s =

[−t2 t1 0
]�

. (10)

Furthermore, for a planar calibration object such as a

checkerboard where P(3) = 0, columns 7-9 of B are zero

(Eqn. (9)). Therefore we can drop the last row and the last

column of E to obtain the simplified constraint:

[
P�

(1:2) ⊗ v�
(1:2) v�

(1:2)

] [
E(1,2,4,5)

s(1:2)

]
= 0 . (11)

Stacking five or more equations and solving the resulting

linear system yields four entries of R and the translation

perpendicular to the axis, up to an unknown scale factor.

We recover the scale factor and the remaining entries of R
by solving the quadratic constraint that this is an orthogonal

matrix.

In general there are four possible solutions. The sign of

the scale factor corresponds to one solution in front of the

camera and one behind. Two further solutions are obtained

by negating the signs of r8 and r7, corresponding to a re-

flection across the plane parallel to the refraction layers and

passing through the object origin. The correct solution is

found after estimating the refraction layer thicknesses by

choosing the one with the minimum reprojection error.

4.3. Nonlinear refinement

The estimated refraction axis A, layer thicknesses di,
as well as object pose parameters R and t are refined by

a nonlinear optimization. The objective function to mini-

mize is the root-mean-squared Euclidean distance reprojec-

tion error, where each object point is reprojected using all of

the observed wavelengths. Therefore, the optimization im-

plicitly tries to satisfy wavelength triangulation constraint

as defined in Section 4.2. We use the MATLAB function

lsqnonlin to perform the optimization.

A noteworthy difference between our procedure and that

of Agrawal et al. is that we do not solve the analytical

forward projection equations, which for two refractions in-

volve 12th degree polynomials [1]. Instead, for a given ob-

ject point, we first compute the plane of refraction. Then we

perform a 1D bisection search for the angle of a camera ray

on that plane such that the back-projected ray intersects the

given point. This procedure is accurate and adaptable to an

arbitrary number of refractions. Moreover, it is reasonably

fast and can be easily parallelized to handle many points at

once.

5. Implementation

5.1. Calibration object

A standard checkerboard pattern does not suffice for our

method because the dispersion effect is not readily apparent

under normal lighting conditions. We designed and built a

new device that illuminates a perforated grid with two dis-

tinct wavelengths of light, forming a precisely known pat-
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Figure 3. (Top) Calibration device. (Bottom Left) Close-up of

the illuminated points viewed through an air-water interface (best

viewed in color; one pair of points marked for visibility). The dis-

persion seen here is typical at around 6-7 pixels. (Bottom Right)

Influence of red light on blue pixels and vice versa. The top curve

shows the average intensity of a blue pixel as a function of the in-

tensity of the neighboring red pixels when the camera observes a

660nm light source; similarly for the bottom curve for red pixels.

tern of point light sources, each of which produces a mea-

surable amount of dispersion.

As shown in Figure 3, this device consists of a watertight

acrylic enclosure containing 122 LEDs arranged in a grid

pattern. Half of the LEDs emit 660nm light1 and the other

half 405nm light2, with a series of diffuser films blending

them together. The dominant wavelengths of these LEDs

were confirmed by a spectrometer. The light travels through

one transparent side of the enclosure, in front of which we

mounted a precision CNC-drilled plate with a 27× 29 grid

of 0.65mm diameter holes spaced 6mm apart. The device

is powered by a lithium polymer battery installed inside the

enclosure.

We chose the two light wavelengths to be as far apart as

possible to maximize the amount of dispersion, while re-

maining visible to typical cameras equipped with CCD or

CMOS sensors and a Bayer-pattern color filter array (CFA).

Longer wavelengths in the infrared range suffer from high

attenuation in water, while shorter wavelengths are not read-

ily available for LEDs and may pose a hazard to the user.

1Lumex SSL-LX5093SRC/E
2Bivar UV5TZ-405-30

5.2. Point localization

Our calibration object provides point light sources emit-

ting two wavelengths of light simultaneously. Using color

cameras with standard Bayer-pattern CFAs, we can isolate

the two wavelengths by considering the blue and the red

pixels separately, before demosaicing has been applied. Our

tests indicate that the red pixel sensitivity to 405nm light is

less than 1%, and the blue pixel sensitivity to 660nm light

is less than 1.5% (see Figure 3). Thus we consider the cor-

relation between the two color channels to be negligible.

The centers of the image points are estimated under

the assumption that the point spread function is a bivariate

Gaussian. For each point we compute the Gaussian param-

eters from the covariance matrix of pixel intensities, and re-

fine the estimate using a nonlinear optimization. The details

are omitted due to space constraints.

5.3. Lens chromatic aberrations

An important consideration with refraction-based lenses

is that dispersion also occurs within the lens elements, the

effects of which are known as chromatic aberrations (CA).

It is necessary to correct for CA in order to isolate the dis-

persive effect of the refraction planes in front of the camera.

For this purpose, we use the image distortion model in-

troduced by Brown [2]. We first capture images of our cali-

bration object in air, and obtain two sets of camera intrinsic

parameters using the red and the blue channels separately.

Then we apply a nonlinear optimization to adjust the image

distortion parameters of the blue channel so that the blue

feature points are aligned with the red feature points. The

choice of which color channel to warp is arbitrary as long

as we do so consistently with the underwater images.

6. Results
6.1. Synthetic data

For our synthetic data experiments we simulated a cam-

era with a resolution of 4368 × 2912 pixels and a focal

length of 4633 pixels, which is based on the intrinsic pa-

rameters of the camera used in our real experiments. We

performed experiments for the refraction model configura-

tions listed in Table 1. All refractive indices are assumed

known and are listed in table 2.

Refractions d0 Est.? d1 Est.?

a) Air→Water 60 Yes – –

b) Air→Acrylic→Water 60 Yes 5.6 No

c) Air→Acrylic→Water 60 Yes 30 Yes
Table 1. Configurations for synthetic data experiments, showing

the values for parameters d0 and d1 and whether they were esti-

mated during calibration or assumed known. The angle between

the refraction axis and the camera’s optical axis was set to 4.47

degrees for all configurations.
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Figure 4. Synthetic data results for configuration a). Error bars

represent standard error. Results for configuration b) are very sim-

ilar and are omitted. (Left column) Before nonlinear refinement.

(Right column) After nonlinear refinement.

Wavelength Water Acrylic

660nm 1.33151 1.488

405nm 1.34318 1.516

Unspecified/589nm 1.33344 1.491
Table 2. Refractive indices used in all experiments. Sources are

[4] for water and [7] for acrylic.

The calibration pattern was a 27 × 29 planar grid of

points emitting both 405nm and 660nm light. Since the

use of two wavelengths in our method could be construed

as doubling the number of points, to provide a fair compar-

ison we used a 39 × 40 grid with Agrawal et al.’s method;

moreover, all the points used 405nm light to remove any

advantage due to stronger refractions. For a more direct

comparison with our real data results, we also included a

dataset for a 34 × 35 grid to show the impact of using a

smaller number of points.

All feature points were perturbed by random Gaussian

noise with standard deviation ranging from 0 to 1 pixel. For

each noise level we generated 100 trials with the calibration

pattern placed 440 units in front of the camera and rotated

randomly by up to 20 degrees.

Figures 4 and 5 summarize the results. We include re-

sults before the nonlinear refinement step to show the ef-

fectiveness of the dispersion and wavelength triangulation

constraints. For Agrawal et al.’s method the corresponding

estimates are computed by the 8-point algorithm and the

linear system for recovering layer thicknesses.
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Figure 5. Synthetic data results for configuration c). Error bars

represent standard error. Plots for Agrawal et al.’s method contain

two additional data points at σ = 0.01, 0.05. (Left column) Ini-

tial estimates before nonlinear refinement. (Right column) After

nonlinear refinement.

While our method gives more accurate results overall,

the difference is particularly striking for configuration c).

The layer thickness error plots for Agrawal et al.’s method

rise sharply as the noise increases and the final estimates

are far from the ground truth. We believe that the refraction

model is correct because the error goes to zero in the ab-

sence of noise, the refraction axis estimates appear reason-

able, and the reprojection error is being minimized properly.

Unfortunately, Agrawal et al.’s work [1] does not give layer

thickness estimation results for this configuration for us to

corroborate our findings.
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Figure 6. Experimental setup, showing the calibration device and

a checkerboard inside the tank, a checkerboard affixed to the tank

surface, and the camera mounted on a SlyderDolly translation rail.

In light of our results, we believe that the additional con-

straints provided by dispersion and wavelength triangula-

tion have a significant impact on calibration accuracy be-

yond simply doubling the number of feature points.

6.2. Real data

For our real experiments we used a Canon 5D camera

with a resolution of 4368 × 2912 pixels and a 30mm fixed

focal length lens. The camera was calibrated offline for both

the intrinsic parameters and chromatic aberration correction

(see 5.3).

We collected two sets of data, one using our novel cal-

ibration device with a 27×29 grid of points, and a second

using a 34 × 35 checkerboard pattern for comparison with

Agrawal et al.’s method. (Because the squares cannot be too

small, this checkerboard has somewhat fewer points than in

our synthetic data experiments. The results in Fig. 4 show

that the impact of using fewer points with Agrawal et al.’s
method is minimal.) The calibration objects were placed in-

side an acrylic water tank approximately 45cm behind the

front surface and moved around slightly within the cam-

era’s field of view. The camera was located within 10cm

of the tank surface. We used an air→acrylic→water refrac-

tion model in all calibrations, with the tank wall thickness

assumed known at a measured value of 5.6mm. Figure 6

shows a photo of the experimental setup, and the calibra-

tion results are shown in Figure 7 and Table 3.

Although our method gives accurate results, we noticed

that the nonlinear refinement step did not improve the es-

timate of the refraction axis, which was very close to the

ground truth to begin with (see Figure 7). Therefore we

tried a “fixed axis” variation of our method in which the es-

timated axis is fixed during the nonlinear optimization step.

Unfortunately this caused the error in d0 to increase. Since

these observations disagree with our results using synthetic

data, we attribute the source of error to measurement noise,

lens distortions, and/or the pinhole camera approximation.

We plan to investigate this issue further in our future work.

Interestingly, we found that the estimated d0 was partic-

ularly sensitive to variations in the refractive index differ-

ence λ2,405nm−λ2,660nm for water, but much less sensitive

to variations in both index values that do not change this

difference. This is in line with the theory since the trian-

gulation constraint is based on the difference in refraction

angle. In our experiments, we found that varying only one

index value by 0.0005 affected the estimated d0 by about

4mm, whereas varying both values correspondingly by this

amount had an effect of only 0.3mm.

6.2.1 Obtaining ground truth

Because the camera is focused on objects within the tank, it

is not possible to obtain a direct measurement of the front

surface of the tank. Instead, we mounted our camera on a

SlyderDolly translation rail, which allowed us to move the

camera precisely in a straight line. We also attached a ruler

with a needle to accurately measure the camera’s motion

along the rail.

The ground truth values for the calibration parameters

were determined after the datasets were captured. Our pro-

cedure was as follows:

1. Measure the initial position of the camera as used for

dataset capture.

2. Translate the camera backwards until the tank surface

is just in focus.

3. Affix a checkerboard pattern on the tank surface, in the

center of the camera’s field of view. (The thickness of

the checkerboard is negligible.)

4. Capture a set of 48 images, translating the camera

backwards by 2mm each time.

Each of the 48 images yielded a measurement of the pose

of the tank surface with respect to the camera. The refrac-

tion model parameters were then determined in two steps.

Firstly, since the camera orientation is not changed by lin-

ear motion, we averaged the rotation measurements to ob-

tain the ground truth for the refraction axis. Secondly, the

initial position of the camera was extrapolated from the 48

pose measurements. We did so by fitting a line to the data

points, together with a 2mm scale that minimized squared

distance error. The parameter d0 was then computed as the

initial camera translation in the axis direction.

7. Conclusion and future work
We have described a novel method for calibrating the ge-

ometry of a camera observing a scene through one or more
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Figure 7. Refraction axis estimation results. Each marker represents the point of intersection between the axis and the image plane. The

vertical and horizontal axes are in pixels and are shown at the same scale. (Left) The entire image. (Middle) Detail near the center of the

image. (Right) Detail showing the distribution of ground truth estimates and the estimates from our method.

Method Estimated d0 (mm) σ Error in Axis A (degrees) σ

Ground Truth 45.91 0.07† 0.011‡ 0.006

Agrawal et al. 43.34 39.22 2.173 0.775

Ours 46.09 11.77 0.866 0.393

Ours (fixed axis) 52.31 14.08 0.065 0.022 � �� ���
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Table 3. Estimated calibration parameters using real data. †Standard deviation of linear scale fitting error (Sec. 6.2.1). ‡Error of each

measurement point with respect to the average. (Inset) Scatterplot of the estimated d0 values and mean values.

flat refraction layers. Our method exploits the effect of

dispersion, which has previously been ignored, to develop

constraints on the calibration parameters by using multiple

wavelengths of light. We have shown that these constraints

are analogous to triangulation, and have demonstrated using

synthetic and real experiments that they can improve the ac-

curacy of the calibration.

In the future we plan to extend our method to calibrate

multiple cameras simultaneously, and apply the results to

3D reconstruction with explicit modeling of refraction. It

will be interesting to compare the real-world accuracy of

such a method with standard methods that do not model re-

fraction. Additionally, with appropriate scene illumination

techniques, the wavelength triangulation constraint may be

directly applicable in single-view 3D reconstruction or as a

means to improve multi-view reconstruction quality.

Another direction to investigate is calibration with un-

known refractive indices, where the dispersion effect may

aid in recovering these unknowns.
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