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Abstract

Complex events essentially include human, scenes, ob-
jects and actions that can be summarized by visual at-
tributes, so leveraging relevant attributes properly could be
helpful for event detection. Many works have exploited at-
tributes at image level for various applications. However,
attributes at image level are possibly insufficient for com-
plex event detection in videos due to their limited capabil-
ity in characterizing the dynamic properties of video data.
Hence, we propose to leverage attributes at video level
(named as video attributes in this work), i.e., the seman-
tic labels of external videos are used as attributes. Com-
pared to complex event videos, these external videos con-
tain simple contents such as objects, scenes and actions
which are the basic elements of complex events. Specifi-
cally, building upon a correlation vector which correlates
the attributes and the complex event, we incorporate video
attributes latently as extra informative cues into the event
detector learnt from complex event videos. Extensive ex-
periments on a real-world large-scale dataset validate the
efficacy of the proposed approach.

1. Introduction

In this paper, we focus on the event detection of large-
scale real-world videos [2, 3]. An “event” refers to an ob-
servable occurrence that interests users and is found in spe-
cific scenes and is characterized by the subjects and ob-
jects involved [15]. In the past, detection of events that
are simple, well-defined and describable by a short video
sequence, e.g., hand shaking, has been widely studied.
In the real world, however, users are more interested in
videos depicting complex events such as celebrating the
New Year. Complex event detection is very challenging as
these events usually contain many people and/or objects,
various human actions, multiple scenes; have significant
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Figure 1. The illustration of our approach for complex event de-
tection with video attributes.

intra-class variations; and take place in much longer video
clips [2, 3, 15, 16]. Despite the arduousness, the practical
significance of complex event detection has drawn increas-
ing interest from researchers [23, 10, 15, 16]. For example,
Ma et al. have introduced the first exploration of Ad Hoc
multimedia event detection when there are only 10 positive
examples for training [15]. However, the area of research
remains in its infancy, thus motivating us to ask for more
satisfying performance. As complex events usually con-
tain visual attributes related to people, scenes, objects and
human actions (e.g., Figure 1 shows that a complex event
parkour is relevant with push ups, building, etc.), leveraging
these attributes properly could be helpful for the detection.

Visual attributes were introduced as describable proper-
ties of an object and have been applied to many applica-
tions [5, 7, 9]. Visual attributes can be either at local level
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or global level. For example, “many people” is a local-
level attribute for the event flash mob gathering. Yet this
kind of attributes is mostly defined manually, which is time-
consuming and requires expertise. Instead, we can use at-
tributes at global level which are the semantic labels of im-
ages [19]. For instance, an image with its semantic label
tennis can be leveraged for understanding the event play-
ing tennis. Given that this type of attributes is associated
with images, we regard it as image attributes. Using image
attributes for complex event detection is intuitively limited
as image attributes usually cannot characterize the dynamic
properties of complex event videos (complex event videos
refer to the videos depicting complex events). In this pa-
per, we therefore propose an idea of video attributes and
particularly apply it for complex event detection. Video at-
tributes, in our work, indicate the semantic labels of other
external videos collected by researchers. Note that these
external videos are different from complex event videos.
Compared to complex event videos, the external videos con-
tain simple contents of people, objects, scenes and actions
which are basic elements of complex events. For example,
a video with its semantic label mixing batter is useful for
understanding the complex event making a cake. As the ex-
ternal videos are used by treating their semantic labels as
video attributes, we call these videos attribute videos.

To use video attributes, we may refer to a typical ap-
proach that involves training attribute classifiers and then
using their outputs as intermediate representations for the
complex event videos [8, 11]. But this approach has two
problems. First, when the number of attributes used is lim-
ited, it is insufficient to learn a discriminative intermedi-
ate representation. Second, given a particular event to de-
tect, only some attributes are discriminative while others are
comparatively useless or even noisy [16]. It is difficult to
decide what attributes to use for different events. In con-
trast, we propose to use video attributes as additional in-
formation to assist complex event detection. Specifically,
our framework learns the attribute classifier and event de-
tector simultaneously. The observation of a particular event
affects the attribute classifier, and in return, attributes char-
acterize the event. This kind of mutual influence is explored
by a correlation vector, which helps incorporate extra infor-
mative cues into the event detector. We name the proposed
method Multi-level Collaborative Regression (MCR). Our
approach has two merits: the learning process of event de-
tector is not solely dependent on the video attributes; and
the joint framework adapts the knowledge from attributes
for different events, i.e., a particular event obtains dedicated
perks via the joint learning of attribute classifier and event
detector.

Moreover, we propose to integrate multiple features from
both complex event videos and attribute videos for learning
the detector as combining multiple features has proved to be

beneficial for visual analysis [22]. On the other hand, exist-
ing video collections have different themes. As we expect
the video attributes to be diverse, in our framework video at-
tributes from different collections are utilized. To this end,
we illustrate our approach in Figure 1.

The main contributions of this paper are as follows: First,
we propose using video attributes for complex event detec-
tion. Second, video attributes are used latently as additional
information for learning the event detector. Third, multiple
attribute video sets with different features are sewed seam-
lessly with multiple features from the complex event videos.

2. Related Work

Visual attributes were advocated as the describable prop-
erties of objects [8]. For example, an object bear can be de-
scribed by attributes such as furry and four legs. Attributes
are both machine-detectable and human-understandable,
so they have been widely used for various applications.
Wang et al. have proposed a discriminative model for ob-
ject recognition [21]. The attributes of an object are treated
as latent variables and the correlations among attributes are
used to classify object classes. A method to learn visual
attributes and object classes together has been presented
in [20]. Duan et al. have presented an interactive approach
which discovers local attributes that are both discriminative
and semantically meaningful for fine-grained category clas-
sification [7]. Hwang et al. have proposed to explore the
shared features between objects and their attributes for ani-
mal and scene classification [9]. Dhar et al. have leveraged
high level describable attributes for selecting high aesthetic
quality images and interesting ones from large image col-
lections [5]. However, to generate local attributes usually
requires a manually defining process which is burdensome.
An alternative way is to leverage attributes at a global level,
i.e., the semantic labels of visual data. Its convenience is
that we have many labeled datasets covering a wide range
of themes. By treating the semantic labels of these data as
attributes, we can readily leverage them.

In the past, global-level image attributes have been
widely used [19, 14]. For example, Luo et al. have pre-
sented an object classification method by casting prior fea-
tures obtained from global image attributes of auxiliary im-
ages into their multiple kernel learning framework [14]. For
recognition or detection tasks in videos, image attributes
probably cannot well characterize the dynamic properties
which could hamper their contributions.

In [16], Ma et al. have proposed learning an intermedi-
ate representation for event detection. In their approach, the
intermediate representation is the same for the event videos
and the attribute videos. However, it could be natural to as-
sume that the events and attributes are different depictions
of videos at different levels. In addition, the intermediate
representation is unexplainable. Differently, we leverage
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video attributes to characterize complex events, which is in-
terpretable. In our framework, we also learn an attribute
classifier which can be used to predict the attributes of a
given video. Since the attribute classifier is jointly opti-
mized with the event detector, the related attribute classifier
is more accurate in uncovering the attributes from an event
video. For example, by exploiting the videos of “landing
a fish”, the concept classifier “fish” can be more accurately
trained and vice versa. In addition, as a byproduct of our
method, the attribute representation can be further used for
other applications such as multimedia event recounting [6].

3. Video Attributes Assisted Event Detection

We first correlate the features of attribute videos from
m multiple sources with their semantic labels respectively.
The features of different sources can be different. Fol-
lowing [15, 16], we perform full rank principal component
analysis [18] to map the features into a Hilbert spaceH. De-

note their representations in H as Ṽi

∣∣∣
m

i=1
∈ R

di×ni where

di is the dimension and ni indicates the number of videos.
Suppose the semantic labels are Ai|mi=1 ∈ R

ni×ci where ci
is the number of classes, we propose the following regres-
sion loss:

min
Qi

m∑
i=1

∥∥∥Ṽ T
i Qi −Ai

∥∥∥
2

F
, (1)

where Qi ∈ R
di×ci associates Ṽi with Ai. Next we illus-

trate how to learn a detector for the complex event by in-
corporating the attribute videos. Similarly we first map the
multiple features of the complex event videos into H and

denote the resulted representations as X̃i

∣∣∣
m

i=1
∈ R

di×n,

where n is the number of complex event videos. We first
propose to learn multiple detectors wi ∈ R

di×1 to associate
X̃i with the ground truth labels y ∈ R

n×1:

min
wi

m∑
i=1

∥∥∥X̃T
i wi − y

∥∥∥
2

2
. (2)

On top of the above function, we aim to correlate differ-
ent feature types in a joint framework. It is expected that
the learning process from different feature types is sewed
seamlessly to obtain better wi. Hence, we bring in the pre-
dicted labels fi ∈ R

n×1 for each feature type and minimize
the following objective:

min
wi,fi

m∑
i=1

∥∥∥X̃T
i wi − fi

∥∥∥
2

2
+ ‖fi − y‖22. (3)

Now we show how to incorporate the attribute videos for
optimizing wi. Since the attribute videos and the complex
event videos are relevant, i.e., complex events are usually

related to people, scenes, objects and human actions, the
two domains would have some shared knowledge. Inspired
by previous works [4], we assume that a correlation vector
pi ∈ R

ci×1 exists to establish the correspondence between
Qi and wi. Thus, Eq (3) is extended as:

min
wi,Qi,pi,fi

m∑
i=1

∥∥∥X̃T
i (wi + βQipi)− fi

∥∥∥
2

2
+ ‖fi − y‖22, (4)

where β is a parameter to control the influence of the at-
tribute videos on the event detection. To this end, our ob-
jective function is formulated as follows:

min
wi,Qi,pi,fi

m∑
i

∥∥∥Ṽ T
i Qi −Ai

∥∥∥2

F

+α

(∥∥∥X̃T
i (wi + βQipi)− fi

∥∥∥2

2
+ ‖fi − y‖22

)
+ γ ‖wi‖22 ,

(5)

where the last item is added to avoid over-fitting. For a
testing video, (wi + βQipi) is used for prediction.

4. Optimization Procedure

We propose an alternating approach to optimize the ob-
jective function in Eq (5).

First, we fix pi and optimize fi, wi and Qi. By setting
the derivative of Eq (5) w.r.t. fi to zero, we have:

fi =
(
X̃T

i (wi + βQipi) + y
)
/2. (6)

Substituting Eq (6) into Eq (5) we obtain:

min
wi,Qi

m∑
i

∥∥∥Ṽ T
i Qi − Ai

∥∥∥2

F
+ α

∥∥∥X̃T
i (wi + βQipi)− y

∥∥∥2

2

+γ ‖wi‖22 .
(7)

By setting the derivative of Eq (7) w.r.t. wi to zero, it be-
comes:

wi = αB−1
i X̃iy − αβB−1

i X̃iX̃
T
i Qipi (8)

where Bi = αX̃iX̃
T
i + γI . Substituting Eq (8) into Eq (7)

we have:

min
Qi

m∑
i

∥∥∥Ṽ T
i Qi − Ai

∥∥∥2

F
+ αTr(2αβyT X̃T

i B−1
i X̃iX̃

T
i Qipi

−αβ2pTi Q
T
i X̃iX̃

T
i B−1

i X̃iX̃
T
i Qipi + β2pTi Q

T
i X̃iX̃

T
i Qipi

−2βpTi QT
i X̃iy).

(9)

By setting the derivative of Eq (9) w.r.t.Qi to zero, we arrive
at:

2ṼiṼ
T
i Qi − 2ṼiAi + 2α2βX̃iX̃

T
i B−1

i X̃iyp
T
i

−2α2β2X̃iX̃
T
i B−1

i X̃iX̃
T
i Qipip

T
i + 2β2X̃iX̃

T
i Qipip

T
i

−2βX̃iyp
T
i = 0

(10)
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which can be rewritten as:

Qi(pip
T
i )

−1 +
(
β2(ṼiṼ

T
i )−1X̃iX̃

T
i − α2β2(ṼiṼ

T
i )−1

X̃iX̃
T
i B−1

i X̃iX̃
T
i

)
Qi − (ṼiṼ

T
i )−1ṼiAi(pip

T
i )

−1

+α2β(ṼiṼ
T
i )−1X̃iX̃

T
i B−1

i X̃iyp
T
i (pip

T
i )

−1

−β(ṼiṼ
T
i )−1X̃iyp

T
i (pip

T
i )

−1 = 0.

(11)

The above problem can be solved by the Sylvester equa-
tion [1].

After Qi, wi and fi are obtained, we fix them and opti-
mize pi. By setting the derivative of Eq (5) w.r.t. pi to zero,
we have:

pi = (βQT
i X̃iX̃

T
i Qi)

−1(QT
i X̃ifi −QT

i X̃iX̃
T
i wi). (12)

Thereby, we propose the algorithm shown in Algo-
rithm 1 to optimize the objective function in Eq (5).

Algorithm 1: Optimization procedure for MCR.
Input:

Ṽi ∈ R
di×ni , Ai ∈ R

ni×ci , X̃i ∈ R
di×n, y ∈ R

n×1;
Parameters α, β and γ.

Output:
Optimized wi ∈ R

di×1, Qi ∈ R
di×ci , pi ∈ R

ci×1

and fi ∈ R
n×1.

1: Set t = 0 and initialize pi ∈ R
ci×1 randomly;

2: repeat
Compute fi according to Eq (6);
Compute wi according to Eq (8) ;
Solve the Sylvester equation in Eq (11) to get Qi;
Update pi according to Eq (12);
t = t+ 1.
until Convergence: |objt+1 − objt| /objt ≤ 10−3

(obj indicates the objective function value);
3: Return wi, Qi, pi and fi.

5. Experiments

In this section we present the experiments that evaluate
the proposed method for complex event detection.

5.1. Datasets

The TRECVID MED 2012 development set (MED12)
is used for complex event detection. MED12 consists of
50328 video clips which are related to 20 events: Birth-
day party, Changing a vehicle tire, Flash mob gathering,
Getting a vehicle unstuck, Grooming an animal, Making a
sandwich, Parade, Parkour, Repairing an appliance, Work-
ing on a sewing project, Attempting a bike trick, Clean-
ing an appliance, Dog show, Giving directions to a loca-
tion, Marriage proposal, Renovating a home, Rock climb-
ing, Town hall meeting, Winning a race without a vehicle
and Working on a metal crafts project.

Another two video sets, i.e., the UCF50 dataset [17] and
the development set from TRECVID 2012 semantic index-
ing task are used as attribute videos. UCF50 includes 6681
video sequences with 50 action categories. The video set
for TRECVID 2012 semantic indexing (SIN) task covers
346 concepts. We use 65 concepts suggested by [6]. These
concepts are related to human, scenes and objects which are
the elements of events. The sampled subset contains 3244
data and we denote it as SIN12.

We extract STIP [12] and SIFT [13] descriptors for
the videos of MED12, STIP for UCF50 and SIFT for
SIN12. After that, a 32768 dimension spatial BoW feature
is formed for STIP/SIFT to represent each video.

5.2. Comparison Algorithms

(1) MCR: The proposed method in this paper. As χ2

kernel has proved to be advantageous for BoW feature, we
exploit it to map the features of MED12, UCF50 and SIN12
into the Hilbert space.

(2) Baseline: We set β in Eq (5) to 0 so that no video
attributes are exploited in our approach. The resulting algo-
rithm works as the baseline.

(3) SVM: SVM is an effective tool for complex event de-
tection and has been widely used by several research groups
for TRECVID MED, e.g., [23]. Similarly, χ2 kernel is used.

(4) Attributes Intermediate Representation (AIR): We
train attribute classifiers using UCF50 and SIN12. Then we
apply the classifiers on MED12 and use their outputs as the
intermediate representations. SVM is applied on the new
representations afterwards for event detection.

5.3. Setup

For each event, we randomly choose 100 positive exam-
ples and 1000 negative examples from MED12 to form the
training set. The remaining data of MED12 are used as the
testing set.

There are two types of parameters. The first type in-
cludes the parameters for kernel calculation. It is fixed
to the mean of the pairwise distances among the training
samples as done in [14]. The second type includes the
regularization parameters. We tune them uniformly from
{0.001, 0.1, 10, 1000} for all the algorithms and we report
the best results for each algorithm.

We use three evaluation metrics. Minimum NDC (Min-
NDC) and the Probability of Miss-Detection based on the
Detection Threshold 12.5 (Pmd@12.5) are two official eval-
uation metrics used by NIST in TRECVID MED [2][3].
Lower MinNDC or Pmd@12.5 indicates better detection
performance. The third one is Average Precision (AP).
Higher AP indicates better performance.

262826282630



Table 1. Detection results using different algorithms. LOWER MinNDC / LOWER Pmd@12.5 / HIGHER AP indicates BETTER perfor-
mance. The best results are highlighted in bold. Relative Improvement indicates our advantage over the runner-up, if applicable.

Event Description Evaluation Metric Baseline SVM AIR MCR Relative Improvement

Birthday party
MinNDC

Pmd@12.5
AP

0.900
0.516
0.064

0.877
0.498
0.068

1.000
0.989
0.007

0.858
0.484
0.076

2.2%
2.9%

11.7%

Changing a vehicle tire
MinNDC

Pmd@12.5
AP

0.895
0.529
0.032

0.753
0.443
0.058

1.000
0.979
0.003

0.719
0.436
0.069

4.7%
1.6%

19.0%

Flash mob gathering
MinNDC

Pmd@12.5
AP

0.463
0.239
0.225

0.467
0.249
0.225

0.721
0.394
0.087

0.420
0.230
0.248

10.2%
3.9%

10.2%

Getting a vehicle unstuck
MinNDC

Pmd@12.5
AP

0.710
0.391
0.071

0.607
0.326
0.095

0.957
0.710
0.014

0.559
0.355
0.118

8.6%
N/A%
24.2%

Grooming an animal
MinNDC

Pmd@12.5
AP

0.935
0.532
0.026

0.908
0.511
0.029

1.000
0.957
0.003

0.855
0.511
0.034

6.2%
N/A

17.2%

Making a sandwich
MinNDC

Pmd@12.5
AP

0.950
0.546
0.032

0.905
0.540
0.037

0.985
0.741
0.012

0.888
0.517
0.039

1.9%
4.4%
5.4%

Parade
MinNDC

Pmd@12.5
AP

0.761
0.391
0.123

0.747
0.407
0.124

0.991
0.579
0.044

0.683
0.374
0.141

9.4%
4.5%

13.7%

Parkour
MinNDC

Pmd@12.5
AP

0.610
0.384
0.092

0.576
0.344
0.108

0.878
0.528
0.030

0.534
0.344
0.117

7.9%
N/A
8.3%

Repairing an appliance
MinNDC

Pmd@12.5
AP

0.728
0.402
0.064

0.689
0.386
0.066

0.935
0.614
0.019

0.630
0.378
0.084

9.4%
2.1%

27.3%

Working on a sewing project
MinNDC

Pmd@12.5
AP

0.817
0.475
0.042

0.753
0.475
0.042

0.964
0.639
0.015

0.721
0.459
0.048

4.4%
3.5%

14.3%

Attempting a bike trick
MinNDC

Pmd@12.5
AP

0.692
0.433
0.015

0.556
0.333
0.022

1.000
0.800
0.001

0.559
0.333
0.025

N/A
N/A

13.6%

Cleaning an appliance
MinNDC

Pmd@12.5
AP

0.978
0.600
0.005

0.957
0.700
0.004

1.000
0.900
0.001

0.852
0.467
0.007

12.3%
28.5%
40.0%

Dog show
MinNDC

Pmd@12.5
AP

0.545
0.300
0.028

0.434
0.267
0.037

0.943
0.600
0.004

0.390
0.200
0.043

11.3%
33.5%
16.2%

Giving directions to a location
MinNDC

Pmd@12.5
AP

0.862
0.670
0.005

0.875
0.667
0.005

1.000
0.967
0.001

0.844
0.667
0.006

3.7%
N/A
20%

Marriage proposal
MinNDC

Pmd@12.5
AP

0.824
0.533
0.008

0.774
0.500
0.011

1.000
0.967
0.001

0.777
0.500
0.011

N/A
N/A
N/A

Renovating a home
MinNDC

Pmd@12.5
AP

0.821
0.567
0.008

0.821
0.533
0.009

1.000
0.867
0.001

0.735
0.467
0.013

11.7%
14.1%
44.4%

Rock climbing
MinNDC

Pmd@12.5
AP

0.659
0.431
0.017

0.670
0.433
0.016

0.949
0.633
0.004

0.575
0.400
0.023

14.6%
7.8%

35.3%

Town hall meeting
MinNDC

Pmd@12.5
AP

0.706
0.467
0.016

0.607
0.367
0.023

1.000
1.000
0.007

0.532
0.300
0.020

14.1%
22.3%
N/A

Winning a race without a vehicle
MinNDC

Pmd@12.5
AP

0.683
0.433
0.018

0.585
0.333
0.021

0.887
0.667
0.004

0.565
0.367
0.023

3.5%
N/A
9.5%

Working on a metal crafts project
MinNDC

Pmd@12.5
AP

0.822
0.500
0.009

0.750
0.400
0.012

0.947
0.633
0.004

0.690
0.400
0.018

8.7%
N/A

50.0%

Average
MinNDC

Pmd@12.5
AP

0.768
0.467
0.045

0.716
0.436
0.053

0.958
0.758
0.013

0.669
0.409
0.061

7.0%
6.6%

15.1%
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Figure 2. Performance variation w.r.t. feature type and source attribute.

5.4. Event Detection Results

Table 1 lists the detection results. It can be seen that our
method MCR is consistently competitive for all the events.
Specifically, we observe that: 1) when using MinNDC and
Pmd@12.5 as metrics, MCR gains the best performance
for 18 events; 2) when using AP as metric, MCR is the
best method for 19 events; 3) MCR obtains the top per-
formance for the average accuracy over all the 20 events;
4) MCR is much better than the Baseline, indicating that
harnessing video attributes does boost the performance of
complex event detection; 5) SVM is the second competi-
tive algorithm, which is in accordance with previous expe-
rience of several research groups in TRECVID MED; 6) for
those events on which MCR achieves the top performance,
it outperforms SVM with clear gap. For instance, MCR is
10%-75% better than SVM for 16 events in terms of AP.
The promising performance of MCR verifies that leverag-
ing video attributes properly is beneficial for complex event
detection.

5.5. Results using Single Feature and Single Source

In this part, we only use UCF50+MED12 with STIP
feature and SIN12+MED12 with SIFT feature for com-
plex event detection to show the performance change. As
SVM is the second competitive algorithm, we also show
its performance variation w.r.t. STIP feature and SIFT fea-
ture. Due to the space limit, we only show the results us-
ing AP as metric for this experiment. The results are dis-
played in Figure 2. It is observed that: 1) MCR using both
UCF50 and SIN12 together with STIP+SIFT features is bet-

ter than that using UCF50+MED12 with STIP feature for
all the events; 2) MCR using both UCF50 and SIN12 to-
gether with STIP+SIFT features is generally better than that
using SIN12+MED12 with SIFT feature, yet the former is
weaker than the latter for three events, which is presumably
data-dependent; 3) SVM has similar performance variation;
and 4) our method still yields better results than SVM when
using one feature type. This experiment validates that ex-
ploiting multiple attribute video sets together with different
features is beneficial for most cases.

6. Conclusions

We have proposed a method for utilizing the attributes
at video level for complex event detection. Video attributes
are convenient to use for complex event detection as many
video collections relevant to people, scenes, objects and ac-
tions are available. Meanwhile, video attributes have more
potentials than image attributes to characterize the dynamic
properties of video data. Unlike the traditional approach
which maps the video data into attribute space, our method
learns a correlation vector which correlates video attributes
and a complex event. Built upon this, the extra informa-
tive cues learnt from attribute videos are further incorpo-
rated into the event detector. We have performed extensive
experiments using a real-world large-scale video dataset to
evaluate the efficacy of our method on complex event de-
tection. The results are encouraging and have verified the
advantage of leveraging video attributes properly.
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