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Abstract

This paper discusses the problem of recognizing
interaction-level human activities from a first-person view-
point. The goal is to enable an observer (e.g., a robot
or a wearable camera) to understand ‘what activity others
are performing to it’ from continuous video inputs. These
include friendly interactions such as ‘a person hugging
the observer’ as well as hostile interactions like ‘punching
the observer’ or ‘throwing objects to the observer’, whose
videos involve a large amount of camera ego-motion caused
by physical interactions. The paper investigates multi-
channel kernels to integrate global and local motion in-
formation, and presents a new activity learning/recognition
methodology that explicitly considers temporal structures
displayed in first-person activity videos. In our experi-
ments, we not only show classification results with seg-
mented videos, but also confirm that our new approach is
able to detect activities from continuous videos reliably.

1. Introduction
In the past decade, there has been a large amount

of progress in human activity recognition research. Re-

searchers not only focused on developing reliable video fea-

tures robust to noise and illumination changes [14, 3, 7],

but also proposed various types of hierarchical approaches

to recognize high-level activities with multiple actors [12,

9, 17] and even group activities [13]. State-of-the-art ap-

proaches are obtaining successful results, showing their po-

tential for many real-world applications including visual

surveillance.

However, most of these previous works focused on ac-

tivity recognition from a 3rd-person perspective (i.e., view-

point). The camera, which is usually far away from actors,

analyzed what humans are doing to each other without get-

ting involved in the activities (e.g., ‘two persons punching

each other’). This 3rd-person activity recognition paradigm

is insufficient when the observer itself is involved in inter-

actions, such as ‘a person attacking the camera’. In these

videos, the camera undergoes a huge amount of ego-motion

such as spinning and falling down (Figure 1 (b)), making

its videos very different from previous 3rd-person videos.

What we require is the ability to recognize physical and so-

cial human activities targeted to the observer (e.g., a wear-

able camera or a robot) from its viewpoint: first-person hu-
man activity recognition.

This paper discusses the new problem of recognizing

interaction-level human activities from first-person videos.

Even though there has been previous attempts to recognize

activities from first-person videos [6, 4, 10], they focused on

recognition of ego-actions of the person wearing the camera

(e.g., ‘riding a bike’ or ‘cooking’). There also are works on

recognition of gesture-level motion to the sensor [16] and

analysis of face/eye directions [5], but recognition of high-

level activities involving physical interactions (e.g., ‘a per-

son punching the camera’) from a first-person viewpoint has

not been explored in depth. Recognition of ‘what others are

doing to the observer’ from its own perspective is not only

crucial for any surveillance or military systems to protect

themselves from harmful activities by hostile humans, but

also is very important for friendly human-robot interaction

scenarios (e.g., ‘shaking hands with the robot’) by making

the robot socially aware of what people want to do to it.

In this paper, we introduce our new dataset composed

of first-person videos collected during humans’ interaction

with the observer, and investigate features and approaches

necessary for the system to understand activities from such

videos. We particularly focus on two aspects of first-person

activity recognition, aiming to provide answers to the fol-

lowing two questions: (1) What features (and their com-

bination) do we need to recognize interaction-level activ-

ities from first-person videos? (2) How important is it to

consider temporal structure of the activities in first-person

recognition? We first discuss extraction of global mo-

tion descriptors capturing ego-motion of the observer (often

caused by interactions such as ‘picking up the observer’)

and local motion descriptors describing body movements

of an interacting person (generated by activities such as

‘throwing an object’), and describe multi-channel kernels to

combine them for the recognition. Next, we present a new

kernel-based activity recognition approach that explicitly
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(a) Our observer setup (b) Video snapshots from the observer 

Figure 1. Picture of our setting, and its example observations ob-

tained during a person punching it. The humanoid was placed on a

rolling chair to enable its operator emulate translation movements.

learns structures of human activities from training videos.

Our approach learns sub-events composing an activity and

how they are temporally organized, obtaining superior per-

formance in first-person activity recognition.

1.1. Related works

Computer vision researchers explored various human ac-

tivity recognition approaches since early 1990’s [1]. In the

past 5 years, approaches utilizing sparse spatio-temporal

features capturing local motion [14, 3, 7] have been par-

ticularly successful thanks to their reliability under noise.

In addition, there has been hierarchical approaches divid-

ing activities into sub-events for their better recognition

[12, 9, 17]. However, these previous human activity recog-

nition works detected human behaviors from videos with

third-person viewpoints (e.g., videos captured using surveil-

lance cameras or movie scenes), and did not focus on the

first-person recognition of activities. Even though there are

recent works on first-person action recognition from wear-

able cameras [6, 4, 10, 5], research on recognition of phys-

ical human interactions targeted to the camera and their in-

fluences on the camera movements has been very limited.

Up to our knowledge, this paper is the first paper to rec-

ognize human interactions from first-person videos.

2. First-person video dataset
We constructed a new first-person video dataset contain-

ing interactions between humans and the observer. We at-

tached a GoPro camera to the head of a humanoid model

(Figure 1), and asked human participants to interact with the

humanoid by performing activities. This humanoid can be

viewed as a model robot. In order to emulate the mobility of

a real robot, we also placed wheels below the humanoid and

made an operator to move the humanoid by pushing it from

behind. The dataset serves as a recognition benchmark.

For the video collection, our robot was placed in 5 dif-

ferent environments with distinct background and lighting

conditions. A total of 8 participants wearing a total of 10

different clothings participated in our experiments. The par-

Hand shake Hug 

Pet 

Point-Converse 

Punch 

Throw Wave 

Figure 2. Seven classes of human activities in our dataset.

ticipants were asked to perform 7 different types of activi-

ties, including 4 positive (i.e., friendly) interactions with the

observer, 1 neutral interaction, and 2 negative (i.e., hostile)

interactions. ‘Shaking hands with the observer’, ‘hugging

the observer’, ‘petting the observer’, and ‘waving a hand to

the observer’ are the four friendly interactions. The neu-

tral interaction is the situation where two persons have a

conversation about the observer while occasionally point-

ing it. ‘Punching the observer’ and ‘throwing objects to the

observer’ are the two negative interactions. Videos were

recorded continuously during human activities where each

video sequence contains 0 to 3 activities.

Figure 2 shows example snapshots of human activities

in our dataset. The videos are in 320*240 image resolu-

tion, 30 frames per second. Notice that the robot (and its

camera) is not stationary and it displays a large amount of

ego-motion in its videos particularly during the human ac-

tivity. For instance, in the case of ‘punching’ interactions,

the robot collapses as a result of the person hitting it, dis-

playing the ego-motion of falling (e.g., frames in Figure 1

(b)). Similarly, the robot’s body shakes as a human is shak-

ing hands with it. Translation movement of the robot is also

present even when there are no interactions.

As a result, the video dataset composed of 12 sets are

constructed (containing 57 continuous video sequences).

Videos in two different sets were taken at a different en-

vironment and/or with different human actors. Each set

contains multiple continuous videos, which include at least

one execution per human activity. In addition, in order to

support the training of the robot, we also prepared the seg-

mented version of the dataset: videos in each dataset are

segmented so that each video segment contains one activity

execution, providing us at least 7 video segments per set.

We emphasize that our first-person videos are different

from public activity recognition datasets (e.g., [14, 7, 12])

which are in the third-person viewpoints. It also is differ-

ent from previous gesture recognition datasets using Kinect

sensors [16], since videos in our dataset involves heavy ego-

motion (i.e., camera motion) caused by human-observer in-

teractions. It is different from [6, 4, 10] as well, in the aspect

that our videos contain movements of interacting persons as

well as ego-motion of the observer.
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3. Features for first-person videos

In this section, we discuss motion features for first-

person videos. We construct and evaluate two categories of

video features, global motion descriptors and local motion

descriptors, and confirm that each of them contributes to the

recognition of different activities from first-person videos.

In addition, we present kernel functions to combine global

features and local features for the activity recognition. Our

kernels reliably integrates both global and local motion in-

formation, and we illustrate that these multi-channel kernels

benefit first-person activity recognition.

We first introduce video features designed to capture

global motion (Subsection 3.1) and local motion (Subsec-

tion 3.2) observed during humans’ various interactions with

the observer. Next, in Subsection 3.3, we cluster features to

form visual words and obtain histogram representations. In

Subsection 3.4, multi-channel kernels are described. Exper-

imental results evaluating features (and their combinations)

are presented in Subsection 3.5.

3.1. Global motion descriptors

For describing global motion in first-person videos, we

take advantage of dense optical flows. Optical flows are

measured between every two consecutive frames of a video,

where each flow is a vector describing the direction and

magnitude of the movement of each pixel. We apply a con-

ventional dense optical flow computation algorithm to sum-

marize global motion of the observer.

We designed our global motion descriptor as a histogram

of extracted optical flows: We categorize observed optical

flows into multiple types based on their locations and direc-

tions, and count the number of optical flows belonging to

each category. The system places each of the computed op-

tical flows into one of the predefined s-by-s-by-8 histogram

bins, where they spatially divide a scene into s by s grids

and 8 representative motion directions. Each descriptor is

constructed by collecting optical flows in a fixed time du-

ration (e.g., 0.5 seconds). Figure 3 shows an example se-

quence of global descriptors obtained from one video.

3.2. Local motion descriptors

We use sparse 3-D XYT space-time features as our local

motion descriptors. For this purpose, we interpret a video

as a 3-D XYT volume, which is formed by concatenating

2-D XY image frames of the video along time axis T. We

then pass it to the spatio-temporal feature detector, which

searches for a set of small XYT video patches that it be-

lieves to contain salient motion (i.e., appearance changes)

inside. The intention is to abstract local motion informa-

tion inside each of the detected video patches, and use it as

a descriptor. More specifically, we obtain a local descriptor

by summarizing gradient values of the detected video patch.

Figure 3. Example global motion descriptors obtained from a

video of a human hugging the observer, which concatenates ob-

served optical flows. These three descriptors (obtained during dif-

ferent types of ego-motion of the camera) are distinct, suggesting

that our descriptors correctly captures observer ego-motion.

We have chosen a cuboid feature detector [3] as our spatio-

temporal feature extractor, applying a dimensionality reduc-

tion method (principal component analysis) to compute our

local motion descriptors having 100 dimensions. Figure 4

illustrates example cuboids detected.

3.3. Visual words

We take advantage of the concept of visual words, in

order to represent motion information in videos more effi-

ciently. Motion descriptors are clustered into multiple types

(i.e., w words) based on their descriptor values using tradi-

tional k-means. As a result, each extracted motion descrip-

tor is interpreted as an occurrence of one of the w visual

words (e.g., 800 words).

Once visual words are obtained by clustering motion de-

scriptors, their histogram is computed per video vi to rep-

resent its motion. The histogram Hi essentially is a w-

dimensional vector Hi = [hi1 hi2 ... hiw], where hin is the

number of nth visual words observed in the video vi. Let

an denote nth visual word, and let d be a motion descriptor.

Then,

hvn = |{d | d ∈ an}| . (1)

Our clustering and histogram construction processes are

applied for the global motion descriptors and local motion

descriptors separately. Two histograms, one for global mo-

tion and the other for local motion, are obtained as a result.

The feature histogram Hi for video vi directly serves as

our feature vector representing the video: xi = [H1
i ;H

2
i ],

where H1
i is the histogram of global descriptors and H2

i is

the histogram of local descriptors.

3.4. Multi-channel kernels

We present multi-channel kernels that consider both

global features and local features for computing video sim-

ilarities. A kernel k(xi, xj) is a function defined to model

distance between two vectors xi and xj . Learning a clas-
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Interest points 

Local descriptors 

Figure 4. Example local motion descriptors obtained from our

video of a person throwing an object to the observer. Loca-

tions with salient motion are detected, and their 3-D XYT volume

patches are collected as our local descriptors.

sifier (e.g., SVMs) with an appropriate kernel function en-

ables the classifier to estimate better decision boundaries

tailored for the target domain. In order to integrate both

global and local motion cues for reliable recognition from

first-person videos, we defined multi-channel kernels that

lead to the computation of a non-linear decision boundary.

We construct two types of kernels: a multi-channel ver-

sion of histogram intersection kernel, and multi-channel χ2

kernel which was also used in [19] for object classification.

These multi-channel kernels robustly combines information

from channels (global motion and local motion in our case).

Our histogram intersection kernel is defined as follows:

k(xi, xj) = exp

(
−
∑
c

Dh
c (Hi, Hj)

)
(2)

where Hi and Hj are the histograms for channel c of xi and

xj , and Dh
c (Hi, Hj) is the histogram distance defined as

Dh
c (Hi, Hj) =

w∑
n=1

(
1− min(hin, hjn)

max(hin, hjn)

)
. (3)

The χ2 kernel is similar, except that the distance function is

newly defined as:

Dχ2

c (Hi, Hj) =
1

2 ·Mc

w∑
n=1

(hin − hjn)
2

hin + hjn
(4)

where Mc is the mean distance between training samples.

3.5. Evaluation

We use a repeated random sub-sampling validation to

measure the classification accuracy of our recognition ap-

proach. The segmented version of our first-person video

dataset was used, where each of its videos contains a single

occurrence of one of the seven activities. That is, at each

round, we selected a half of our dataset (i.e., 6 sets with 42

videos) as training videos and use the other 6 sets for the

testing. The mean classification accuracy was obtained by

repeating this random training-testing splits for 100 rounds.

(a) Global descriptors (b) Local descriptors 
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Figure 5. Confusion matrices of the baseline activity classifica-

tion approaches only using one type of motion features and multi-

channel classifiers using both features: (a) global motion represen-

tation,(b) local motion representation, (c) multi-channel histogram

intersection kernel, and (d) multi-channel χ2 kernel.

In addition, since the clustering algorithm we use in Sub-

section 3.3 contains randomness, we repeated this step for

10 times and averaged the performances.

Local vs. global motion: First, we evaluate the activity

classification ability of our approach while forcing the sys-

tem to only use one of the two motion features (global vs.

local). The objective is to identify which motion represen-

tation contributes to recognition of which activity, and con-

firm that using two types of motion features jointly (using

our multi-channel kernel) will benefit the overall recogni-

tion.

We implemented two baseline activity classifiers: Both

these baseline classifiers are support vector machine (SVM)

classifiers, which use a standard Gaussian kernel relying on

only one feature channel (either global or local) for the clas-

sification. The confusion matrix for these two classifiers are

illustrated in Figure 5 (a)(b). Their average classification

accuracies were 0.722 (global) and 0.698 (local). The fig-

ure illustrates that two feature types capture very different

aspects of motion, even though their overall classification

accuracies are similar. For example, in the case of ‘pointing

conversation’, the approach with local descriptors showed

higher true positive rate while the global descriptors showed

better false positive rate. The situation was the opposite for

the ‘throwing’. This suggest that a kernel to robustly com-

bine both global and local features is needed.

Classification with multi-channel: We evaluated SVM

classifiers using our multi-channel kernels. Figure 5 (c)(d)

shows the results of our approach with the two types of
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multi-channel kernels described in the previous subsection.

We are able to observe that our approaches obtain much

higher classification accuracy compared to the baseline ap-

proaches utilizing only one motion feature (i.e., compared

to the confusion matrix Figure 5 (a)(b)): 0.844 and 0.843.

This confirms that utilizing both global and local motion

benefits overall recognition of human activities from first-

person videos, and that our kernel functions are able to com-

bine such information reliably.

4. Recognition with activity structure
In the case of high-level activities, considering activi-

ties’ structures is crucial for their reliable recognition. More

specifically, the system must consider how many compo-

nents (i.e., sub-events) the activity should be divided into

and how they must be organized temporally. This is partic-

ularly important for interaction-level activities where cause-

and-effect relations are explicitly displayed, such as the ob-

server ‘collapsing’ as a result of a person ‘hitting’ it in the

punching interaction. The system must learn the structure

representation of each activity and take advantage of it for

more reliable recognition.

In this section, we present a new recognition method-

ology that explicitly considers the activity structure, and

investigate how important it is to learn/use structures for

first-person activity videos. We first describe our structure

representation, and define a new kernel function comput-

ing video distances given a particular structure. Next, we

present an algorithm to search for the best activity structure

given training videos. The idea is to enable evaluation of

each structure by measuring how similar its kernel function

is to the optimal function, and use such evaluation to find

the optimal structure.

4.1. Hierarchical structure match kernel

We represent an activity as a continuous concatenation of

its sub-events. That is, we define the structure of an activity

as a particular division that temporally splits an entire video

containing the activity into multiple video segments.

Formally, we represent the activity structure in terms of

hierarchical binary divisions with the following production

rules:
S[t1, t2]→(S[t1, t3], S[t3, t2])

S[t1, t2]→(t1, t2)
(5)

where t3 is a relative time point (0 ≤ t1 < t3 < t2 ≤ 1)

describing how the structure is splitting the video dura-

tion [t1, t2]. Any activity structure constructed by apply-

ing a number of production rules starting from S[0, 1] (un-

til they reach terminals) is considered as a valid structure

(e.g., S = ((0, 0.5), (0.5, 1))). Each relative time interval

(t1, t2) generated as a result of the second rule is a termi-

nal, specifying that the structure representation considers it

))1,75.0(],75.0,0[(]1,0[ SS �

),()35.0,0( ji xxk

:ix

:jx

),( jiS xxk

))1,75.0(],75.0,0[(]1,0[ SS �

))75.0,35.0(),35.0,0((]75.0,0[ �S

),()75.0,35.0( ji xxk ),()1,75.0( ji xxk

))75.0,35.0(),35.0,0((]75.0,0[ �S

Figure 6. An example matching between two hugging videos, xi

and xj , using the kernel KS constructed from the hierarchical

structure S = (((0, 0.35), (0.35, 0.75)), (0.75, 1)).

as an atomic-level sub-event. The above production rules

can be viewed as those of an attribute grammar.

The idea behind our structure representation is to take

advantage of it to better measure the distance between

two videos by performing hierarchical segment-to-segment

matching (Figure 6). That is, if two videos contains an iden-

tical activity and if they are divided into video segments

based on the correct activity structure, the similarity be-

tween each pair of video segments must be high.

Given a particular activity structure S, we define the ker-

nel function kS(xi, xj) measuring the distance between two

feature vectors xi and xj with the following two equations:

k(S[t1,t3],S[t3,t2])(xi, xj) = kS[t1,t3](xi, xj) + kS[t3,t2](xi, xj),

k(t1,t2)(xi, xj) =
w∑

n=1

(h
(t1,t2)
in − h

(t1,t2)
jn )2

h
(t1,t2)
in + h

(t1,t2)
jn

(6)

where h
(t1,t2)
in is the number of nth visual word detected in-

side the time interval (t1, t2) of the video xi. Notice that

this structure kernel is constructed for each channel c, re-

sulting a multi-channel kernel integrating (i.e., summing)

all kcSc
(i.e., k1S1

and k2S1
). Instead of ignoring temporal

locations of detected descriptors using bag-of-words (e.g.,

kernels discussed in the previous section), our new kernel

considers the structural formulation of descriptors. We call

this hierarchical structure match kernel.
Our structure match kernel can be efficiently imple-

mented with temporal integral histograms [11], which al-

lows us to obtain a feature histogram of any particular time

interval in O(w). Our kernel takes O(w · r) per each

(xi, xj), where r is the number of segments generated as

a result of the structure. In most cases r < 10. In princi-

ple, our structure kernel is able to cope with any types of

classifiers by serving as a distance measure.

4.2. Structure learning

In this subsection, we present our approach to learn the

activity structure and its kernel that best matches training
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videos. We first introduce kernel target alignment [15] that

measures the angle between two Gram matrices, and present

that it can be used to evaluate structure kernels for our activ-

ity recognition. The idea is to represent the ‘optimal kernel

function’ and candidate structure kernels in terms of Gram

matrices and measure their similarities. Next, we present

our strategy to obtain the optimal structure by hierarchi-

cally evaluating multiple candidate structures using the ker-

nel target alignment.

Kernel target alignment: Given a set of training samples

{x1, ..., xm}, let K1 and K2 be the Gram matrices of kernel

functions k1 and k2:

K = (k(xi, xj))
m
i,j=1. (7)

Then, the alignment between two kernels can be computed

as:

A(K1,K2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

(8)

where 〈K1,K2〉F is the Frobenius inner product between

the kernel matrix K1 and K2. That is, 〈K1,K2〉F =∑m
i,j=1 k1(xi, xj)k2(xi, xj). The alignment function A

measures the cosine value of the angle between two Gram

matrices, evaluating how similar they are.

We take advantage of the kernel target alignment for

evaluating candidate activity structures. For this purpose,

we define the Gram matrix L corresponding to the optimal

distance function:

L = (l(i, j))
m
i,j=1 , l(i, j) =

{
0 yi = yj
1 otherwise,

(9)

where yi is the activity class label corresponding to the

training sample xi. The matrix L essentially indicates that

the distance between any two training samples must be 0 if

they have an identical activity class, and 1 otherwise.

The idea is to compute the alignment A(KS , L) and

evaluate each candidate kernel KS . That is, our alignment

A(KS , L) measures how similar the kernel function KS

corresponding to a particular structure S is to the optimal

distance function L for the training data. This provides the

system an ability to score possible activity structure candi-

dates so that it can search for the best structure S∗. We de-

note A(KS , L) simply as A(KS). Computation of A(KS)
takes O(m2 · w · r).
Hierarchical structure learning: Here, we present our

strategy to search for the optimum structure based on train-

ing videos. The goal is to find the structure S∗ that max-

imizes the kernel alignment for the training data: S∗ =
argmaxS A(KS). More specifically, we describe our learn-

ing process as:

S[t1, t2]
∗ = argmax

S[t1,t2]

{
max
t′

A(K(S[t1,t′]∗,S[t′,t2]∗)), A(K(t1,t2))

}

(10)

where t1 < t′ < t2. With the above formulation, the

structure learning is interpreted as the searching of S[0, 1]∗,

the best structure dividing the entire activity duration [0, 1],
among an exponential number of possible structures.

For the computational efficiency, we take advantage of

the following greedy assumption:

argmax
t′

A(K(S[t1,t′],S[t′,t2])) ≈ argmax
t′

A(K((t1,t′),(t′,t2))).

(11)

As a result, the following recursive equation T , when

computed for T (0, 1), provides us the optimal structure S∗:

T (t1, t2) =

{
(t1, t2) if t3 = 0 or 1

(T (t1, t3), T (t3, t2)) otherwise,
(12)

where t3 = argmaxt′ A(K((t1,t′),(t′,t2))). This structure

can either be learned per activity, or the system may learn

the common structure suitable for all activity classes.

As a result, the time complexity for computing the final

structure S∗ is O(m2 · w · p · q) where p is the number

of layers and q is the number of t′ the system is checking

at each layer. In most cases, p is smaller than 4, and this

computation is only required once at the training stage.

4.3. Evaluation - classification

We evaluated the classification performance of our ap-

proach using the same setting described in Section 3.5.

For each validation round, our approach learns the optimal

structure from training videos for the classification. One

common structure that best distinguishes videos with dif-

ferent activities was obtained, and our kernel function cor-

responding to the learned structure was constructed. SVM

classifiers were used as the base classifiers of our approach.

In addition, in order to illustrate the advantage of our

structure learning and recognition for first-person videos,

we tested two state-of-the-art activity recognition ap-

proaches: spatio-temporal pyramid matching [2], and dy-

namic bag-of-words (BoW) [11]. Spatio-temporal pyramid

match kernel is a spatio-temporal version of a spatial pyra-

mid match kernel [8]. Similar to our approach, it divides

an entire video into multiple spatio-temporal segments, and

hierarchically combines their match. The main difference

is that our hierarchical structure match kernel, at each layer,

learns the optimal temporal division that best fits the train-

ing data. Multiple possible structures are considered to

learn the optimal structure in our approach, instead of hav-

ing one fixed pyramid. A discriminative version of dynamic

BoW was also tested. This approach is similar to our ker-

nel and [2] in the aspect that it temporally divides each

video into multiple parts to perform matching. However,

in dynamic BoW, an activity model was learned only us-

ing videos belonging to that class without considering other

activity videos, which results inferior performance.
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Table 1. Classification performances of recognition approaches

measured with our first-person video dataset. Our structure match

approach performed superior to the two bag-of-words classifiers

from Section 3.4 and the two state-of-the-art methods [2, 11].

Recognition method Local feature only Both features

χ2 kernel 82.4 % 84.3 %

Histogram Intersect. 82.4 % 84.4 %

ST-Pyramid match [2] 82.6 % 86.0 %

Dynamic BoW [11] 82.8 % 87.1 %

Structure match 83.1 % 89.6 %

Table 1 shows the classification accuracies of the ap-

proaches measured with our first-person video dataset. We

illustrate performances of the classifiers that only use a sin-

gle feature type (local features) as well as those of the clas-

sifiers with multi-channel kernels. We are able to observe

that the approaches with our structure match kernel perform

superior to the other state-of-the-art approaches. This con-

firms that learning the optimal structure suitable for activ-

ity videos benefits their recognition particularly in the first-

person activity recognition setting.

4.4. Evaluation - detection

In this subsection, we evaluate the activity detection abil-

ity of our approach using the first-person dataset. Activity

detection is the process of finding correct starting time and

ending time of the activity from continuous videos. Given

an unknown video sequence (i.e., continuous observations

from a camera), for each activity, the system must decide

whether the activity is contained in the video and when it is

occurring. Activity detection is the ability that we want the

system to possess, in order for it to function in real-world

environments.

Implementation: We implemented a binary classifier per

activity, which is trained to classify all possible time inter-

vals of the input video sequence using the sliding window

technique. Multiple activity durations learned from positive

training examples of each activity were considered, and we

trained the classifier by sampling video segments (with the

same length) from continuous training videos. When learn-

ing the structure (i.e., Subsection 4.2), we used an identical

number of positive examples and negative examples to con-

struct Gram matrices. The structure is learned per activity

class.

In addition to the recognition approach with our struc-

ture matching kernel, we implemented three baseline ap-

proaches for comparison: SVM classifiers only using lo-

cal features, those only using global features, and the

method with our multi-channel kernel discussed in Sec-

tion 3.4. All three baselines use χ2-based kernels, which

showed superior detection performance compared to his-

Figure 7. Average precision-recall curves of our first-person activ-

ity detectors. A higher graph suggests better performance.

togram intersection-based kernels in the detection task.

Results with these baseline approaches represent the per-

formances of conventional bag-of-words approaches using

space-time features and/or optical flow features.

Settings: Similar to the classification experiment, we per-

formed validations by randomly splitting the dataset (i.e.,

12 sets) into 6 training sets and 6 testing sets. This training-

testing set selection process was repeated 100 rounds, and

we averaged their performance.

Results: We measured the detection performance of each

approach in terms of precision and recall values. More

specifically, we measured average precision-recall (PR)

curves with our dataset. Precision, tp/(tp+fp), and recall,

tp/(tp + fn), change as the system changes the detection

threshold, and PR curve is obtained by recording (precision,

recall) pairs observed. In our SVM classifiers, we used their

probability estimate values [18] to make the detection deci-

sion and draw PR curves.

Figure 7 shows average PR-curves combining results for

all seven activity classes. We are able to confirm that our

method using structure match kernel performs superior to

the conventional SVMs with the bag-of-words paradigm.

The average precision (AP) values for our approach was

0.709, while AP values for baselines were 0.601 (global

features), 0.627 (local features), and 0.651 (multi-channel).

Figure 8 shows example detection results.

We also present PR curves for each activity category in

Figure 9. Our structure match obtained the highest mean

APs in all activity categories, and particularly performed

superior to baseline approaches for ‘punching’, ‘point-

converse’, and ‘petting’. The structure match kernel not

only considers both global motion and local motion of first-

person videos (with a optimum weighting computed using

kernel target alignment), but also reflects sequential struc-

ture of the activity, thereby correctly distinguishing inter-

actions from false positives. The result suggests that fus-

ing global/local motion information and considering their

temporal structure are particularly necessary for detecting

high-level human interactions with complex motion.
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Figure 8. Example activity detection results from continuous videos. Throwing (orange box) and punching (red box) are detected in the

upper video, and pointing (yellow box), hand shaking (cyan box), and waving (magenta box) are detected in the lower video. Green circles

show local spatio-temporal features and blue arrows show optical flows.

(a) Hand shake (b) Hug (c) Pet (d) Wave (e) Point-Converse (f) Punch (g) Throw 

Figure 9. Average precision-recall curves for each activity category are presented. Approaches with our kernels (blue curve and red curve)

performed better than the baselines using space-times features (green) and optical flows (purple) overall. Particularly, activity detection

using our structure match kernel showed superior performance compared to all the others.

5. Conclusion
In this paper, we introduced the problem of recognizing

interaction-level activities from videos in first-person per-

spective. We extracted global and local features from first-

person videos, and confirmed that multi-channel kernels

combining their information are needed. Furthermore, we

developed a new kernel-based activity learning/recognition

methodology to consider the activities’ hierarchical struc-

tures, and verified that learning activity structures from

training videos benefits recognition of human interactions

targeted to the observer. As a result, friendly human activ-

ities such as ‘shaking hands with the observer’ as well as

hostile interactions like ‘throwing objects to the observer’

were correctly detected from continuous video streams. Our

approach is designed to process various types of human ac-

tivities, and we illustrated its potential using 7 classes of

commonly observed interactions. One future work is to

extend our approach for early recognition of humans’ in-

tention based on activity detection results and other sub-

tle information from human body movements. Our paper

presented the idea that first-person recognition of physi-

cal/social interactions becomes possible by analyzing video

motion patterns observed during the activities.
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