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Abstract

In this paper, we propose a novel method for cross-view
action recognition via a continuous virtual path which con-
nects the source view and the target view. Each point on
this virtual path is a virtual view which is obtained by a
linear transformation of the action descriptor. All the virtu-
al views are concatenated into an infinite-dimensional fea-
ture to characterize continuous changes from the source to
the target view. However, these infinite-dimensional fea-
tures cannot be used directly. Thus, we propose a virtual
view kernel to compute the value of similarity between two
infinite-dimensional features, which can be readily used to
construct any kernelized classifiers. In addition, there are
a lot of unlabeled samples from the target view, which can
be utilized to improve the performance of classifiers. Thus,
we present a constraint strategy to explore the information
contained in the unlabeled samples. The rationality behind
the constraint is that any action video belongs to only one
class. Our method is verified on the IXMAS dataset, and the
experimental results demonstrate that our method achieves
better performance than the state-of-the-art methods.

1. Introduction
Recognizing human actions from videos play a key role

in computer vision and pattern recognition due to its wide

and significant applications. The importance is strongly

driven by the need for human computer interaction, video

surveillance and multimedia retrieval. Recently, in the field

of action representation, several strategies have been pro-

posed by researchers to make action representation more

discriminative, such as space-time pattern templates [28],

2D shape matching [16, 19, 27], optical flow patterns [5],

trajectory-based representation [22], and spatio-temporal

interest points [4, 18]. Especially, methods based on spatio-

temporal interest points together with bag-of-words model

have shown promising performance. Since these approach-

es do not rely on preprocessing techniques, e.g. background

modeling or body-part tracking, they are relatively robust

to noise, background changing and illumination variation.

Figure 1. View knowledge transfer via a continuous virtual path.

Action feature a is projected to form the virtual view fρ (0 ≤ ρ ≤
1) on the continuous virtual path by transformation matrix Mρ,

and then all the virtual views are concatenated to form an infinite-

dimensional feature b∞. Inner product between them defines our

virtual view kernel which can be computed in a close-form. The

virtual view kernel can be readily used to construct any kernelized

classifiers.

Furthermore, some other methods [13, 29, 30] derive from

this model, which exploits the spatial and temporal contexts

as another type of information for describing interest points.

These approaches are effective for recognizing actions ob-

served from similar viewpoints, but their performance tend-

s to degrade sharply when the viewpoint changes signifi-

cantly. This is because the same action looks very different

when observed from different views. Hence, action models

learned using labeled samples in one view are less discrim-

inative for recognizing actions in a different view. The in-

tuitional approach of training a separate classifier for each

view may be impractical owing to lack of labeled samples.

In this paper, we present a novel kernel-based approach

for cross-view action recognition via a continuous virtual

path. Imagine there is a virtual path connecting the source

view and the target view, and each point on the virtual path

refers to a virtual view. An action feature is transformed

to a virtual view on the virtual path by a particular class of

linear projections. Then, all the virtual views are integrat-

ed into an infinite-dimensional feature. Since the infinite-

dimensional feature contains all the virtual views from the

source to the target view, it is robust to view changes. As
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these infinite-dimensional features cannot be used directly,

we propose a virtual view kernel to measure the similarity

between two infinite-dimensional features. Concretely, it is

defined by inner produce between two infinite-dimensional

features. The main idea is illustrated in Fig. 1. In addi-

tion, we solve the virtual view kernel under an information

theoretic framework that allows maximizing discrimination

among action classes. Our approach can deal with three

working modes as [15]. The first one is correspondence
mode. Like the approaches in [7, 15, 17], an unlabeled ac-

tion sample observed simultaneously in both views yields

a corresponding pair, so that these pairs can be used in the

training stage. Besides, our approach can handle the situ-

ation usually considered by the domain adaptation, trans-

fer learning, and covariate shift [1, 2, 8, 9]. There are t-

wo settings for domain adaptation. One is semi-supervised

domain adaptation, where the target view contains a smal-

l amount of labeled samples without corresponding pairs.

We refer to this working mode as partially labeled mode.

The other is unsupervised domain adaptation where the tar-

get view is completely unlabeled, which is referred as unla-
beled mode.

It can be seen that there are several unlabeled samples

from the target view in the above three modes, and it is

usually insufficient to construct a good classifier only us-

ing labeled samples or corresponding pairs. Hence, how to

effectively utilize unlabeled samples from the target view is

key to cross-view action recognition. In this paper, the in-

formation contained in these unlabeled samples is explored

by a constraint strategy, which is based on the rationality

that any sample belongs to only one class. The experimen-

tal results demonstrate that our approach outperforms the

state-of-the-art approaches in all the three modes on the IX-

MAS dataset.

1.1. Related Work

A lot of approaches have been proposed to address the

problem of cross-view action recognition. Some of these

approaches rely on geometric constraints [28], body joints

detection and tracking [20, 21], and 3D models [14, 26].

For example, Rao et al. [21] presented a view-invariant rep-

resentation of human action to capture the dramatic changes

in the speed and direction of the trajectory using spatio-

temporal curvature of 2D trajectory. However, this kind of

approaches require some challenging techniques, such as

body joints detection and tracking, or alignment between

views. Junejo et al. [11, 12] introduced a temporal self-

similarity matrix, which was view stable.

Recently, transfer learning approaches are employed to

address cross-view action recognition. Farhadi et al. [6]

generated split-based features in the source view using

Maximum Margin Clustering and then transferred the split

values to the corresponding frames in the target view. Liu et

al. [17] learned a cross-view bag of “bilingual words” using

corresponding pairs. Then, the action videos are represent-

ed by “bilingual words” in both views. Li et al ’s work [15],

which also explored the idea of using virtual view to over-

come the problem of view changes, is close to ours. How-

ever, there are two significant differences. One difference

is that their work only samples several virtual views, while

our kernel-based method utilizes all the virtual views on the

virtual path. This can keep all the visual information on

the virtual path and eliminate the requirement to tune the

parameter needed in [15]. The other is that their work on-

ly uses labeled samples or corresponding pairs to train the

model, while our method makes full use of unlabeled sam-

ples from target view as well.

2. Approach
In this section, we start by reviewing the method which

obtains multiple virtual views by sampling virtual path.

Second, we present our virtual view kernel. Third, we for-

mulate the problem under an information theoretic frame-

work so as to maximize discrimination among action class-

es. Fourth, we present a constraint on unlabeled samples,

then the optimization procedure is given. Finally, we intro-

duce the implementation details and extensions.

2.1. Multiple Virtual Views by Sampling Virtual
Path

Imagine that there is a virtual path V (ρ), ρ ∈ [0, 1] con-

necting the source view VS and the target view VT , where

V (0) = VS and V (1) = VT [15]. A particular class of lin-

ear projections is adopted to transform the action features

on the virtual path V (ρ). Let f(ρ) = Mρa be a virtual view

on the virtual path V (ρ), where Mρ is a transformation ma-

trix and a ∈ R
D×1 is an action feature vector. In the special

case, fS = f(0) = MT
S a and fT = f(1) = MT

T a are the

source virtual view and target virtual view respectively, cor-

responding to the two endpoints of the virtual path. Here

MS and MT are both D × d transformation matrices satis-

fying MT
S MS = I and MT

T MT = I , i.e. they both have

orthogonal columns of unit-length.

The task is to compute the virtual view f(ρ) on the vir-

tual path, i.e. Mρ, when the source and target transforma-

tion matrixes MS and MT have been given. The column-

s of MS and MT are of the unit length and therefore lie

on a hyper-sphere. It can be seen that each column of

Mρ is a point on a segment line where the corresponding

columns of MS and MT are the two endpoints. Concrete-

ly, the transformation matrix Mρ = [mρ,1,mρ,2, ...,mρ,d]
is computed from MS = [mS,1,mS,2, ...,mS,d] and MT =
[mT,1,mT,2, ...,mT,d] as [15, 23]:

mρ,i =
(1− ρ)mS,i + ρmT,i

[ρ2 + (1− ρ)2 + 2ρ(1− ρ)mT
S,imT,i]1/2

. (1)
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We can see that the above equation is actually a geodesic

between mS,i and mT,i. The radial projection to unit norm

of the straight line joining the two points is the geodesic

between the two points [23].

Multiple virtual views are sampled on the virtual path

V (ρ) at L intervals ρ1, ρ2, ..., ρL (0 < ρ1 < ρ2 < ... <
ρL < 1) [15]. After that the transformation matrix Mρi

of the corresponding virtual view fρi
can be obtained from

Eq. (1). The final representation of an action video is simply

obtained by concatenating the transformation features MT
ρi

a
into a single long feature vector:

â = [(MT
S a)T , (MT

ρ1
a)T , ..., (MT

ρL
a)T , (MT

T a)T ]T . (2)

The final feature vector implicitly incorporates multiple

virtual view transformations, which change from the source

view to the target view. Hence, a classifier trained by these

feature vectors can be robust to view changes.

2.2. Virtual View Kernel

The above method, however, only samples several virtu-

al views on the virtual path, it neglects the information pro-

vided by the other virtual views. Furthermore, this method

has to adopt cross-validation to determine the parameter L
(the number of virtual views sampling on the virtual path).

Intuitively, if we utilize all the virtual views on the virtual

path, the above drawbacks can be naturally overcome. Nev-

ertheless, when the original feature projects to all the virtual

views, it changes to an infinite-dimensional feature. Thus

we cannot use this representation directly. In this work, we

propose a kernel-based method to measure the similarity be-

tween two infinite-dimensional features. The proposed vir-

tual view kernel is expected to be the measurement of simi-

larity that is robust to the viewpoint changes. In other word,

although actions belong to the same class are observed from

different views, the values of similarity computed by virtual

view kernel are high enough to classify. Concretely, we em-

ploy the inner products to construct a linear kernel, which

can be readily used to construct any kernelized classifiers.

We next show that our kernel-based method don’t need to

compute and store all the virtual views.

Given two original D-dimensional feature vectors ai and

aj , we compute their virtual views f(ρ) for a continuous

ρ from 0 to 1, and then concatenate all the virtual views

into infinite-dimensional feature vectors b∞i and b∞j . The

proposed virtual view kernel is defined as the inner product

between them:

< b∞i , b∞j >=

∫ 1

0

(MT
ρ ai)

T (MT
ρ aj)dρ = aTi Kaj , (3)

where

K =

∫ 1

0

MρM
T
ρ dρ =

d∑
n=1

∫ 1

0

mρ,nm
T
ρ,ndρ. (4)

The Eq. (3) is the “kernel trick”, where a kernel func-

tion induces inner products between infinite-dimensional

features. K ∈ R
D×D is defined as the virtual view ker-

nel, which can measure the similarity between two feature

vectors. The more similar are the two feature vectors, the

larger the inner product value is, otherwise the smaller the

value is.

The matrix K can be computed by substituting Eq. (1)

into Eq. (4):

K =

d∑
n=1

An ·mS,nm
T
S,n +Bn ·mT,nm

T
T,n

+ Cn · (mS,nm
T
T,n +mT,nm

T
S,n),

(5)

where

An =
1

2(1− tn)
+

t2n
tn − 1

· θn
(1− t2n)1/2

;

Bn =
1

2(1− tn)
− tn · θn

(1− t2n)1/2
;

Cn =
1

2(1− tn)
(

θn
(1− t2n)1/2

− 1).

(6)

Here tn = cos θn = mT
S,nmT,n, and mS,n,mT,n ∈ RD×1

are the n-th columns of MS and MT . From Eq. (5), we can

see that our virtual view kernel has a closed-form solution.

Since our method utilizes all the virtual views on the vir-

tual path, it not only takes full advantage of the visual in-

formation provided by the continuous virtual path, but also

saves the cost of tuning the parameter L (the number of vir-

tual views sampling on the virtual path).

2.3. Maximizing Discrimination

In this subsection, we discuss the problem of choosing

discriminative values for MS and MT , because our virtu-

al view kernel K are totally confirmed by transformation

matrices MS and MT . For convenience, we first discuss

a two-class problem, and the multi-class problem can be

handled as a set of two-class problems using one versus all

approach.

In the unlabeled mode, all the labeled training samples

are from the source view. In the partially labeled mode, only

a part of samples from the target view are labeled as train-

ing data. In the above two cases, we desire to maximize

discrimination between the two classes using all the avail-

able labeled samples. Concretely, the values of similarity

between different class samples are forced to be differen-

t from the values between the same class samples. To this

end, with the help of mutual information, the problem can

be formulated by:

max
MS ,MT

I(V ; c). (7)

where V = {aT
i Kaj}, ai and aj are the labeled feature

vectors, and I is the mutual information which measures
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the degree of dependence between two random variables.

When ai and aj are from the same class (positive pair), c is

set to 1; otherwise c is set to 0 for negative pair. Eq. (7) can

be rewritten on the basis of the differential entropy H:

I(V ; c) = H(V )−H(V |c)
= H(V )− P (c = 1)H(VP )− P (c = 0)H(VN ).

(8)

where VP and VN are the set of similarity values computed

from positive and negative pairs respectively. To solve the

Eq. (8), we approximate the differential entropy H using

V , i.e. a set of aT
i Kaj . In the assumption of V drawn from

a 1-dimensional Gaussian distribution, we obtain H(V ) =
1
2 [1 + ln(2πσ)], in which the variance σ can be estimated

from V . In addition, we assume that the prior probabilities

for the two classes are equal, so Eq. (8) can be approximated

by:

I(V ; c) ≈ lnσ − 1

2
lnσP − 1

2
lnσN , (9)

where σ, σP and σN are variances computed from V , VP

and VN respectively.

In the case of correspondence mode, we also solve

the problem under the information theoretic framework.

Let {aSl, aTl}nc

l=1 denote the corresponding sample pairs.

These pairs are unlabeled, but belong to the same class ob-

served simultaneously in the source view and target view.

Since aS and aT describe the same action class, we expect

that they have high value of similarity, i.e. max aT
SKaT .

Let δ denote aT
SKaT . For computational convenience, we

change the equation to its equivalent form:

min
MS ,MT

g(δ) = 1− 1

1 + e−|δ|
, (10)

where g(δ) ∈ (0, 0.5]. We add a penalty term

H({g(δ),−g(δ)}) to Eq. (7):

max
MS ,MT

I(V ; c)− αH({g(δ),−g(δ)}), (11)

where α is a parameter which controls the importance of

corresponding pairs. If we assume δ = aT
SKaT are drawn

from a 1-dimensional Gaussian distribution, {g(δ),−g(δ)}
could be a Gaussian distribution with zero mean. We wan-

t to minimize H({g(δ),−g(δ)}) for two purposes. First,

we expect the distribution of {g(δ),−g(δ)} to be compact.

Second, we hope it is close to the origin so as to maximize

δ = aT
SKaT . As before, we also approximate the mutual

information and differential entropy in terms of variances.

The objective in Eq. (11) is reformulated by:

lnσ − 1

2
lnσP − 1

2
lnσN − α lnσδ, (12)

where σδ is the correlation coefficient for {g(δ),−g(δ)},
not the variance. A minimization of lnσδ will yield g(δ)

concentrating around 0, by which we make the value of sim-

ilarity between the pair (aS , aT ) greater.

2.4. Constraint on Unlabeled Samples

The above three modes only utilize the labeled samples

or corresponding pairs, yet these samples may be insuffi-

cient to construct a good classifier. Thus, how to effectively

leverage unlabeled samples from the target view is crucial

to cross-view action recognition. In this work, we impose

a constraint on the unlabeled samples from the target view.

The constraint is based on the fact that any sample belongs

to only one class. For the two-class problem, the constraint

is equivalent to maximize the absolute value of following

formula:

γ = aTPKau − aTNKau, (13)

where au, aP and aN are the unlabeled feature vectors from

the target view, positive feature vectors and negative fea-

ture vectors respectively. Note that aP and aN could be

either from the source view or target view because virtual

view kernel K is robust to view changes. For computation-

al convenience, we also change this equation according to

Eq. (10), i.e. g(γ). This constraint can be further written

within the information theoretic framework:

min
MS ,MT

H({g(γ),−g(γ)}). (14)

As previous, since we expect Eq. (14) to be not only

compactly distributed but also close to the origin, the dis-

tribution of γ = aTPKau−aTNKau is assumed to be subject

to Gaussian distribution. With this constraint, the objective

Eq. (11) is rewritten as:

max
MS ,MT

I(V ; c)− αH({g(δ),−g(δ)})− βH({g(γ),−g(γ)}),
(15)

where β is a parameter which controls the importance of

unlabeled samples. When α = 0, it is the unlabeled mode

or partially labeled mode with the constraint:

max
MS ,MT

I(V ; c)− βH({g(γ),−g(γ)}). (16)

The Eq. (15) is approximated by:

lnσ − 1

2
lnσP − 1

2
lnσN − α lnσδ − β lnσγ , (17)

where σγ is the correlation coefficient for {g(γ),−g(γ)}.
When α = 0, this equation could be used to approximate

Eq. (16).

2.5. Optimization Algorithm

In this section, we present the optimization algorithm to

solve the objective Eq. (8), (11), (15) and (16). We de-

note the objective functions as W (MS ,MT ) in the follow-

ing discussion. We adopt a greedy axis-rotating approach
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that iteratively searches for transformations (MS ,MT ) that

maximize W [15]. Specifically, we seek matrices RS(t)
and RT (t) ∈ SO(D), so that the estimate at step t is

MS(t) = RS(t)MS(t − 1) and MT (t) = RT (t)MT (t −
1), where SO(D) is the D-dimensional special orthogonal

group. Here SO(D) corresponds to a set of rotation op-

erations in R
D, so the resulting MS(t),MT (t) will be or-

thonormal matrixes as well. Essentially, we find a pair of

RS(t) and RT (t) to provide a steep ascent in W . Accord-

ing to the Lie algebra, the optimal rotation direction for MS

and MT can be found by:

RS,n = exp(nμ
∑

i,j

ci,j(Ei,j − Ej,i)),

RT,n = exp(nμ
∑

k,l

ck,l(Ek,l − El,k)),
(18)

where 2 ≤ i, k ≤ D, i + 1 ≤ j ≤ D and k + 1 ≤ l ≤ D.

Here μ is step length, n is the step number for searching

optimal rotation direction, and Ei,j is a matrix whose (i, j)-
th element is one and all others are zero. In addition, ci,j
and ck,l can be obtained by:

ci,j = ΔWS,i,j/(
∑

i,j

ΔW 2
S,i,j +

∑

k,l

ΔW 2
T,k,l)

1/2;

ck,l = ΔWT,k,l/(
∑

i,j

ΔW 2
S,i,j +

∑

k,l

ΔW 2
T,k,l)

1/2.
(19)

The ΔWS,i,j can be approximated by:

ΔWS,i,j ={W (RS,i,jMS(t− 1),MT (t− 1))−
W (MS(t− 1),MT (t− 1))}/ε, (20)

Analogously, ΔWT,k,l is approximated by:

ΔWT,k,l ={W (MS(t− 1), RT,k,lMT (t− 1))−
W (MS(t− 1),MT (t− 1))}/ε, (21)

where ε is a small positive number.

RS,i,j = exp(ε(Ei,j − Ej,i));

RT,k,l = exp(ε(Ek,l − El,k)).
(22)

The iterative algorithm terminates when MS(t) = MS(t−
1), and MT (t) = MT (t−1). The above process is illustrat-

ed in Algorithm 1. The mathematical principle behind this

algorithm and the details can be found in [10, 15].

2.6. Implementation Details and Extensions

Before training our model, we should determine the

working mode and extract the corresponding single-view

action feature vector from each training action video. Once

the virtual view kernel K is trained, we compute the val-

ues of similarity between any two training samples. In our

experiments, we use SVM [3] as classifier.

It is important to choose good initializations for MS and

MT . We employ the basis of principal subspaces of the

Algorithm 1: Greedy Axis Rotation

Input: MS(0), MT (0), ε > 0, δ > 0
Output: MS(t), MT (t)
Initialize the initialization of MS(0), MT (0) is

described in Section 2.6;

while 1 do
If MS(t) = MS(t− 1), and MT (t) = MT (t− 1)

break;

1. For all the i, j, k and l, calculate:
1) RS,i,j and RT,k,l according to Eq. (22)

2) ΔWS,i,j and ΔWT,k,l according to Eq. (20), (21)

3) ci,j and ck,l according to Eq. (19)

2. The optimal rotation direction RS,n and RT,n

can be computed by Eq (18), where

n∗ = argmaxn W (RS,nMS(t−1), RT,nMT (t−1))

3. RS(t) = RS,n∗ and RT (t) = RT,n∗

4. MS(t) = RS(t)MS(t− 1) and

MT (t) = RT (t)MT (t− 1)
end

source and target samples as the initializations of MS and

MT respectively. For a Q-class action recognition prob-

lem, we learn Q binary one-against-all models as described

above. The final classification is determined by selecting

the model whose SVM outputs the maximum response. If

we have G source views, we simply sum the response val-

ues from the G classifiers, and then make a binary decision

with the threshold at 0. For a Q-class, G source views prob-

lem, we select the class which achieves the maximum sum

of response values.

3. Experimental Results

3.1. Dataset and Low-level Feature Extraction

We test our approach on the IXMAS multi-view action

dataset [26], which contains eleven daily-life actions, such

as check watch, punch, and turn around. Each action is

performed three times by twelve actors and observed from

five different views including four side views and one top

view.

For fair comparison, we extract the same low-level ac-

tion descriptors as [17, 15]. Concretely, we first extrac-

t the local feature, i.e. the spatio-temporal interest points

proposed in [4]. To detect the interest points, a 2D Gaus-

sian filter and then a 1D-Gabor filter are applied to an ac-

tion video, and the interest points are detected at the local

maximum response. We extract up to 200 cuboids from

each action video. Each cuboid is represented by a 100-

dimensional descriptor learned by PCA. These descriptors

are further quantized to 1000 codewords by k-means clus-

tering and each action video is represented by a histogram
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Table 1. Cross-view recognition accuracy on the IXMAS dataset in correspondence mode. Each row is a source view and each column a

target view. The four accuracy numbers in a tuple are the average recognition accuracy of [17], [15], VVK, and VVKC respectively.

% C0 C1 C2 C3 C4

C0 (79.9, 81.8, 84.5, 86.3) (76.8, 88.1, 90.6, 93.1) (76.8, 87.5, 90.6, 91.5) (74.8, 81.4, 83.8, 85.4)

C1 (81.2, 87.5, 88.3, 90.5) (75.8, 82.0, 85.3, 87.8) (78.0, 92.3, 90.2, 91.3) (70.4, 74.2, 79.7, 83.4)

C2 (79.6, 85.3, 88.1, 90.4) (76.6, 82.6, 83.1, 84.4) (79.8, 82.6, 86.1, 87.1) (72.8, 76.5, 78.4, 81.6)

C3 (73.0, 82.1, 83.5, 86.3) (74.1, 81.5, 83.8, 85.2) (74.4, 80.2, 84.0, 85.3) (71.2, 70.0, 74.7, 77.2)

C4 (82.0, 78.8, 84.2, 85.9) (68.3, 73.8, 74.6, 76.2) (74.0, 77.7, 82.0, 84.5) (71.1, 78.7, 80.3, 83.1)

Ave. (79.0, 83.4, 86.0, 88.3) (74.7, 79.9, 81.5, 83.0) (75.2, 82.0, 85.5, 87.7) (76.4, 85.3, 86.8, 88.3) (71.2, 75.5, 79.2, 81.9)

Table 2. Cross-view recognition accuracy on the IXMAS dataset in partially labeled mode. Each row is a source view and each column a

target view. The three accuracy numbers in a tuple are the average recognition accuracy of [15], VVK, and VVKC respectively.

% C0 C1 C2 C3 C4

C0 (63.6, 68.2, 71.5) (60.6, 65.9, 68.9) (61.2, 65.4, 67.3) (52.6, 60.4, 64.2)

C1 (61.0, 67.2, 70.5) (62.1, 66.3, 69.8) (65.1, 71.7, 74.2) (54.2, 60.8, 62.3)

C2 (63.2, 66.0, 67.8) (62.4, 68.1, 71.8) (71.7, 75.5, 79.2) (58.2, 65.1, 66.5)

C3 (64.2, 67.5, 68.7) (71.0, 77.4, 80.0) (64.3, 67.7, 70.4) (56.6, 60.3, 63.8)

C4 (50.0, 53.5, 55.4) (59.7, 64.7, 67.3) (60.7, 68.3, 72.6) (61.1, 65.6, 68.0)

Ave. (59.6, 63.6, 65.6) (64.2, 69.6, 72.7) (61.9, 67.1, 70.4) (64.8, 69.6, 72.2) (55.4, 61.7, 64.2)

using bag-of-words model [25]. To complement the lo-

cal feature, we then extract global shape-flow feature [24].

Specifically, three channels features are extracted from each

frame: horizontal optical flow, vertical optical flow, and sil-

houette. Then PCA is again used to reduce the dimensional-

ity. Descriptors from neighboring frames are concatenated

with the current frame descriptor to incorporate temporal in-

formation. The histogram vector is built over 500 quantized

codewords. Finally, for each action video, we concatenate

the local and global features to form a 1500-dimensional

feature vector.

3.2. Pairwise Cross-view Recognition

In this section, we verify our algorithm on all possible

pairwise view combinations (twenty in total for five views)

in all three modes.

Correspondence mode: For an accurate comparison

to [17] and [15], we follow the same leave-one-action-class-

out strategy for choosing the orphan action which means

that each time we only consider one action class for testing

in the target view. The final results are reported according to

average accuracy for all action classes in each view. Note

that the orphan action class is not used to train the virtual

view kernel and establishes corresponding pairs. The corre-

sponding pairs are randomly chosen from the non-orphan

training samples and these pairs account for 30% of the

non-orphan samples. We set the transformed virtual view

dimension d to 20. Meanwhile, we set α to 4 in Eq. (11)

and set α = 4 and β = 3 in Eq. (15).

The recognition accuracy is shown in Table 1 for al-

l possible source-target view combinations. We compare

our algorithms, i.e. virtual view kernel (VVK) and virtual

view kernel with constraint on unlabeled samples (VVKC),

with [17] and [15]. Note that we omit the accuracy of [6]

and [7], since they report lower results than [17] and [15]

in most view combinations. Some interesting observations

can be made from Table 1. First, our algorithms (VVK and

VVKC) outperform all five possible target views with vary-

ing source views on average recognition accuracies, which

can be seen in the last row of Table 1. Second, our VVKC

achieves better results than [17] in all the view combination-

s and obtains better results than [15] except only one view

combination. Third, our VVK is superior to [15] with all

view combinations but the combination of source view C1

and target view C3, due to sampling all the virtual views on

the virtual path. Finally, since our algorithm takes full ad-

vantage of the unlabeled samples from the target view, the

average accuracy of VVKC is about 2% better than VVK.

Partially labeled and unlabeled modes: For partially

labeled mode, we set β to 3, and set d to 20. We compare

our approach with multiple virtual views (MVV) proposed

in [15], and the results are shown in Table 2. The labeled

samples from the target view take up 30% of all the target

view samples as [15]. From Table 2, it is can been that

our approaches (VVK and VVKC) outperform MVV [15]

in all the view combinations. Once again, we prove the

effectiveness of our algorithm on partially labeled mode.

We then study the recognition accuracy as the propor-

tion of labeled samples from the target view which increases

from 0% to 30% in steps of 10%. The average recognition

accuracies are shown in Fig. 2, from which we can see that

our VVK and VVKC achieve better results in all situations.

269326932695



Figure 2. Cross-view action recognition accuracies on the IXMAS

dataset compared with baseline from [15] when a varying propor-

tion of samples are labeled in the target view.

Table 3. Recognition accuracy of non-discriminative virtual views

(NDVV), VVK, and VVKC on the IXMAS dataset.

% Correspondence Partially labeled Unlabeled

NDVV 76.6 52.6 24.5

VVK 83.8 66.3 28.4

VVKC 85.8 69.2 35.3

It is worth noting that when proportion of labeled samples

from the target view is 0%, it degenerates into unlabeled

mode. In unlabeled mode, VVKC gains about 7% over

VVK, while about 9% over MVV. Therefore, the increase

in accuracy demonstrates the advantage of the constraint on

unlabeled samples.

3.3. Effect of Maximizing Discrimination

The virtual view kernel K (MS and MT ) is learned un-

der an information theoretic framework so as to maximize

discrimination. To test the effect of maximizing discrim-

ination, we let MS and MT be the bases of the princi-

pal subspaces of the source and target samples respectively,

and directly compute K as Eq. (5) without discriminative-

ly learning. The modification is similar to the method of

Gong et al. [8]. Table 3 shows that the recognition ability of

non-discriminatively algorithm reduces significantly for all

the three working modes. This indicates that maximizing

discrimination plays an important role on cross-view action

recognition.

3.4. Multiple Source Views

Our algorithm can also handle multiple source views

problem. We choose a target view and use all other four

views as sources. We train the classifiers on the four source-

target pairs and fuse these classifiers as the method pro-

posed in Section 2.6. The average accuracies in correspon-

Table 4. Cross-view action recognition accuracy (%) with multiple

source views in correspondence mode.

Target view C0 C1 C2 C3 C4

Liu et al. [17] 86.2 81.1 80.1 83.6 82.8

Li et al. [15] 85.1 82.1 82.2 85.7 77.6

VVK 86.5 83.3 85.7 88.6 82.4

VVKC 89.2 85.6 88.0 90.7 83.6

Table 5. Cross-view action recognition accuracy (%) with multiple

source views in partially labeled mode.

Target view C0 C1 C2 C3 C4

Li et al. [15] 62.0 65.5 64.5 69.5 57.9

VVK 64.5 71.6 69.2 72.8 63.1

VVKC 66.4 73.5 71.0 75.4 66.4

Table 6. Cross-view action recognition accuracy (%) under differ-

ent α and β in correspondence mode.
�����β

α
2 4 6 8

1 84.3 84.7 83.0 81.2

2 84.6 84.8 83.2 82.9

3 85.2 85.8 84.4 83.5

4 84.1 84.3 83.6 81.9

Table 7. Cross-view action recognition accuracy (%) under dif-

ferent β. The two accuracy numbers in a tuple are the average

recognition accuracy of partially labeled and unlabeled modes.

β 1 2 3 4

(65.7, 32.6) (68.0, 34.5) (69.2, 35.3) (67.6, 33.8)

dence and partially labeled modes are presented in Table 4

and Table 5 respectively. Our algorithms (VVK and VVKC)

obtain better results than the baselines in both correspon-

dence mode and partially labeled mode. In addition, com-

paring Table 4 with Table 1 and Table 5 with Table 2, we

can see that the fusion strategy of multiple source views

performs better than single source view.

3.5. Influence of Parameters Variances

We further evaluate the performance of the proposed

VVKC with respect to α and β in all the three modes which

control the importance of corresponding pairs and unla-

beled samples. For correspondence mode shown in Table 6,

we can see that when α = 4 and β = 3, the result is the

best. When β = 3, the results are the best for both partial

labeled and unlabeled modes as shown in Table 7. The con-

clusion can be generalized to VVK as well, i.e. α = 4 for

correspondence mode.
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4. Conclusion
We propose a kernel-based method for cross-view action

recognition. The method constructs a continuous virtual

path between the source view and the target view. The pro-

posed virtual view kernel utilizes all the virtual views on

the virtual path to learn new feature representations that are

robust to change in views. Furthermore, we impose a con-

straint on unlabeled samples from the target view for fur-

ther performance improvement. The experimental results

demonstrate that our method achieves better results than the

state-of-the-art methods in cross-view action recognition.
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