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Abstract

Automatic computation of surface correspondence via
harmonic map is an active research field in computer vi-
sion, computer graphics and computational geometry. It
may help document and understand physical and biological
phenomena and also has broad applications in biometrics,
medical imaging and motion capture. Although numerous
studies have been devoted to harmonic map research, lim-
ited progress has been made to compute a diffeomorphic
harmonic map on general topology surfaces with landmark
constraints. This work conquer this problem by changing
the Riemannian metric on the target surface to a hyperbolic
metric, so that the harmonic mapping is guaranteed to be
a diffeomorphism under landmark constraints. The com-
putational algorithms are based on the Ricci flow method
and the method is general and robust. We apply our algo-
rithm to study constrained human brain surface registration
problem. Experimental results demonstrate that, by chang-
ing the Riemannian metric, the registrations are always dif-
feomorphic, and achieve relative high performance when
evaluated with some popular cortical surface registration
evaluation standards.

1. Introduction

Analysis and understanding of shapes is one of the most

fundamental tasks in our interaction with the surrounding

world. There are two major problems in shape analysis re-

search: similarity and correspondence. Examples of sim-

ilarity research include 3D face recognition [5], shape re-

trieval [6], etc. Among various correspondence research,

automatic computation of surface correspondence regulated

by certain geometric or functional constraints is an impor-

tant research field in computer vision and medical imaging.

For example, in human brain mapping research, since cy-

toarchitectural and functional parcellation of the cortex is

intimately related the folding of the cortex, it is important

to ensure the alignment of the major anatomic features, such

as sucal landmarks.

Among various rigid and non-rigid surface registration

approaches (e.g. [3, 5, 16]), harmonic map is one of the

most broadly applied methods [27, 32]. The advantages of

harmonic map computation are: (1) it is physically natural

and can be computed efficiently; (2) it measures the elastic

energy of the deformation so it has clear physical interpre-

tation; (3) for a planar convex domain, it is diffeomorphism;

(4) it can be computed by solving an elliptic partial dif-

ferential equation so its computation is numerically stable;

(5) it continuously depends on the boundary condition so it

can be controlled by adjusted boundary conditions. In com-

puter vision and medical imaging fields, surface harmonic

map has been used to compute spherical conformal map-

ping [12], image registration [13], high resolution tracking

of non-rigid motion [27], non-rigid surface registration [17],

etc.

However, the current state-of-the-art surface harmonic

map research has some limitations. For example, it usu-

ally only works with genus zero surfaces but does not work
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with general topology surfaces. It is hard to add landmark

curve information. A harmonic map combined with land-

mark matching conditions usually does not guarantee dif-

feomorphism. All these problems become obstacles to ap-

ply harmonic map to solve general non-rigid surface match-

ing problems. In contrast, in current work, we slice along

the landmark curves on general surfaces and assign a unique

hyperbolic metric on the template surface, such that all the

boundaries become geodesics. Then by establishing har-

monic mappings, the obtained surface correspondences are

guaranteed to be diffeomorphic.

In this paper, we apply the proposed method to study

human brain cortical surface registration problem. Early

research [11, 24] has demonstrated that surface-based ap-

proaches may offer advantages as a method to register brain

images. The cortical surface registration may help identify

early disease imaging biomarkers, develop new treatments

and monitor their effectiveness, as well as lessen the time

and cost of clinical trials.

In summary, the main contributions of the current work

are as follows:

1. Introduce a novel algorithm to compute harmonic map-

pings on hyperbolic metric using nonlinear heat diffusion

method and Ricci flow.

2. Develop a novel brain registration method based on hy-

perbolic harmonic maps. The new method overcomes the

shortcomings of the conventional methods, such that the

registration is guaranteed to be diffeomorphic.

3. Introduce a novel general methodology to achieve spe-

cial goals in geometric processing by changing the surface

Riemannian metrics.

2. Previous Works
Conformal geometric methods based on the Euclidean

metric have been extensively studied [1, 31, 30, 4, 28].

Wang et al. [26] studied brain morphology with Teichmüller

space coordinates where the hyperbolic conformal mapping

was computed with the Yamabe flow method. Zeng [31]

proposed a general surface registration method via the Klein

model in the hyperbolic geometry where they used the in-

versive distance curvature flow method to compute the hy-

perbolic conformal mapping.

Various surface registration methods were proposed in

computer vision field [7, 20, 16, 18]. To register brain cor-

tical surfaces, a common approach is to compute a range

of intermediate mappings to some canonical parameter

space [24, 11, 29]. A flow, computed in the parameter space

of the two surfaces, then induces a correspondence field in

3D [8]. This flow can be constrained using anatomical land-

mark points or curves [2, 14, 21, 33], by sub-regions of in-

terest [15], by using currents to represent anatomical varia-

tion [10], or by metamorphoses [25]. There are also various

ways to optimize surface registrations [4, 19, 23]. Over-

all, finding diffeomorphic mappings between brain surfaces

is an important but difficult problem. In most cases, ex-

tra regulations, such as inverse consistency [23], have to be

enforced to ensure a diffeomorphism. Since the proposed

work offers a harmonic map based scheme for diffeomor-

phisms which guarantees a perfect landmark curve regis-

tration via enforced boundary matching, the novelty of the

proposed work is that it facilitates diffeomorphic mapping

between general surfaces with delineated landmark curves.

3. Theoretic Background
This section briefly covers the most relevant concepts

and theorems of harmonic maps [22] and surface Ricci flow

[31].

Ricci Flow Suppose (S,g) is a compact surface embed-

ded in R
3, g is the induced Euclidean metric.

Definition 3.1 (Surface Ricci Flow) The normalized sur-
face Ricci flow is defined as

dg(t)

dt
= 2

(
2πχ(S)

A(0)
−K(t)

)
g(t)

where χ(S) is the Eulder characteristic number of S, A(0)
is the total area of the surface at time 0, K(t) is the Gaus-
sian curvature induced by g(t).

Theorem 3.2 (Hamilton) If χ(S) < 0, then the solution to
the normalized Ricci flow equation exists for all t > 0 and
converges to a metric with constant curvature 2πχ(S)

A(0) .

By running Ricci flow, a hyperbolic metric of the sur-

face can be obtained, which induces−1 Gaussian curvature

everywhere.

Hyperbolic Plane The Poincaré’s disk model for the hy-

perbolic plane H
2 is the unit disk on the complex plane

{z ∈ C| |z| < 1} with Riemannian metric (1− zz̄)−2dzdz̄.
The geodesics (hyperbolic lines) are circular arcs perpen-

dicular to the unit circle. The hyperbolic rigid motions are

Möbius transformations φ : z → eiθ(z − z0)/(1 − z̄0z).
The axis of φ is the hyperbolic line through its fixed points:

z1 = limn→∞ φn(z), z2 = limn→∞ φ−n(z). Given two

non-intersecting hyperbolic lines γ1 and γ2, there exists a

unique hyperbolic line τ orthogonal to both of them, and

gives the shortest path connecting them. For each γk, there

is a unique reflection φk whose axis is γk, then the axis of

φ2 ◦ φ−1
1 is τ .

Another hyperbolic plane model is the Klein’s disk

model, where the hyperbolic lines coincide with Euclidean

lines. The conversion from Poincare’s disk model to Klein

disk model is given by z → 2z/(1 + zz̄).
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Fundamental Group and Fuchs Group Let S be a sur-

face, q ∈ S is a base point. Consider all the loops through

q. Two loops are homotopic, if one can deform to the other

without leaving S. The product of two loops is the concate-

nation of them. All the homotopy classes of loops form the

fundamental group (homotopy group), denoted as π1(S, q).

Furthermore, all the homotopic classes of paths on the

surface starting from p form a simply connected surface S̃,

the projection map p : S̃ → S maps each path to its end

point, the projection map is a local homeomorphism. The

pair (S̃, p) is called the universal covering space of S.

Suppose S is with a hyperbolic metric, then its univer-

sal covering space S̃ can be isometrically embedded onto

the hyperbolic plane H2. A Fuchsian transformation φ
is a Möbius transformation, that preserves the projection

φ ◦ p = p. All Fuchsian transformations form the Fuchs
group, Fuchs(S), which is isomorphic to the fundamental

group π1(S, q). Choose a base point q̃ ∈ H
2, p(q̃) = q.

A path γ̃ ∈ H
2 connecting q̃ and φ(q̃), then the projection

p(γ̃) is a loop on the base surface S. The axis of φ is the

unique geodesic in the homotopy class of p(γ̃).

Hyperbolic Pants Decomposition A pair of pants is a

genus zero surface with 3 boundaries. Any surfaces S with

complicated topology can be decompose to |χ(S)| pairs of

pants. If S has a hyperbolic metric, then all the cutting loops

can be chosen to be geodesics, as shown in Fig.2 (a) and (b).

Furthermore, each pair of hyperbolic pants can be fur-

ther decomposed. Assume the pair of pants have three

geodesic boundaries {γi, γj , γk}. Let {τi, τj , τk} be the

shortest geodesic paths connecting each pair of them. The

shortest paths divide the surface to two identical hyper-

bolic hexagons with right inner angles. when mapped to

the Klein’s model, the hyperbolic hexagons coincide with

convex Euclidean hexagons.

Harmonic Map Suppose S is a closed oriented surface

with a Riemannian metric g, by running surface Ricci flow,

one can obtain a Riemannian metric with constant curvature

+1, 0,−1 everywhere. The universal covering space of the

surface can be isometrically embedded onto the sphere C ∪
{∞}, the Euclidean plane C or the hyperbolic plane H2.

This process is called the uniformization of the surface.

Based on uniformization, one can construct an atlas,

such that on each chart {z}, the original Riemannian metric

g = σ(z)dzdz̄, which is called the isothermal parameters
of the surface. An atlas consisting of isothermal parameter

charts is called an conformal structure. It is convenient to

use complex differential operator ∂z = 1/2(∂x + i∂y) and

∂z̄ = 1/2(∂x − i∂y).

Given a mapping f : (S1,g1) → (S2,g2), z and w
are local isothermal parameters on S1 and S2 respectively.

g1 = σ(z)dzdz̄ and g2 = ρ(w)dwdw̄. Then the mapping

has local representation w = f(z) or denoted as w(z).

Definition 3.3 (Harmonic Map) The harmonic energy of
the mapping is defined as

E(f) =

∫
S

ρ(z)(|wz|2 + |wz̄|2)dxdy

If f is a critical point of the harmonic energy, then f is
called a harmonic map.

The necessary condition for f to be a harmonic map is the

Euler-Lagrange equation

wzz̄ +
ρw
ρ
wzwz̄ ≡ 0

The following theorem lays down the theoretic foundation

of our proposed method.

Theorem 3.4 [22] Suppose f : (S1,g1) → (S2,g2) is a
degree one harmonic map, furthermore the Riemann met-
ric on S2 induces negative Gauss curvature, then for each
homotopy class, the harmonic map is unique and diffeomor-
phic.

4. Algorithms
In this section we first explain our registration algorithm

pipeline as illustrated in Alg. 1 and Fig. 1:

Algorithm 1 Surface Registration Algorithm Pipeline.

1. Slice the input surfaces along the land marks.

2. Compute the hyperbolic metric using Ricci flow.

3. Hyperbolic pants decomposition, isometrically embed

them to Klein model.

4. Compute harmonic maps using Euclidean metrics

between corresponding pairs of pants, with consistent

boundary constraints.

5. Use nonlinear heat diffusion to improve the mapping

to a global harmonic map on Poincare disk model.

4.1. Preprocessing

The cortical surfaces are reconstructed from MRI images

and represented as trianglar meshes. The sucul landmarks

are manually labeled on the edges of the meshes. Then we

slice the meshes along the landmark curves, to form topo-

logical multiple connected annuli.

4.2. Discrete Hyperbolic Ricci Flow

Because the Euler characteristic number of the cortical

surfaces are negative, they admit hyperbolic metrics. We

treat each triangle as a hyperbolic triangle and set the target
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Figure 1. Algorithm Pipeline (suppose we have 2 brain surfaces

M and N as input): (a). The input brain models M and N , with

landmarks been cut open as boundaries. (b). Hyperbolic embed-

ding of M and N on Poincaré disk. (c). Decompose M and N
into multiple pants, and each pant further decomposed to 2 hyper-

bolic hexagons. (d). Hyperbolic hexagons on Poincaré disk be-

come convex hexagons under Klein model, then a one-to-one map

between the correspondent parts of M and N can be obtained.

Then we can apply our hyperbolic heat diffusion algorithm to get

a global harmonic diffeomorphism. (e). Color coded registration

result of M and N .

Gauss curvatures for each interior vertex to be zeros, and

the target geodesic curvature for each boundary vertex to be

zeros as well. Then compute the hyperbolic metrics of the

brain meshes using discrete hyperbolic Ricci flow method

[31]. Algorithm 2 describes the details.

Algorithm 2 Discrete Hyperbolic Ricci Flow.

Input: Surface M .

Output: The hyperbolic metric U of M .

1. Assign a circle at vertex vi with radius ri; For each

edge [vi, vj ], two circles intersect at an angle φij , called

edge weight.

2. The edge length lij of [vi, vj ] is determined by

the hyperbolic cosine law: coshlij = coshricoshrj +
sinhrisinhrjcosφij

3. The angle θjki , related to each corner , is determined

by the current edge lengths with the inverse hyperbolic

cosine law.

4. Compute the discrete Gaussian curvature Ki of each

vertex vi:

Ki =

{
2π −∑

fijk∈F θjki , interior vertex

π −∑
fijk∈F θjki , boundary vertex

(1)

where θjki represents the corner angle attached to vertex

vi in the face fijk
5. Update the radius ri of each vertex vi: ri = ri −
εKi sinh ri
6. Repeat the step 2 through 5, until ‖Ki‖ of all vertices

are less than the user-specified error tolerance.

4.3. Hyperbolic Pants Decomposition

In our work, the input surface is a genus zero surface

with multiple boundary components ∂S = γ0+γ1+ · · · γn,

moreover, the surface is with hyperbolic metric, and all

boundaries are geodesics. The algorithm is as follows:

choose arbitrary two boundary loops γi and γj , compute

their product [γi · γj ], if the product is homotopic to [γ−1
k ],

then choose other pair of boundary loops. Otherwise, sup-

pose [γiγk] is not homotopic to any boundary loop, com-

pute its corresponding Möbius transformation, φγiγj , and

its fixed points φ+∞
γiγj

(0) and φ−∞γiγj
(0). The hyperbolic line

through the fixed points is the axis of the φγiγj , which is

the geodesic in [γiγj ]. Slice the mesh along the geodesic,

and repeat the process on each connected components, until

all the connected components are pairs of pants. Fig 2 (c),

(d) show one example of the pants decomposition process.

Alg. 3 gives the computational steps.

Figure 2. Pants decomposition.

Algorithm 3 Hyperbolic Pants Decomposition.

Input: Topological sphere M with B boundaries.

Output: Pants decomposition of M .

1. Put all boundaries γi of M into a queue Q.

2. If Q has < 3 boundaries, end; else goto Step 2.

3. Compute a geodesic loop γ′ homotopic to γi · γj
4. γ′, γi and γj bound a pants patch, remove this pants

patch from M . Remove γi and γj from Q. Put γ′ into Q.

Go to Step 1.

4.4. Constructing the Initial Mapping

This step has several stages: first the pants are decom-

posed to hyperbolic hexagons; second, embed the hyper-

bolic hexagons isometrically to the Poincaré disk, then con-

vert to Klein model; finally the corresponding hexagons are

registered using Euclidean harmonic maps with consistent

boundary constraints. The resultant piecewise harmonic

mapping is the initial mapping.

For the first stage, we use the method described in the

theory section to find the shortest path between two bound-

ary loops. Assume a pair of hyperbolic pants M with three

geodesic boundaries {γi, γj , γk}. On the universal cover-

ing space M̃ , γi and γj are lifted to hyperbolic lines, γ̃i
and γ̃j respectively. There are reflections φ̃i and φ̃j , whose

symmetry axis are γ̃i and γ̃j . Then the axis of the Möbius

transformation γ̃j◦γ̃−1
i corresponds to the shortest geodesic

path τk between γi and γj .
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In the second stage, each hyperbolic hexagon on the

Poincaré disk is transformed to a convex hexagon in Klein’s

disk using z → 2z
1+zz̄ . Then a planar harmonic map between

two corresponding planar hexagons is established by solv-

ing Laplace equation with Dirichlet boundary conditions

[27], wzz̄ ≡ 0. The cut open landmarks were treated as

boundaries and forced to align as boundary condition with

linear interpolation by arc length parameter in this step.

It is well known that if the target mapping domain is

convex, then planar harmonic maps are diffeomorphic [22].

The boundary conditions need to be consistent, such that

the harmonic mappings between hexagons can be glued to-

gether to form a homeomorphic initial mapping. The pro-

cess is visualized in Figure 3.

Figure 3. Hyperbolic hexagon matching.

4.5. Non-linear Heat Diffusion

Let (S,g) be a triangle mesh with hyperbolic metric

g. Then for each vertex v ∈ S, the one ring neighboring

faces form a neighborhood Uv , the union of Uv’s cover the

whole mesh, S ⊂ ⋃
v∈S Uv . Isometrically embed Uv to the

Poincaré’s disk φv : Uv → H
2, then {(Uv, φv)} form a con-

formal atlas. All the following computations are carried out

on local charts of the conformal atlas. The computational

result is independent of the choice of local parameters.

The initial mapping is diffused to form the hyperbolic

harmonic map. Suppose f : (S1,g1) → (S2,g2) is the

initial map, g1 and g2 are hyperbolic metrics. Compute the

conformal atlases of S1 and S2. Choose local conformal

parameters z and w for S1 and S2, f has local representation

f(z) = w, or simply w(z), then the non-linear diffusion is

given by

w(z, t)

dt
= −[wzz̄ +

ρw(w)

ρ(w)
wzwz̄] (2)

where ρ(w) = (1 − ww̄)−2. Suppose vi is chosen to be

a vertex on S1, with local representation zi, after diffusion,

we get the local representation of its image w(zi). Sup-

pose w(zi) is inside a triangular face t(vi) of S2, t(vi) has

Algorithm 4 Hyperbolic Heat Diffusion Algorithm.

Input: Two surface models M , N with their hyperbolic

metric CM and CN on Poincaré disk, the one-to-one cor-

respondence (vi, pi) and a threshold ε. Here vi is the ver-

tex of mesh M , pi is the 3D coordinate on mesh N .

Output: A new diffeomorphism (vi, Pi).

1. For each vertex vi of M , embed it’s neighborhood onto

Poincaré disk, in which vi has coordinate zi; do the same

for pi and note it’s coordinate on Poincaré disk as wi.

2. Compute
wi(zi,t)

dt using equation (2).

3. Update wi = wi + stepwi(zi,t)
dt .

4. Compute new 3D coordinate Pi on N using the up-

dated wi, and repeat the above process until
wi(zi,t)

dt is

less than ε.

three vertices with local representation [wi, wj , wk], then

we compute the complex cross ratio

η(vi) := [w(zi), wi, wj , wk] =
(w(zi)− wi)(wj − wk)

(w(zi)− wk)(wj − wi)

the image of vi is then represented by the pair [t(vi), η(vi)].
Note that, all the local coordinates transitions in the confor-

mal chart of S1 and S2 are Möbius transformations, and

the cross ration η is invariant under Möbius transforma-

tion, therefore, the representation of the mapping f : vi →
[f(vi), η(vi)] is independent of the choice of local coordi-

nates. Alg. 4 gives the process by steps.

5. Experimental Results
We implemented our algorithms using C++ on Windows

platform, with an Open source linear system solver UMF-

PACK [9]. All the experiments are conducted on a laptop

computer of Intel Core2 T6500 2.10GHz with 4GB mem-

ory.

Data Preparation We perform the experiments on 24

brain cortical surfaces reconstructed from MRI images.

Each cortical surface has about 150k vertices, 300k faces

and used in some prior research [21]. On each cortical sur-

faces, a set of 26 landmark curves were manually drawn

and validated by neuroanatomists. In our current work, we

selected 10 landmark curves, including Central Sulcus, Su-

perior Frontal Sulcus, Inferior Frontal Sulcus, Horizontal

Branch of Sylvian Fissure, Cingulate Sulcus, Supraorbital

Sulcus, Sup. Temporal with Upper Branch, Inferior Tem-

poral Sulcus, Lateral Occipital Sulcus and the boundary of

Unlabeled Subcortcial Region.

Registration Visualization We show the visualized reg-

istration result of 2 brain models in Figure 4, with one as
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target and the other one registered to it. We can see our

algorithm shows a reasonable good result.

Algorithm Efficiency Our algorithm pipeline can be im-

plemented to be fully automatic. The hyperbolic Ricci flow

takes about 120 seconds, the hyperbolic heat diffusion takes

about 100 seconds. The complexity of pants decomposition

and initial mapping construction depends on the number of

land marks. In the current setting, it takes about 90 seconds.

Figure 4. First row: source brain surface from front, back and bot-

tom view. Second rows: target brain model. The color on the

models shows the correspondence between source and target; the

colored balls on the models show the detailed correspondence, as

the balls with the same color are correspondent to each other.

Landmark Variation For general surface registration, it

is important to incorporate consistent landmark matching.

We adapted a quantitative measure of curve variation error,

which has been used in prior work [21, 33]. By denoting a

specific landmark of subjects, i and j, in the template coor-

dinates as γ{i} and γ{j}. The Hausdorff distance was then

computed for these paired curves as

d(γ{i}, γ{j}) = 0.5
1

Ni

∑
x∈γ{i}

miny∈γ{j} |x− y|

+0.5
1

Nj

∑
y∈γ{j}

minx∈γ{i} |x− y|
(3)

where Ni and Nj are the number of points on γ{i} and γ{j},
respectively. |x−y| denotes the Euclidean distance between

points x and y. A curve variation error [21, 33] is calcu-

lated as

V ar =
1

2I(I − 1)

J∑
i=1

I∑
i=1

[d(γ{i}, γ{j})]2

where I is the number of subjects in the study. Lower values

typically indicate better alignment for the curves. As our

method cut landmarks open and force them align as bound-

ary condition with linear interpolation by arc length param-

eter, it achieves exactly zero as the discretization becomes

finer.

Performance Evaluation We evaluate our registration

method by comparing with conventional cortical registra-

tion method based on harmonic mapping with Euclidean

metric [21, 27], where the template surface is conformally

flattened to a planar disk, then the registration is obtained

by a harmonic map from the source cortical surface to the

disk with landmark constraints.

Our experimental results show that by replacing Eu-

clidean metric by hyperbolic metric on the template cortical

surface, the quality of the registrations have been improved

prominently, with a slightly increase of time complexity.

5.1. Registration Flipping

One of the most promising advantages of our registra-

tion algorithm is that it guarantees the mapping between

two surfaces to be diffeomorphic. We randomly choose one

model as template and all others as source to do registra-

tion. For each registration, we compute the Jacobian deter-

minant and measure the area of flipped regions. The ratio

between flipped area to the total area is collected to form

the histogram shown in Fig.5. The horizontal axis shows

the flipped area ratio, the vertical axis shows the number

of registrations. The conventional method (blue bars) pro-

duces a big flipped area ratio, even as much as 9%. In con-

trast, the flipped area ratios for all registrations obtained by

the current method are exactly 0’s.

Figure 5. Flipped area percentage.

5.2. Curvature Distortion

We first evaluated registration accuracy by comparing

the alignment of curvature maps between the registered

models [21]. In this paper we calculated curvature maps us-

ing an approximation of mean curvature, which is the con-

vexity measure. We quantified the effects of registration on

curvature by computing the difference of curvature maps

from the registered models. As Figure 6 shows, we assign

each vertex the curvature difference between it’s own cur-

vature and the curvature of it’s correspondent point on the

target surface, then build a color map.

We use all 24 data sets for the experiment. First, one

data set is randomly chosen as the template, then all oth-

ers are registered to it. For each registration, we compute
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the curvature difference map. Then we compute the aver-

age of 23 curvature difference maps. The average curvature

difference map is color encoded on the template, as shown

in Fig.6. The histogram of the average curvature difference

map is also computed, as shown in Fig.7. It is obvious that

the current registration method produces less curvature er-

rors.

Figure 6. Curvature map difference of previous method (top row)

and our method (bottom row). Color goes from green to red while

the curvature difference increasing.

Figure 7. Average Curvature Map Difference.

5.3. Area Distortion

We also measured the local area distortion induced

by the registration. For each point p on the tem-

plate surface, we compute its Jacobian determinant J(p),
and represent the local area distortion function at p as

max{J(p), J−1(p)}. J can be approximated by the ratio

between the areas of a face and its image. Note that, if the

registration is not diffeomorphic, the local area distortion

may go to ∞. Therefore, we add a threshold to truncate

large distortions. Then we compute the average of all local

area distortion functions induced by the 23 registrations on

the template surface. The average local area distortion func-

tion on the template is color encoded as shown in Fig.8,

the histogram is also computed in Fig.9. It can be easily

seen that current registration method greatly reduces the lo-

cal area distortions.

Figure 8. Average Area Distortion. Color goes from green to red

while area distortion increasing.

Figure 9. Average Area Distortion.

6. Conclusion and Future Work

This work introduces a hyperbolic harmonic mapping

based algorithm, which automatically establish diffeomor-

phic surface correspondences between general surfaces.

Compared with conventional landmark constrained brain

cortical surface registration work, our results are bijective

while enforcing the landmark curve matching conditions.

To achieve this, the new method changes the Riemannian

metric on the target surface and greatly improves the reg-

istration quality. It has many merits, such as existence,

uniqueness, smoothness and high numerical stability.

The computational pipeline is thoroughly explained.

Experimental results demonstrate the current method

always produces diffeomorphism, and outperforms some

existing brain registration methods in terms of curvature

difference and local area distortion. In future, we will

explore further the general methodology of changing the

Riemannian metrics to improve efficiency and efficacy of

shape analysis algorithms.
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