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Abstract

We present a video summarization approach that discov-
ers the story of an egocentric video. Given a long input
video, our method selects a short chain of video subshots
depicting the essential events. Inspired by work in text anal-
ysis that links news articles over time, we define a random-
walk based metric of influence between subshots that re-
flects how visual objects contribute to the progression of
events. Using this influence metric, we define an objective
for the optimal k-subshot summary. Whereas traditional
methods optimize a summary’s diversity or representative-
ness, ours explicitly accounts for how one sub-event “leads
to” another—which, critically, captures event connectivity
beyond simple object co-occurrence. As a result, our sum-
maries provide a better sense of story. We apply our ap-
proach to over 12 hours of daily activity video taken from
23 unique camera wearers, and systematically evaluate its
quality compared to multiple baselines with 34 human sub-
jects.

1. Introduction
Digital video recorders and media storage continue to

decrease in cost, while usage continues to climb. Much

of the data consists of long-running, unedited content—for

example, surveillance feeds, home videos, or video dumps

from a camera worn by a human or robot. There is informa-

tion in the data, yet most of it cannot possibly be reviewed

in detail. Thus, there is a clear need for systems that as-

sist users in accessing long videos. Video summarization
addresses this need by producing a compact version of a

full length video, ideally encapsulating its most informa-

tive parts. The resulting summaries can be used to enhance

video browsing, or to aid activity recognition algorithms.

Summarization methods compress the video by selecting

a series of keyframes [26, 27, 10, 16] or subshots [19, 13,

18, 6] that best represent the original input. Current meth-

ods use selection criteria based on factors like diversity (se-

lected frames should not be redundant), anomalies (unusual

events ought to be included), and temporal spacing (cover-
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Figure 1. Our method generates a story-driven summary from an

unedited egocentric video. A good story is defined as a coherent

chain of video subshots in which each subshot influences the next

through some (active) subset of influential visual objects.

age ought to be spread across the video). Typically they rely

on low-level cues such as motion or color [26, 19, 13], or

else track pre-trained objects of interest [16, 6, 14]. Overall,

existing methods offer sophisticated ways to sample from

the original video, reducing the time required for a human

to view the contents.

However, we contend that defining video summarization

as a sampling problem is much too limiting. In particular,

traditional approaches fail to account for how the events in
the video progress from one to another. As a result, they

may omit important (but short) sub-events, yet include re-

dundant (though visually diverse) ones that do not impact

the overall narrative. While a problem for any video source,

this limitation is especially pronounced for egocentric video

summarization. Egocentric video captured with a wearable

camera is long and unstructured, and its continuous nature

yields no evident shot boundaries; yet, the raw data inher-

ently should tell a story—that of the camera wearer’s day.

Our goal is to create story-driven summaries for long,

unedited videos. What makes a good visual story? Beyond

displaying important persons, objects, and scenes, it must

also convey how one thing “leads to” the next. Specifically,

we define a good story as a coherent chain of video sub-

shots1 in which each subshot influences the next through

some subset of key visual objects.

Critically, influence is distinct from inclusion. For exam-

ple, in the “story” of visiting the bookstore, a book plays an

important role in linking the actions of browsing the shelves

1Throughout, we use subshot and keyframe interchangeably; the pro-

posed method can produce summaries based on either unit.

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.350

2712

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.350

2712

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.350

2714



and seeing the cashier; in contrast, a book on the coffee ta-

ble at home—though present when both watching TV and

then greeting a friend—is not influential to the progress of

those events. Therefore, simply counting object overlap be-

tween two sub-events will not reveal their connections in

the story. Instead, inspired by work in text analysis that

links news articles over time given their words [24], we de-

vise a metric to quantify how connected two sub-events are

given their objects. The metric builds a bipartite graph be-

tween subshots and objects, and then scores the impact each

object has on the stationary probability for a random walk

starting from one of the subshots and ending in another.

Our approach works as follows. First, we segment

the input video into subshots using a novel static-transit
grouping procedure well-suited for unstructured egocentric

video. Then, we detect which entities appear in each sub-

shot, where an entity is either some familiar object cate-

gory (phone, toothbrush, etc.) or else an object-like visual

word region, depending on whether previously trained ob-

ject models are available. Next, for each subshot, we es-

timate its individual importance as well as its influence on

every other subshot in the original sequence, given their ob-

jects/words. Finally, we optimize an energy function that

scores a candidate chain of k selected subshots according to

how well it preserves both influence over time and individ-

ually important events. To compose the final summary, we

devise a simple method to select the best k per broad event

given the neighboring events.

Contributions Our main contribution is the idea of story-
driven video summarization; to our knowledge, ours is the

first summarization work to explicitly model the influence

between sub-events. To accomplish this, our technical con-

tributions are: 1) we adapt a text analysis technique that

connects news articles [24] to the visual domain, transfer-

ring the problem finding a path through chronological doc-

uments to one finding a chain of video subshots that conveys

a fluid story; 2) we show how to estimate the influence of

one visual event on another given their respective objects;

3) we introduce a novel temporal segmentation method

uniquely designed for egocentric videos; 4) we show how

to exploit our influence estimates to discover a video’s most

influential objects; and 5) we perform a large-scale, system-

atic evaluation to compare the proposed approach to several

baselines on 12 hours of challenging egocentric video. Our

user study results confirm that our method produces sum-

maries with a much better sense of story.

2. Related Work
We review prior work in video summarization, egocen-

tric video analysis, and influence discovery in text mining.

Video summarization Keyframe-based methods select a

sequence of keyframes to form a summary, and typically

use low-level features like optical flow [26] or image differ-

ences [27]. Recent work also uses high-level information

such as object tracks [16] or “important” objects [14], or

takes user input to generate a storyboard [10].

In contrast, video skimming techniques first segment the

input into subshots using shot boundary detection. The

summary then consists of a selected set of representa-

tive subshots. Features used for subshot selection include

motion-based attention [19], motion activity [18], or spatio-

temporal features [13]. User interaction can help guide

subshot selection; for example, the user could point out a

few interesting subshots [6], or provide keyframes for loca-

tions in a map-based storyboard [21]. For static cameras,

dynamic summaries simultaneously show multiple actions

from different timepoints in the video, all overlaid on the

same background [22].

Both types of methods mostly focus on selecting good

individual frames or shots, ignoring the relationship be-

tween them. In contrast, our approach models the influ-

ence between subshots, which we show is vital to capture

the story in the original video. Prior methods that do ac-

count for inter-keyframe relationships restrict the criterion

to low-level cues and pairwise terms [17, 27, 14], which

can lead to an unintended “toggling”, where the summary

includes redundant views at every other frame. In contrast,

our model uses higher-order constraints enforcing that ob-

jects enter and leave the summary with some coherent struc-

ture.

Egocentric video analysis Due to the small form factor

of today’s egocentric cameras, as well as expanding applica-

tion areas, vision researchers are actively exploring egocen-

tric video analysis. Recent work uses supervised learning to

recognize activities [25, 7, 20, 9, 8], handled objects [23],

and novel events [1]. Unsupervised methods include scene

discovery [11], sports action recognition [12], keyframe se-

lection [5], and summarization [14]. Unlike any prior work,

we aim to recover a story-driven summary, and we explic-

itly capture shot-to-shot influence.

Influence in news articles Both our influence metric as

well as the search strategy we use to find good chains are

directly inspired by recent work in text mining [24]. Given

a start and end news article, that system extracts a coher-

ent chain of articles connecting them. For example, the

method could try to explain how the decline in home prices

in 2007 led to the health care debate in 2009. Adapting

their model of influence to video requires defining analo-

gies for documents and words. For the former, we develop a

novel subshot segmentation method for egocentric data; for

the latter, we explore both category-specific and category-

independent models of visual objects. Finally, we find

that compared to news articles, egocentric video contains

substantial redundancy, and subshot quality varies greatly.
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Thus, whereas the model in [24] scores only the influence

of selected documents, we also model chain quality in terms

of predicted importance and scene diversity.

3. Approach
Our approach takes a long video as input and returns a

short video summary as output. First, we segment the origi-

nal video into a series of n subshots, V = {s1, . . . , sn}. For

each subshot, we extract the set of objects or visual words

appearing in it. We define our novel segmentation method

and object extraction procedure in Sec. 3.1.
Consider the subshots as nodes in a 1D chain, and let

S = {sk1 , . . . , skK
}, S ⊂ V denote an order-preserving

chain of K selected nodes. Our goal is to select the optimal
K-node chain S∗:

S∗ = arg max
S⊂V

Q(S), (1)

where Q(S) is a three-part quality objective function

Q(S) = λs S(S) + λi I(S) + λd D(S) (2)

that reflects the story, importance, and diversity captured

in the selected subshots, and the constants λ weight their

respective influence. We define each component in turn in

Sec. 3.2. For now, suppose the length K is user-specified;

we will return to the issue of how to select K below.

To optimize the objective, we use an efficient prior-

ity queue approach to search for good candidate chains

(Sec. 3.3). Finally, we compose the final summary by se-

lecting and linking together a “chain of chains” computed

from multiple broad chunks of the source video (Sec. 3.4).

3.1. Egocentric Subshot Representation

Subshot extraction is especially challenging for egocen-

tric video. Whereas traditional approaches rely on shot

boundary detection (e.g., detecting an abrupt change to the

color histogram), egocentric videos are continuous. They

offer no such dramatic cues about where the scene or activ-

ity has changed. Thus, we introduce a novel subshot seg-

mentation approach tailored to egocentric data. Our key in-

sight is to detect generic categories of ego-activity that typi-

cally align with sub-events. Specifically, we learn to predict

whether the camera wearer is static, meaning not undergo-

ing significant body or head motion, in transit, meaning

physically traveling from one point to another, or moving
the head, meaning changing his attention to different parts

of the scene. We manually label 4577 total training frames

from various videos.

To represent each frame, we extract features based on

optical flow and blurriness, which we expect to character-

ize the three classes of interest. For example, flow vec-

tors emanating from the center of the frame are indicative

of forward travel (e.g., walking down the hall), while mo-

tion blur occurs when the camera wearer moves his head

quickly (e.g., to pick up a pot). Specifically, we compute

dense optical flow [15], and quantize the flow angles and

magnitudes into eight bins. Then we form a histogram of

flow angles weighed by their magnitude, concatenated with

a histogram of magnitudes. To compute blur features, we

divide the frame into a 3× 3 grid and score each cell by its

blurriness, using [4]. We train one-vs.-rest SVM classifiers

to distinguish the three classes.

Given a novel input video, we first apply the classifier to

estimate class likelihoods for each frame. Then, we smooth

the labels using a Markov random field (MRF), in which

each frame is connected to its neighbors within a temporal

window of 11 frames. The unary potentials are the class

likelihoods, and the pairwise potential is a standard Ising

model where consecutive frames receiving different labels

are penalized according to the similarity of their color his-

tograms. The resulting smoothed labels define the subshots:

each sequence of consecutive frames with the same label

belongs to the same subshot. Thus, the number of subshots

n will vary per video; in our data (described below) a typi-

cal subshot lasts 15 seconds and a typical 4-hour video has

n = 960 total subshots. This yields an “oversegmentation”

of the video, which is useful for later processing.

We represent a subshot si in terms of the visual ob-

jects that appear within it. We extract objects in one of

two ways. For videos coming from a known environment
in which models can be pre-trained for the primary objects

of interest, we use a bank of object detectors, and record

all confidently detected objects. For example, for egocen-

tric video capturing daily living activities in the living room

and kitchen [20], the object bank could naturally consist of

household objects like fridge, mug, couch, etc. On the other

hand, for videos coming from a more uncontrolled setting,

a preset bank of object detectors is insufficient. In this case,

we take an unsupervised approach, where the “objects” are

visual words created from “object-like” windows. Specif-

ically, we generate 100 object-like windows [2] for each

frame and represent each one with a HOG pyramid [3].

Since the windows can vary substantially in aspect ratio,

we first quantize them into five aspect ratio groups using

k-means. Then, we quantize the HOG descriptors per as-

pect ratio into 200 visual words, yielding 1000 total visual

words. We find that with this procedure the same visual

word often represents the same object.

In the following, let O = {o1, . . . , oN} denote the set of

N possible objects; that is, oi refers to one of N detectable

object categories or else one of N = 1000 discovered visual

words. We will use object interchangeably to mean a “true”

object or a visual word.

3.2. Scoring a Candidate Chain of Subshots

Now we define each of the three terms of the scoring

function in Eqn. 2.
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Figure 2. Sketch of the bipartite graph for influence calculation.

Top row: object nodes, bottom row: subshot nodes. Edges de-

note that an object appears in the subshot, and probabilities on the

directed edges reflect their association. (Not all are shown.)

Story progress between subshots The first term S(S)
captures the element of story, and is most crucial to the

novelty of our approach. We say a selected chain S tells

a good story if it consists of a coherent chain of visual ob-
jects, where each strongly influences the next in sequence.

The influence criterion means that for any pair of subshots

selected in sequence, the objects in the first one “lead to”

those in the second. The coherency criterion tempers this

objective, favoring chains where objects do not drop in and

out repeatedly; this aspect helps avoid chains that either a)

toggle between related objects or b) satisfy the weakest link

objective below by repeating objects in n− 1 subshots fol-

lowed by a big “hop” to some unrelated content. In the

following, our definitions for influence and coherency are

directly adapted from [24], where we draw an analogy be-

tween the news articles and words in that work, and the sub-

shots and visual objects in our work.
Suppose we were considering influence alone for the

story term S(S). Then we’d want the chain that maximizes:

S ′(S) = min
j=1,...,K−1

X
oi∈O

INFLUENCE(sj , sj+1|oi), (3)

that is, the chain whose weakest link is as strong as possible.

To compute the influence between two subshots requires

more than simply counting their shared objects, as dis-

cussed above. To capture this notion, we use a random-walk

approach to score influence conditioned on each object. We

construct a bipartite directed graph G = (Vs ∪ Vo, E) con-

necting subshots and objects. The vertices Vs and Vo cor-

respond to the subshots and objects, respectively. For every

object o that appears in subshot s, we add both the edges

(o, s) and (s, o) to E. The edges have weights based on

the association between the subshot and object; we define

the weight to be the frequency with which the object occurs

in that subshot, scaled by its predicted egocentric impor-

tance, using [14]. We normalize the edge weights over all

objects/subshots to form probabilities. See Figure 2.
Intuitively, two subshots are highly connected if a ran-

dom walk on the graph starting at the first subshot vertex
frequently reaches the second one. Furthermore, the object
o plays an important role in their connection to the extent
that walks through that object’s vertex lead to the second

Inclusion Our method 
Figure 3. Illustration of the effect of influence vs. inclusion. In the

story of making cereal, our influence measure can capture grab-
bing a dish leading to fetching the milk (left). In contrast, an object

inclusion metric cannot discover this connection, since the sub-

events share no objects (right).

subshot. Using this idea, we measure influence in terms of
the difference in stationary distributions for two variants of
the graph G. Let P (u|v) denote the probability of reaching
vertex v from vertex u (as recorded by the edge weight on
(u, v)). The chance of a random walk starting from si being
at any node v is given by the stationary distribution:

Y
i
(v) = ε· (v = si)+(1−ε)

X
(u,v)∈E

Y
i
(u)P (v|u), (4)

where ε is the random restart probability (defined later).
Let

∏o
i (v) be computed the same way, but over a modi-

fied graph where object o is made to be a sink node, with no
outgoing edges. The influence is computed as the difference
between the two stationary probabilities at sj :

INFLUENCE(si, sj |o) =
Y

i
(sj)−

Yo

i
(sj). (5)

Intuitively, the score is high if object o is key to the in-

fluence of subshot si on sj—that is, if its removal would

cause sj to no longer be reachable from si. As desired,

this metric of influence captures relationships between sub-

shots even when they do not share objects. For example, in

the “story” of making cereal, taking a dish from the plate

holder leads to grabbing the milk from the fridge. Our in-

fluence measure can capture these two events’ ties, whereas

a metric measuring object inclusion (e.g., cosine similarity

on bag-of-objects) cannot, since they contain no shared ob-

jects. Instead, the inclusion measure can only capture links

less essential to the story, such as grabbing and holding a

dish. See Figure 3.
To account for coherency as well as influence, we also

enforce preferences that only a small number of objects be
“active” for any given subshot transition, and that their acti-
vation patterns be smooth in the summary. This is done by
adding an activation variable specifying which objects are
active when, yielding the story-based objective term:

S(S) = max
a

min
j=1,...,K−1

X
oi∈O

ai,j INFLUENCE(sj , sj+1|oi),

(6)

where a is an indicator variable of length N × n reflecting

which objects are active in which subshots, ai,j denotes its

value for object i and subshot j, and
∑

i,j ai,j is bounded

by γ. By relaxing a to take real-valued strengths, the above

is formulated as a linear program (see [24] for details).
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Figure 4. Activation pattern of objects for our summary (top) and

a uniform sampling baseline (bottom) for the same input video.

Bars indicate the objects activated in the keyframes above them.

Figure 4 shows an example of the activation pattern over

a chain of subshots for our method and a baseline that uni-

formly samples frames throughout the original video. Our

result shows how the story progresses though the objects

(i.e., making tea, getting food from the fridge, getting dishes

to put the food in, and eating the cereal). In contrast, the

baseline shows only a portion of the relevant objects and

repeats them throughout, failing to capture how one event

leads to the next.

Importance of individual subshots The second term of
our objective (Eqn. 2) accounts for the individual quality
of each selected subshot. Subshots containing an identical
set of objects can still vary in perceived quality, depending
on how prominent the objects are in the scene, the camera
angle, the amount of blur, etc. We use an importance crite-
rion similar to [14], which is a learned function that takes
a region as input and returns a scalar importance score as
output. It exploits cues specific to egocentric data, such as
nearness of the region to the camera wearer’s hands, its size
and location, and its frequency of appearance in a short time
window. We define

I(S) =
KX

j=1

IMPORTANCE(sj), (7)

where the importance of a subshot sj is the average of im-

portance scores for all its regions. Note our influence com-

putation also uses importance to weight edges in G above;

however, the normalization step discards the overall impor-

tance of the subshot that we capture here.

Diversity among transitions The third term in Eqn. 2 en-
forces scene diversity in the selected chain. We compute an
affinity based the distribution of scenes present in two ad-
jacent subshots. Specifically, we extract Gist descriptors
and color histograms for each frame, then quantize them to
one of 55 scene types (as identified with mean-shift clus-
tering). A subshot’s scene distribution is a histogram over

those scene types. Then, we score diversity as:

D(S) =

K−1X
j=1

„
1− exp(− 1

Ω
χ2(sj , sj+1))

«
, (8)

where Ω is the mean of χ2-distances among all nodes, and

sj refers to its scene histogram. Note this value is high when

the scenes in sequential subshots are dissimilar.

3.3. Searching for the Optimal Chain of Subshots

A naive search for the optimal chain would involve com-

puting Eqn. 2 for all possible chains. While importance and

scene diversity can be computed quickly, the story-driven

term (Eqn. 6) is more expensive, as it uses linear program-

ming. To efficiently find a good chain, we use the approx-

imate best-first search strategy given in [24], modified to

account for our full objective. The basic idea is to use a

priority queue to hold intermediate chains, and exploit the

fact that computing the story term S for a single-link chain

is very efficient.

Briefly, it works as follows. The priority queue is ini-

tialized with a single node chain. Each chain in the priority

queue is either associated with its Q(S) score or an approx-

imate score that is computed very efficiently. The approxi-

mate score computes I(S) + D(S) for the new chain, and

adds the minimum of the S(S) scores for the current chain

and the newly added link. At each iteration, the top chain

in the priority queue is scored by Q(S) and reinserted if

the chain is currently associated with its approximate score;

otherwise the chain is expanded to longer chains by adding

the subsequent subshots. Then each newly created chain

is inserted in the priority queue with its approximate score.

In this way unnecessary S(S) computation is avoided. The

algorithm terminates when the chain is of desired length.

The authors provide approximation guarantees for this ap-

proach [24]; they are also applicable for our case since our

objective adds only pairwise and individual node terms.

3.4. Selecting a Chain of Chains in Long Videos
For long egocentric video inputs, it is often ill-posed to

measure influence across the boundaries of major distinct
events (such as entirely different physical locations). For
example, having dinner in a restaurant has little to do with
watching TV later on at home—at least in terms of visual
cues that we can capture. Based on this observation, we
pose the final summarization task in two layers. First, we
automatically decompose the full video into major events.
We compute an affinity matrix A over all pairs of subshots,
based on both their color similarity and mutual influence:

Am,n = α1 exp(− 1

Ω
χ2(sm, sn))+α2

X
o

INFLUENCE(sm, sn|o),

where α1 and α2 are weights, Ω is as above, and sm refers

to its color histogram in the first term. To compute a bound-

ary score for each subshot, we sum the affinity between that
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subshot and all others within a small temporal window, and

normalize that value by the affinity of all pairs in which one

subshot is either before or after the current window. Event

boundaries are the local minima in this boundary measure-

ment.

Next, for each major event, we generate multiple candi-

date chains as in Sec. 3.2 by varying K. The final video

summary is constructed by selecting one chain from the

candidates per event, and concatenating the selected chains

together. We simply select the chain with the highest impor-

tance among those for which the minimum diversity term is

higher than a threshold τ .

For a typical 4-hour video with 7 major events, it takes

30 − 40 minutes to generate the final summary. Note that

our system is implemented in Matlab without any optimiza-

tion. The run time could be improved by using a faster LP

implementation and caching Q(S) when generating chains.

4. Results
We now analyze our method compared to multiple alter-

native summarization approaches. Since judging the quality

of a summary is a complex and subjective task, we conduct

a substantial user study to quantify its performance.

Datasets We use two datasets: the UT Egocentric (UTE)

dataset2 [14] and the Activities of Daily Living (ADL)

dataset3 [20]. UTE contains 4 videos from head-mounted

cameras, each about 3−5 hours long, captured in a very un-

controlled setting. The camera wearers travel through mul-

tiple locations, eating, shopping, walking, driving, cook-

ing, etc. We use visual words for this data; the objects

present are so diverse that pre-specifying a bank of detec-

tors would be inadequate. ADL contains 20 videos from

chest-mounted cameras, each about 20 − 60 minutes long.

The camera wearers perform daily activities in the house,

like brushing teeth, washing dishes, or making a snack. The

data are annotated with a set of N = 42 relevant objects

(e.g., mug, fridge, TV), which we use to demonstrate how

our method performs using familiar “true” objects. We use

the provided ground truth bounding boxes rather than raw

detector outputs, in an effort to focus on summarization is-

sues rather than object detector issues. For ADL we use

keyframes rather than subshots due to their shorter duration.

Implementation details For the pHOG visual words, we

use 8×8 blocks, a 4 pixel step size, and 2 scales per octave.

We set ε = 0.25 for influence computation, following [24].

We set γ to constrain the total number of activated objects

to 80 and 15 for UTE and ADL, respectively, reflecting the

datasets’ differing total number of objects. We weigh the

objective terms as λs = 1, λi = 0.5, and λd = 0.5, to

2http://vision.cs.utexas.edu/projects/egocentric/
3http://deepthought.ics.uci.edu/ADLdataset/adl.html

emphasize the story-based criterion. For event boundary

detection, we set α1 = 0.1 and α2 = 0.9. For each event,

we use K = 4, . . . , 8 to generate the candidate chains. We

set the minimum scene diversity to be τ = 0.6 for UTE and

τ = 0.45 for ADL after visually examining a few examples.

We process 1 fps for efficiency.

Being that our approach is unsupervised, validating pa-

rameter settings is of course challenging. We stress that

nearly all were set simply based on intuitions given above,

and not tuned. We did observe some trade-offs in two pa-

rameters, however—the range for K and scene diversity

threshold τ . If K is too high or τ too low, the summaries

contain more redundancies. A user of our system would

likely inspect a couple examples in order to adjust them,

just as we have done here. We fix all parameters for all

results, and use the same final K for all compared methods.

Baselines We compare to three baselines: (1) Uniform
sampling: We select K subshots uniformly spaced through-

out the video. This is a simple yet often reasonable method.

(2) Shortest-path: We construct a graph where all pairs

of subshots have an edge connecting them, and the edge

is weighted by their bag-of-objects distance. We then se-

lect the K subshots that form the shortest path connecting

the first and last subshot. This baseline has the benefit of

the same object representation we use and should find a

smooth path of sub-events, but it lacks any notion of influ-

ence. (3) Object-driven: We apply the state-of-the-art ego-

centric summarization method [14] using the authors’ code.

Because it produces keyframe summaries, we map its out-

put to a video skim by including the 15 frames surrounding

each selected keyframe. For ADL, only the first two base-

lines are compared, since the object-driven approach [14]

would require additional annotation of important objects for

training, which is outside the scope of this paper.

Evaluating summary quality We perform a “blind taste

test” in which users report which summary best captures

the original story. The test works as follows. We first show

the users a sped-up version of the entire original video, and

ask them to write down the main story events. The latter is

intended to help them concentrate on the task at hand. Then,

we show the subject two summaries for that original video;

one is ours, one is from a baseline method. We do not reveal

which is which, and we order them randomly. After viewing

both, the subject is asked, Which summary better shows the
progress of the story? We also emphasize that the subjects

should pay attention to the relationship among sub-events,

redundancy, and representativeness of each sub-event. The

supp. file shows the complete interface.

The final set shown to subjects consists of 5 hours and

11 events for UTE and 7 hours and 37 events for ADL.4 We

4To mitigate the cost of our user studies, we omit events not meeting the minimum
scene diversity value (they are monotonous and so trivial to summarize), as well as
those shorter than 3 minutes in ADL.
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Data Uniform sampling Shortest path Object-driven [14]

UTE 90.9% 90.9% 81.8%

ADL 75.7% 94.6% N/A

Table 1. User study results. Numbers indicate percentage of users who

prefer our method’s summary over each of the three baselines.

enlisted 34 total subjects. They range from 18-60 years old,

and about half have no computer vision background. We

show our summary paired separately with each baseline to

five different users, and take a vote to robustly quantify the

outcome. This makes 11 × 3 × 5 = 165 comparisons for

UTE and 37×2×5 = 370 comparisons for ADL, for a total

of 535 tasks done by our subjects. We estimate each task

required about 5 minutes to complete, meaning the study

amounts to about 45 hours of user time. To our knowledge,

this ranks among the most extensive user studies performed

to systematically evaluate a summarization algorithm.

Table 1 shows the results. A strong majority of the sub-

jects prefer our summaries over any of the baselines’. This

supports our main claim, that our approach can better cap-

ture stories in egocentric videos. Furthermore, in 51% of

the comparisons all five subjects prefer our summary, and

only in 9% of the comparisons does our summary win by

one vote.

Inspecting the results, we find that our advantage is best

when there is a clear theme in the video, e.g., buying ice

cream or cooking soup. In such cases, our model of co-

herent influence finds subshots that give the sense of one

event leading to the next. In contrast, the state-of-the-art

approach [14] tends to include subshots with important ob-

jects, but with a less obvious thread connecting them. When

a video focuses on the same scene for a long time, our

method summarizes a short essential part, thanks to our im-

portance and scene diversity terms. In contrast, both uni-

form sampling and shortest-path tend to include more re-

dundant subshots. In fact, we believe shortest-path is weak-

est relative to our approach on the ADL data because it con-

tains many such activities (e.g., using a computer, watching

TV).

On the other hand, our method does not have much ad-

vantage when the story is uneventful, or when there are

multiple interwoven threads (e.g., cooking soup and making

cookies at the same time). In such cases, our method tends

to select a chain of subshots that are influential to each other,

but miss other important parts of the story. In a sense, such

multi-tasking is inherently breaking the visual storyline.

Example summaries Figures 6 and 7 show all methods’

summaries for example UTE and ADL inputs. See captions

for explanations. Please see our website for video result

examples2.

Discovering influential objects Finally, we demonstrate

how our influence estimates can be used to discover the ob-
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Figure 5. Comparing our method to a frequency-based baseline for the

task of discovering influential objects. See text.

jects most influential to the story. For a given video, we sort

the objects oi ∈ O by their total influence scores across all

its subshot transitions (Eqn. 5). Figure 5 shows ROC curves

for our discovered objects on the ADL data, compared to

a baseline that ranks the objects by their frequency within

the video. To obtain ground truth, we had 3 workers on

MTurk identify which of the N = 42 objects they found

central to the story per video, and took the majority vote.

The results show our method’s advantage; the most influen-

tial objects need not be the most frequent. We stress that

our method is unsupervised, and discovers the central ob-

jects looking at a single video—as opposed to a supervised

approach that might exploit multiple labeled videos to find

typical objects. This application of our work may be useful

for video retrieval or video saliency detection applications.

5. Conclusion

Our work brings the notion of “story” into video sum-

marization, making it possible to link sub-events based on

the relationships between their objects, not just their co-

occurring features. Towards this goal, we have developed

a novel subshot segmentation method for egocentric data,

and a selection objective that captures the influence be-

tween subshots as well as shot importance and diversity.

Our large-scale user study indicates the promise of our ap-

proach. The results also suggest how our unsupervised tech-

nique might assist in other vision tasks, such as discovering

the objects central for human activity recognition.

We are interested in our method’s use for egocentric data,

since there is great need in that domain to cope with long

unedited video—and it will only increase as more people

and robots wear a camera as one of their mobile computing

devices. Still, in the future we’d like to explore visual influ-

ence in the context of other video domains. We also plan to

extend our subshot descriptions to reflect motion patterns or

detected actions, moving beyond the object-centric view.
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Figure 6. Example from UTE data comparing our summary (top row) to the three baselines. Our method clearly captures the progress of the story: serving

ice cream leads to weighing the ice cream, which leads to watching TV in the ice cream shop, then driving home. Even when there are no obvious visual

links for the story, our method captures visually distinct scenes (see last few subshots in top row). The shortest-path approach makes abrupt hops across the

storyline in order to preserve subshots that smoothly transition (see redundancy in its last 5 subshots). While the object-driven method [14] does indeed find

some important objects (e.g., TV, person), the summary fails to suggest the links between them. Note that object-driven method sometimes produces shorter

summaries (like this example) depending on number of unique important objects discovered in the video. See supplementary file for videos.

Our  
method 

Uniform  
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Figure 7. Example from ADL data. While here uniform sampling produces a plausible result, ours appears to be more coherent. Objects such as milk and

cup connect the selected keyframes and show the progress of the story—preparing a hot drink and enjoying it by the TV. Shortest-path produces the weakest

result due to its redundant keyframes. This is often the case if the input has many similar frames, since it accounts for the sum of all link weights’ similarity,

without any notion of influence. See supplementary file for videos.
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