
Sparse Quantization for Patch Description

Xavier Boix Michael Gygli Gemma Roig Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland

{boxavier,gygli,gemmar,vangool}@vision.ee.ethz.ch

Abstract

The representation of local image patches is crucial for
the good performance and efficiency of many vision tasks.
Patch descriptors have been designed to generalize towards
diverse variations, depending on the application, as well as
the desired compromise between accuracy and efficiency.
We present a novel formulation of patch description, that
serves such issues well. Sparse quantization lies at its heart.
This allows for efficient encodings, leading to powerful,
novel binary descriptors, yet also to the generalization of
existing descriptors like SIFT or BRIEF. We demonstrate the
capabilities of our formulation for both keypoint matching
and image classification. Our binary descriptors achieve
state-of-the-art results for two keypoint matching bench-
marks, namely those by Brown [6] and Mikolajczyk [18].
For image classification, we propose new descriptors that
perform similar to SIFT on Caltech101 [10] and PASCAL
VOC07 [9].

1. Introduction
The representation of local image patches has received

a lot of attention. It is crucial for many vision approaches.

The patch descriptors should typically come with a certain

degree of invariance to probable image and appearance vari-

ations, while being efficient to compute. Multi-view key-

point matching would require invariance under viewpoint

and lighting changes. Object recognition approaches would

typically add the need for robustness under inter and intra-

class variations.

There is a surfeit of such patch descriptors by now. Au-

thors can choose the most appropriate descriptor for their

task, striking a balance between accuracy and efficiency.

The SIFT descriptor [17] is a very popular example. For

keypoint matching, its discriminative power has been sur-

passed, e.g. by learning its pooling regions [6, 18, 21],

and so has its efficiency, e.g. with SURF [3], CARD [2],

BRIEF [7] and others [1, 16, 20, 22, 23]. For object recog-

nition, methods usually exploit hierarchical architectures of

descriptors. SIFT may come as an integrated part thereof,

but patch descriptors can also take the form of sparse cod-

ing [27], or convolutional networks [5, 13, 15].

Little is understood about the common principles under-

lying the different patch descriptors. Often descriptors ap-

pear to be disconnected from the prior art. For instance,

what could we say a priori about the relative performance of

descriptors, even before testing them? The lack of clearcut

answers to such questions has led to a plethora of descrip-

tors, designed for specific applications.

In this paper, we introduce a new, more principled for-

mulation to patch description. To emphasize its generality,

we show that it can instantiate diverse descriptors, e.g. SIFT

and BRIEF. We also take advantage of the capabilities of

our formulation to design novel, more discriminative and

computationally efficient (binary) descriptors. Our formu-

lation is based on sparse quantization (SQ) [4], which is the

quantization into a set of k-sparse vectors. SQ supports ef-

ficiency because it can be computed with a simple sorting

and it can yield binary descriptors.

In a series of experiments, we report results on both,

keypoint matching and image classification tasks. In key-

point matching we achieve state-of-the-art results with a

binary descriptor on the Brown [6] and Mikolajczyk [18]

datasets. For image categorization, we report results on Cal-

tech101 [10] and PASCAL VOC07 [9], where our method

achieves better performance than SIFT.

2. Sparse Quantization
We first introduce Sparse Quantization (SQ), as we use

this mathematical tool in the rest of the paper. It will serve

as a basis for our new patch description formulation, intro-

duced in the next section.

Let R
q
k be the set of k-sparse vectors, i.e. {s ∈ R

q :
‖s‖0 ≤ k}. Also, we define B

q
k = {0, 1}qk = {s ∈

{0, 1}q : ‖s‖0 = k}, which is the set of binary vec-

tors with k elements set to one and (q − k) set to zero.

The cardinality of |Bq
k| is equal to

(
q
k

)
. We extend the

binary set to incorporate negative values by defining the

set of k-sparse vectors built from T = {−1, 0, 1}. It is

T
q
k = {−1, 0, 1}qk = {s ∈ {−1, 0, 1}q : ‖s‖0 = k}, and it

has cardinality |Tq
k| = 2k

(
q
k

)
.

The quantization of a vector v ∈ R
q into a codebook

{ci} is a mapping of v to the closest element in {ci}, i.e.

v̂� = argminv̂∈{ci} ‖v̂−v‖2. In the case of SQ, the code-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.366

2840

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.366

2840

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.366

2842

book {ci} contains the set of k-sparse vectors. These may

be any of the previously introduced types: R
q
k, B

q
k, or T

q
k.

Such quantization is instrumental to our framework.

An important advantage of SQ over a general quantiza-

tion is that it can be computed much more efficiently. The

naive way to compute a general quantization is to evaluate

the nearest neighbor of v in {ci}, which may be costly to

compute for large codebooks and high-dimensional v. In

contrast, SQ can be computed by selecting the k higher val-

ues of the set {vi}, according to the following Proposition.

The latter is an extension of the result in [4] to the T
q
k set.

This extension allows for negative-valued inputs, which we

will need later for our new formulation. We assume that the

input is normalized, ‖v‖2 ≤ ‖s‖2/
√
k, where s ∈ T

q
k (all

vectors in T
q
k have the same norm). In all cases where we

use the Proposition this is true. The proof itself is in the

Supplementary Material.

Proposition 1. Let v̂� be the quantization into T
q
k of v ∈

R
q , which is v̂� = argminv̂∈Tq

k
‖v̂ − v‖2. For ‖v‖2 ≤

‖s‖2/
√
k, where s ∈ T

q
k, v̂� can be computed by

v̂�i =

{
sign(vi) if i ∈ k-Highest(|v|)
0 otherwise . (1)

|v| is the element-wise absolute value of v, and
k-Highest(|v|) is the set of dimension indices that indicate
which are the k elements of the vector |v| with the highest
values.

Prop. 1 shows that the SQ into T
q
k can be done with a

sorting of the absolute value of {vi}, and preserving the sign

of vi in the output. As with SQ into R
q
k, it has much lower

computational cost than the nearest neighbor approach.

3. SQ for Encoding in Patch Description
In this Section we introduce a new formulation for fea-

ture encoding, which is based on the principles of SQ. Ad-

ditionally, we show that SIFT and BRIEF descriptors are

instances of our formulation.

3.1. General Overview of Patch Description

We first review the pipeline for patch description and in-

troduce some general terminology. This will serve to iden-

tify the role of our formulation, which is specific for feature

encoding.

Our patch description framework can be decomposed

into the following steps: 1) extracting local features, 2) en-

coding them, and 3) a spatial pooling stage. We extract fea-

tures at the pixel level, computing filter responses at multi-

ple locations in the patch. We use fj ∈ R
q to denote a fea-

ture vector. It results from evaluating q filters at a particular

location. Since we extract features at multiple locations,

we obtain the set of features vectors {fj}. Feature encod-

ing maps each feature vector into a more suitable space to

achieve better discriminative properties. We denote {αj}
as the set of encoded feature vectors. Finally, the pooling

summarizes {αj} into a single vector which is the final

descriptor of the patch. Our feature encoding framework

mainly focuses on the mapping of fj to αj . This mapping

is introduced in the following subsections.

3.2. Encoding with SQ

We apply exactly the same encoding for all fj , indepen-

dently of the location of the patch from which they were

extracted. For the sake of notational simplicity, we drop the

subindex j that distinguishes among different locations.

Our formulation is based on assignment-based encoding,

inspired by the mid-level features of object recognition al-

gorithms. Assignment-based encodings such as Hard and

Soft Assignment select the k entries of a codebook that

are closest to f . Then, the output vector, α, is built tak-

ing ones (Hard Assignment) or similarity measures (Soft

Assignment) as the elements of α that correspond to the k
selected entries of the codebook. Other elements of α are

set to 0. In our previous work [4], we have shown that Hard

and Soft-Assignment encodings can be considered the SQ

of a mapping of the input vector. We adopt our formulation,

which we used for mid-level features, as a starting point

for our patch descriptor encoding. We use our formulation,

rather than the original formulation of Soft-Assignment, be-

cause it allows for the computational advantages of apply-

ing Prop. 1, and it nicely connects to previous works, such

as Sparse Coding [8, 27].

The feature encoding is based on the mapping

Ψ(f , {bi}), in which {bi ∈ R
q} is a set composed of Q

vectors, that live in the same space as the input features

f ∈ R
q . Ψ maps (f , {bi}) to a vector in R

Q, which contains

the similarity measures between the feature vector f and the

vectors in the set {bi}. Thus,

Ψ(f , {bi}) = 1

Z
(K(f ,b1) . . .K(f ,bQ)) ∈ R

Q, (2)

where Z normalizes the vector and K(·, ·) may be any sim-

ilarity measure. An example similarity measure used in the

sequel, is the gaussian kernel: K(f ,bi) = exp(−‖f−bi‖2
σ2).

Finally, the encoding of f is defined as a SQ of Ψ:

α� = arg min
α∈RQ

k

‖α−Ψ(f , {bi})‖, (3)

where k is a parameter to be set. The equivalence to Soft-

Assignment can be seen from the fact that Ψ computes the

similarities to the set {bi} (the so called codebook in the

Soft-Assignment literature [24]), and then, invoking Prop. 1

for R
Q
k , the SQ of Ψ selects the k-highest entries in Ψ,

and indicates this selection in α. For further details on the

equivalence between Eq. (3) and Soft-Assignment, we refer

to [4].

284128412843

We further develop this formulation by specifying the

form of {bi}. This will allow us to propose novel, powerful

and efficient encodings, but also to recover the well-known

BRIEF and SIFT descriptors. Recall that Tq
p is the set of

p-sparse vectors built from T = {−1, 0, 1} (Sec. 2). We

define {bi} =
⋃

0<p≤q T̄
q
p, where T̄

q
p are the vectors in T

q
p

normalized with the �2 norm. Observe that {bi} is defined

as the union of T̄q
p, for p ranging from 1 to q. This yields

a cardinality of |⋃0<p≤q T̄
q
p| equal to (3q − 1). From now

on, we use Q to denote this value, i.e. Q = (3q − 1). We

summarize in the following definition the final form of our

proposed feature encoding.

Definition 1. Let α� ∈ R
Q
k be the encoding of f ∈ R

q such
that

α� = arg min
α∈RQ

k

‖α−Ψ(f ,
⋃

0<p≤q

T̄
q
p)‖2. (4)

At this point, the reader may object that fixing {bi} like

that is a big leap of faith and may actually harm perfor-

mance. Yet, there is a considerable body of evidence in

the literature showing that the impact of {bi} is negligible

compared to that of the architecture of the descriptor [8, 13].

Moreover, in our experiments we show this to also hold in

our case and that, indeed, we can achieve high levels of per-

formance with this choice.

In the next section, we show that we can compute the

encoding in Def. 1 efficiently by exploiting SQ, and without

fully calculating Ψ.

3.3. Implementation Advantages

We can see by analyzing Def. 1 that the input feature

f ∈ R
q , is mapped to a much higher dimensional space

through the mapping Ψ. Unfortunately, the direct compu-

tation of Ψ may introduce a computational overhead, since

it consists on evaluating similarity measures between f and

the elements in the union of sets T̄q
p. For instance, for q = 4

filters, Ψ involves 80 (Q = 34 − 1) similarity measures.

This, when done at many locations in the patch, yields a

too slow patch descriptor for most applications. The com-

plexity of computing the SQ in Def. 1 by calculating the

full mapping Ψ is O(qQ) = O(q3q), because it involves 3q

different q-dimensional distances.

However, one of the reasons that we made the particu-

lar choice of {bi} equal to the union of T̄q
p, is because it

allows an efficient optimization with cost O(q2). This is

much lower than the optimization by exhaustively comput-

ing Ψ, O(q2) � O(q3q). We introduce Alg. 1 that, under

the conditions shown in the following Proposition, allows

computing the exact encoding in Def. 1 very efficiently in

practice. We leave the proof in the Supplementary Material.

Proposition 2. Let q ≤ 4 and k ≤ 2. Then, Algorithm 1
obtains the global minimum for α� in Def. 1 with computa-
tional complexity O(q2).

Algorithm 1: Sparse Quantization in Proposition 2

Input: f ∈ R
q

Output: α� ∈ R
Q
k

forall 0 < p ≤ q do
β�
p = argminβ∈T̄q

p
‖β − f‖2

end
α� = argminα∈RQ

k
‖α− Ψ̃(f , {β�

p})‖2

The intuitive idea behind Alg. 1 is that it decomposes

the SQ of Ψ(f ,
⋃

0<p≤q T̄
q
p) into smaller SQs, which only

involve a single T̄
q
p of the union. Each of these smaller SQs

selects one element in T̄
q
p, which is used as a candidate for

the main SQ in Def. 1. The non-selected candidates are

discarded, thus reducing the complexity of the main SQ.

We now analyze the computational advantages by hav-

ing a closer look to Alg. 1. Observe that the SQs that are

computed in the loop, directly operate on f without passing

through a mapping such as Ψ. Thus, they can be directly

solved by invoking Prop. 1, which consists on a simple sort-

ing of {fi}. We can reuse this sorting for all SQ in the loop.

The final SQ after the loop only uses the candidates se-

lected by previous SQs. It operates on the following map-

ping:

Ψ̃i(f , {β�
p}) =

{
Ψi(f ,β

�
p) if β�

p = bi

0 otherwise
∈ R

Q, (5)

where {β�
p} is the output of the SQ in the loop, and bi is

an element of
⋃

0<p≤q T̄
q
p. In this way, Ψ̃ has the same

values and structure as Ψ, except that Ψ̃ is equal to 0 in the

dimensions not corresponding to the set of candidates {β�
p}.

Thus, the computation of Ψ̃ consists on calculating only q
elements of Ψ, one for each candidate, rather than the 3q−1
for the full Ψ. This yields a final complexity of q different

q-dimensional distances, i.e. O(q2).
Prop. 2 restricts q ≤ 4 and k ≤ 2 to guarantee that Alg. 1

obtains the global minima of the SQ. In all descriptors that

we propose in the sequel, these constraints are fulfilled. We

evaluated descriptors when this is not the case, and in prac-

tice, we did not observe any difference in the performance

when compared to SQ explicitly computing all Ψ. Thus,

when the constraints are not fulfilled, we observe that Alg. 1

still obtains solutions close enough to the optimal that the

performance is not deteriorated.

3.4. Relation with Other Encodings

We now show that we can instantiate SIFT and BRIEF

encodings from our formulation. Additionally, we show the

relation to Sparse Coding and Convolutional Networks. We

provide further details in the Supplementary Material.

SIFT. It extracts f ∈ R
2 using two filters, the horizon-

tal and vertical gradient. The encoding in SIFT selects the

284228422844

two closest elements of f in a codebook that consists on 8
elements placed on the unit circle every π

4 . f is previously

�2-normalized to be also in the unit circle. The encoding

uses the similarity K(f ,bi) = 1 − 4
πd(f ,bi), where d(·, ·)

is the geodesic distance in the circle group (the difference

of the angles). Finally, αi is equal to the similarity K for

the two selected codebook entries, otherwise is equal to 0.

We can see that this encoding is a particular instance of

our formulation:

α�
SIFT = arg min

α∈R8
2

‖α−Ψ(f ,
⋃

0<p≤2

T̄
2
p)‖2, (6)

where Ψ uses the geodesic distance in the circle group.

Observe that
⋃

0<p≤2 T̄
2
p coincides with the 8 elements

(Q = 32 − 1 = 8) into which SIFT quantizes f : The ele-

ments in T̄
2
1 coincide with the orientations at {0, π

2 , π,
3π
2 },

and in T̄
2
2 at {π4 , 3π

4 , 5π
4 , 7π

4 }. The SQ into R
8
2 selects the

two higher entires in Ψ. In the sequel, we show that we

can achieve much higher performance with this encoding if

we incorporate a higher number of extracted filter responses

than 2 gradients.

BRIEF. It extracts a one dimensional f ∈ R
1, which is the

difference between two pixel values, and then it encodes f
to 1 or 0 depending on whether f was positive or not. BRIEF

applies this encoding multiple times to generate the output

binary string.

This encoding of f ∈ R
1 is equivalent to:

α�
BRIEF = arg min

α∈B2
1

‖α−Ψ(f , T̄1
1)‖2. (7)

Note that T̄1
1 is equal to {−1, 1}, and hence the mapping

is Ψ(K(f , 1),K(f ,−1)). The SQ is into two elements

(Q = 31−1 = 2), since B2
1 = {(1, 0), (0, 1)}, and it selects

one of them depending on which is closer to Ψ. In case f
is positive, K(f , 1) > K(f ,−1), SQ selects (1, 0), other-

wise (0, 1). Observe that the output space of BRIEF is B1,

which differs from B
2
1 in SQ. Yet, it is the same using the

Euclidean distance on B
2
1 as using the Hamming distance on

B
1. We will show that when we increase the dimensionality

of f ∈ R
1 we can achieve higher performance.

Sparse Coding. The relation between Sparse Coding and

SQ has been already shown in [4]. In the Supplementary

Material we introduce a new relation, which shows that the

kernelized version of Sparse Coding, c.f . [11], is equal to

the optimization of SQ plus the term
∑

ij αiαjΨ(bi,bj),
which penalizes to select similar bs. This shows that the

kernelized version of SC and SQ only differ in a regulariza-

tion term.

Convolutional Networks. Other types of successful en-

codings are the ones inspired by V1 architectures [13, 5].

They consist on computing the responses of the raw image

patch to a large filter bank, and then, applying some non-

linearity on the responses. We can see our formulation as a

convolutional network. Let W ∈ R
q×m be the matrix con-

taining the filters we use in our formulation to extract the

features, and let x ∈ R
m
+ be the raw image where W is ap-

plied. Thus, f = Wx ∈ R
q . In the Supplementary material

we show that

Ψ(f , {bi}) ∝ Ψ(x, { 1
w
WTbi}) ∈ R

Q, (8)

where Wbi is the linear combination of the filters W
weighted by the entries of bi, and 1/w is to apply the l2 nor-

malization. Thus, we can see our formulation as a convolu-

tional network, in which the mapping Ψ(x, { 1
wWTbi}) are

the responses of the image to a large filter bank, { 1
wWTbi},

and the SQ applies a non-linearity on the responses.

4. Design of New Patch Descriptors
Now that we have introduced the formulation of SQ to

feature encoding, in this section, we address the design of

all the pipeline, not only the step of the encoding. Addition-

ally, we introduce the learning of the parameters.

4.1. Pipeline and Implementation Details
For each step in the pipeline we propose several options,

that can be incorporated depending on the requisites of ef-

ficiency and performance for the final application. In the

experiments section we report results combining the differ-

ent options, summarized at the end of this subsection.

Feature Extraction. In patch description, we divide fea-

ture extraction methods in homogeneous, that apply the

same set of filters to extract all fj in the patch, and het-
erogeneous, that change such set of filters. SIFT descriptor

uses homogeneous feature extraction because it applies the

same filters in all the patch, which are the horizontal and

vertical gradients. In contrast, BRIEF uses heterogeneous

feature extraction, since a different filter is applied to gen-

erate each output bit. For all cases, we use filters based on

simple subtractions of two pixels, because they are very effi-

cient to compute and to learn. Also, we did not observe any

performance increase using denser filters than subtractions.

For the homogeneous case, the filters are learned fixing their

size at 6 × 6 pixels. For the heterogeneous, the two pixels

that are subtracted are randomly generated as in [7].

Feature Encoding. We employ Def. 1 for feature encod-

ing, optimizing it with Prop. 2. Increasing the number of fil-

ters and using our encoding gives significant improvements

of the performance with only a small increase of the com-

putational cost. We increase the number of filters to a max-

imum of 4 in all cases. This is because the encoding of 4
filter responses results on 80 dimensional vector (34 − 1),

which is still efficient in practice. Yet, further increasing the

amount of filters explodes the dimensionally, e.g. encoding

6 filters results in a 728 dimensional encoding. Also, we do

not find any improvements in the performance for the appli-

cations in the experiments when increasing from 4 filters.

284328432845

(a) (b) (c)

Filters for Keypoint Matching
SQ-4-DAISY Binary

Filters for Image Classification
SQ-2-SIFT

(d)

Figure 1. ROC curves for Brown dataset: (a) Liberty learned on Yosemite, (b) Notredame learned on Yosemite, and (c) Yosemite learned on

Notredame. (d) Best learned filters for (top) Keypoint Matching learned on Yosemite and for (bottom) image classification on Caltech101.

The similarity measure that composes the mapping Ψ is

computed using a Gaussian kernel, because it is efficient

in practice. SIFT uses the geodesic distance in the circle

group for a two dimensional f , but we do not observe any

advantage of using such similarity measure over the Gaus-

sian kernel. When we set all parameters of our formulation

to reproduce SIFT, except for the similarity measure, there

is not a significant difference in the performance between

the original SIFT and our descriptor. The encoded features

are �2-normalized.

Pooling. In the homogeneous feature extraction, the patch

is divided into regions in which the encoded features are

pooled together, and then the results for each of the re-

gion are concatenated. We exactly reproduce the poolings

reported in SIFT [17] and in [26] for DAISY. SIFT di-

vides the patch into 4 × 4 non-overlapping rectangular re-

gions. In each region, the encoded features are averaged,

and weighted. DAISY pooling divides the patch into cir-

cular regions grouped into rings. We use the best config-

uration found in [26], which uses 17 pooling regions. In

the heterogeneous case, i.e. BRIEF-like descriptors, the en-

coded features can not be pooled together because the filters

used at each location are different. Thus, the results of the

encodings are simply concatenated. Other approaches that

we could have incorporated are the successful attempts to

learn the pooling regions [6, 21, 22].

Post-processing. It is desirable to have binary descrip-

tors for efficiency and memory constraints. When the fi-

nal descriptor is not binary, we can use SQ to quantize

y ∈ R
M to the space of r-sparse binary vectors B

M
r , i.e.,

argminŷ∈BM
r
‖ŷ − y‖2, in which r is the parameter to

set, and M the length of the pooled vector. We choose

SQ because it is efficient to compute, only a simple sort-

ing (Prop. 1), and for the symmetry with the formulation of

the encoding. SQ does not aim at approximating the orig-

inal vector y, and indeed introduces quantization error [4].

Yet, this may allow for a better generalization properties and

thus, it can achieve better results, as we show in the experi-

mental section. The descriptors built using SIFT or DAISY

pooling are post-normalized with a clipping normalization

as reported by [6]. Other approaches that we could use are

based on projecting the descriptor to a lower-dimensional

space [14, 21, 19], or to a binary space, c.f . [12].

Summary. Now that we have introduced the overview of

the pipeline, we summarize it in three descriptors that we

evaluate in the experiments section. These are the following

(we indicate the number of filters with q):

−SQ-q-SIFT: It uses our encoding and the same pooling as

in SIFT [17].

−SQ-q-DAISY: It is the same setup as SQ-q-SIFT, except

that it uses the DAISY pooling [26].

−SQ-q-BRIEF: The feature extraction is heterogeneous as

in BRIEF [7]. In the feature encoding, we set k = 1 such

that the output is directly binary, since it acts as a Hard As-

signment.

4.2. Learning
Learning the parameters of the patch descriptor is a key

step to attain state-of-the-art results. We follow a discrim-

inative learning. It consists on iteratively generating a new

instance of the parameters, and keeping them only if the

performance increases. We vary several randomly chosen

parameters at a time. We run the algorithm until no fur-

ther improvement of performance is observed. Although

the learning algorithm we propose is simple, it allows to

learn the descriptors depending on the final application by

optimizing the final performance.

This learning algorithm is feasible in practice because

the descriptors are efficient to compute, and there are only

few parameters that we learn. When we use DAISY or SIFT

pooling, the parameters are initialized by randomly setting

the filters, k = 1 and σ of the gaussian kernel to 10−3, and

we restrict k ∈ (1, 2) and σ ∈ (0, 1). After these parameters

are learned, the parameter of the SQ in the post-processing,

r, is set by validating all possible values. In the case we use

heterogeneous extraction, i.e. BRIEF-like descriptor, the fil-

ters are randomly generated, as in [7], and not learned.

For image classification applications, there are mid-level

features build on top of the patch descriptors [4, 27]. We

set the parameters of the mid-level features to the best val-

ues reported in the literature [4], and then learn the patch

descriptors by maximizing the classification performance.

284428442846

Patch Descriptor Properties Keypoint Matching Image Classification
for 1 Patch and 1 CPU 95% error rate accuracy (%)

Speed (μs) Train Yosemite Train Notredame Speed Hierarchical SQ
Filter Encoding Pooling SQ Total Dimens. Liberty Notredame Liberty Yosemite Match (μs) Caltech 101 VOC07

S
Q

-q
-

D
A

IS
Y SQ-4-DAISY Binary 35 872 572 93 1572 1360 15.52 8.52 15.6 8.81 18 −

SQ-2-DAISY Binary 15 645 190 8 858 136 25.68 18.43 26.20 19.45 18 −
SQ-2-DAISY 15 611 218 − 843 136 21.07 16.10 21.07 17.28 84 −

S
Q

-q
-

S
IF

T

SQ-4-SIFT Binary 25 962 240 73 1300 1280 17.00 11.19 17.88 12.41 18 69.3 42.90
SQ-4-SIFT Binary * 7 185 70 59 320 1280 18.16 13.45 18.39 14.76 18 64.5 40.12
SQ-2-SIFT Binary 18 573 228 8 827 128 31.02 23.49 28.04 24.70 18 74.4 52.45
SQ-2-SIFT Binary * 4 123 65 6 200 128 33.26 26.45 31.38 27.72 18 73.7 51.64
SQ-2-SIFT 18 568 200 − 785 128 34.94 25.93 34.94 29.06 77 74.7 56.76

S
Q

-q
-

B
R

IE
F SQ-2-BRIEF (256 tests) 2 3 − − 4 2048 50.49 44.37 49.03 46.49 11 30.2 23.18

SQ-1-BRIEF (256 tests) 2 2 − − 3 256 55.83 49.34 55.83 51.38 3 30.1 22.32

k
ey

p
o

in
t

m
at

ch
in

g

Simonyan [21] Project. − − 59 16.27 7.11 13.63 10.36 39 −
Brown [6] Project. − − 29 18.27 11.98 16.85 13.55 20 −
Simonyan [21] − − 576 18.47 9.71 17.81 10.65 > 200 −
Brown [6] − − 400 20.48 14.43 21.85 15.91 > 200 −
Best DAISY [26] − − 136 22.94 15.62 − − 85 −
SIFT [17] − 1000 128 35.09 26.10 35.09 28.50 77 −
SURF [3] − 200 64 54.01 45.51 54.01 43.57 39 −
BRIEF [7] − 3 256 57.15 50.96 57.15 53.63 3 −

cl
as

si
-

fi
ca

ti
o

n SIFT + HA [4] − 1000 128 − 74.6 54.54
SIFT Binary + HA [4] − 1000 128 − 74.2 52.87
Hierarchical SC [27] − − 1024 − 74.0 −

Table 1. Results on Brown, Caltech 101 and PASCAL VOC2007 datasets. The name of our descriptors are SQ-q-pooling, in which q

indicates the number of filters and pooling is DAISY, SIFT or BRIEF. When the descriptors are binary it is written, and the ∗ indicates that

the filters are extracted once every two pixels and the SQ is with k = 1.

5. Experiments
In this section, we report on experiments for two image

matching benchmarks, namely this introduced by Mikola-

jczyk and Schmid [18] and Brown et al. [6]. We also evalu-

ate our method on the standard image classification bench-

marks of Caltech101 [10] and PASCAL VOC 2007 [9]. Af-

ter giving the most relevant implementation details, we dis-

cuss the results that were obtained.
Dataset by Brown et al. It evaluates the retrieval of key-

points in a large database. It consist of three sets of patch

correspondencies, sampled from the Statue of Liberty, the

Notre Dame and the Half Dome at Yosemite. The patches

are 64 × 64 pixels, and since the patches are provided, no

keypoint detector is needed. There are 500k feature pairs

that are provided and have to be evaluated. This set con-

tains an equal number of positive and negative matches. We

follow the standard experimental settings in the literature,

c.f . [7, 21]. Each set has 100k pairs for testing. Training

is done on a different set, using all its pairs. We calculate

the ROC curves sweeping a threshold over the distance be-

tween the descriptors of the pairs. We also report the false

positive rate when 95% of the true matches are found.
Dataset by Mikolajczyk and Schmid. This benchmark

evaluates the robustness of patch matching to typical dis-

turbances, covering viewpoint changes (Wall and Graffiti),
blur (Tree and Bike), compression artifacts (JPEG) and il-

lumination changes (Light). We use the standard evaluation

procedure [7]. Each reference image is tested by match-

ing detected keypoints to five different images, sorted in or-

der of increasing difficulty. The match of a keypoint is its

nearest-neighbour keypoint in the test image. The perfor-

mance is evaluated with the quotient between the number

of correct matches and the total amount of keypoints in the

reference image.

We detect the keypoints with the SIFT implementation

of [25], using default parameters. In order to evaluate the

descriptors independently of the performance of the detec-

tor, the keypoints are validated using the ground-truth, and

thus, we only match features that have a correct correspon-

dence. To do so, we follow the same procedure as in [7].

We observed that when increasing the number of keypoints

the matching rate decreases, but this happens proportion-

ally for all evaluated methods, and the ranking is preserved.

We report results with about 1000 keypoints because it is an

appropriate number for most applications.

To compute the descriptor we use a patch size of 48 ×
48 pixels in the upright position, with the keypoint in the

center. Thus, we discard the scale and orientation, but not

the smoothing, given by the SIFT detector. We observed

that this yields the best performance in all tested cases. We

use the same parameters learned for Yosemite in the dataset

by Brown et al.
Caltech 101. It is a benchmark for image classification.

It contains 102 different classes with about 50 images per

class. We use 3 random splits of 30 images per class for

training and the rest for testing. We report the average clas-

sification accuracy across all classes. We resize the image

to have a maximum of 300 pixels per dimension, and do not

use flipped or blurred images to extend the training set. For

the mid-level features we us the same set-up as in [4], Hard-

Assignment together with max-pooling, using a codebook

of 8, 192, and dividing the image in 4× 4, 2× 2 and 1× 1
regions for the spatial pyramids. Since Hard-Assignment

can be formulated as a SQ [4], we can see the full network

as a hierarchy of SQ from the pixel level. On top, we use a

linear SVM.

PASCAL VOC 2007. It consist of around 10, 000 images

with 20 different object classes, where half the dataset is

used for training and the other for testing. The evaluation

is based on the mean average precision (mAP) across all

classes. We use the same mid-level features as in [4], using

a hierarchy of SQ from the pixel level. We use a codebook

284528452847

SQ−4−DAISY Binary | |
Figure 2. Results in the dataset by Mikolajczyk and Schmid. 1|x means that the keypoints of the reference image (number 1) are matched

with the keypoints in image number x. The number of keypoints are indicated in parentheses for each pair of images.

of 16, 258 entries, and spatial pyramids of 3×3, 2×2, 1×1.

The classification is learned with a linear SVM.

5.1. Results
We evaluate the descriptors introduced in Sec. 4. In what

follows, we always indicate whether they are binary or not,

and for SIFT and DAISY poolings, we indicate with an *

when the filters are extracted once every two pixels and the

SQ is with k = 1, which is much faster to compute and does

not require the computation of the gaussian kernel.

The computational cost is reported as the mean time in

μs for 10 different runs. We use a single Intel i7 CPU @

2.80GHz, which has the population count instruction, that

allows for the fast computation of distances between bi-

nary vectors. No dedicated hardware or GPUs are used.

In Table 1 we report results for the Brown, Caltech101 and

VOC07 datasets. For both tasks, we can instantiate descrip-

tors that put a very different focus on efficiency vs. accu-

racy. We now analyze both tasks separately.

Performance on Keypoint Matching. Additionally to

Table 1, we provide the ROC curves for the Brown dataset

in Fig. 1. We can observe that when we mimic the descrip-

tors in the literature with our formulation, SQ-2-DAISY,

SQ-2-SIFT and SQ-1-BRIEF, we obtain similar results as

with the standard descriptors, DAISY, SIFT, and BRIEF, re-

spectively. This demonstrates that our formulation is indeed

generalizing these descriptors. When we increase the num-

ber of filter responses that are encoded together, i.e. when

we increase the parameter q, the performance increases for

all cases: DAISY is improved by around 5-10% depending

on the dataset, SIFT by 15%, and BRIEF by 5%. Encoding

more filter responses seems to capture additional, relevant

image details that are useful for keypoint matching. The

method of [21] represents the current state-of-the-art for

the Brown dataset. It uses the same encoding as in SIFT

and DAISY, and it learns a pooling of 72 circular regions

which are projected to a lower dimensional space. SQ-4-

DAISY-Binary achieves similar results as this state-of-the-

art. Compared to [21], SQ-4-DAISY-Binary needs only half

the memory and is twice as fast, it is binary, and it comes

without the computational overhead of pooling 72 regions

and projecting them. SIFT pooling, which is less sophis-

ticated than DAISY pooling, can also achieve results close

to the state-of-the-art when using SQ-4-SIFT-Binary. More-

over, the computational cost of SQ-4-SIFT-Binary* is of the

order of magnitude of the SURF descriptor (when compar-

ing against its OpenCV implementation), and it obtains a

35% better error rate.

In Fig. 2 we report results on the Mikolajczyk Dataset,

for the Graffiti, Wall and Trees images. By analyzing Fig. 2,

we arrive at the same conclusions as for the Brown dataset.

On the JPEG, Light and Bike images all descriptors get be-

tween 95% and 100% accuracy, and thus, no clearcut con-

clusions can be drawn. The results obtained for the SIFT

and BRIEF baselines in the case of the Graffiti and Wall are

of the same order of magnitude as reported in [7], but a di-

rect comparison is not possible because the keypoints may

differ. For SIFT and the Trees images, we get better perfor-

mance than the one reported by [7]. This is because we use

the smoothing of the SIFT detector, which is important to

evaluate the robustness to blurring in the Trees images.
Performance on Image Classification. For Caltech101

and VOC07, results are reported in Table 1. Similar con-

clusions can be extracted from both datasets. SQ-2-SIFT

achieves a higher accuracy. Note that for classification, in-

creasing q and binarizing does not boost the performance as

with keypoint matching. This shows the advantage of hav-

ing a general formulation that can be adapted to the task at

hand. We slightly outperform SIFT, but the gap in perfor-

mance is not as high as in keypoint matching. This shows

that SIFT is well-adapted to object recognition. Remark-

ably, SQ-2-SIFT-Binary* is much faster to compute than

standard SIFT, yet achieves comparable results. We can see

that the BRIEF descriptor performs poorly, since it has not

been designed for image classification. Note that our hier-

archy of SQ achieves comparable results to the hierarchy of

Sparse Coding [27].

We do not report results with DAISY pooling, because

the best DAISY is selected based on the keypoint match-

ing task, and without properly learning the pooling, the re-

sults would be distorted. It is unclear how to learn the pool-

ing of the patch descriptor for image classification, since in

this case there is no labeling to supervise the learning at the

patch description level.

Efficiency Evaluation. We report computation times in

Table 1. The speed of matching is evaluated with comput-

ing the distance of 1 patch to 512 patches. Additionally,

284628462848

(a) (b)

Figure 3. Brown et al. dataset: Impact (a) of the density of the

feature extraction, and (b) of the binarization with SQ.

we observe that the computation of feature encoding with

Alg. 1, for q = 4, is 4 times faster than directly calculating

Ψ. Alg. 1 takes 872ms, and calculating Ψ takes 3710ms.
Impact of Encoding Parameters. In Fig. 1(d) we show

the result of learning the filters. Note that for image classi-

fication the subtracted pixels are placed more in the cen-

ter than for keypoint matching. We also tried using a

random codebook for the feature encoding instead of the

set
⋃

0<p≤q T̄
q
p, as well as a codebook generated using k-

means, and in both cases, they perform equally well. Thus,

the precise composition of the codebook has a small impact

on the final performance. Yet, this is not the case for the

efficiency, since we can not use Alg. 1 together with the

random codebook or a codebook generated using k-means.
Impact of Filtering Density. In Fig. 3(a) we report the

impact of extracting features not at every pixel in the patch,

but sparse, when using the descriptor SQ-4-SIFT-Binary.

Extracting the features only in half the pixels, the perfor-

mance does not go down. SQ-4-SIFT-Binary* and SQ-2-

SIFT-Binary* can achieve a higher efficiency when exploit-

ing this fact, together with setting k = 1.
Impact of Binarization. In Fig. 3(b) we analyze the im-

pact of binarizing the descriptors with SQ for keypoint

matching. We see that for q = 2, the performance is similar

in the binary and non-binary case, and for q = 4, the binary

descriptor obtains a better performance. This shows that the

quantization error introduced by the SQ can be beneficial to

achieve better generalization properties. For image classi-

fication, in Table 1, we can see that the binarization does

practically not lower the performance. Note that the time

to compute the SQ for the binarization is only a small frac-

tion of the overall cost, since it only consists of sorting the

entries of the descriptor.

6. Conclusions
We presented a formulation for patch description based

on sparse quantization. We showed that our formulation

generalizes SIFT and BRIEF, and that we can instantiate

new descriptors that can take binary values. Experiments

show that our descriptors achieve state-of-the-art results in

keypoint matching, and comparable to SIFT on image clas-

sification, yielding dramatic speed-ups.

Acknowledgements: This work has been in part sup-

ported by the European Commission projects RADHAR

(FP7 ICT 248873) and IURO (FP7 ICT 248314).

References
[1] A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast retina key-

point. In CVPR, 2012.

[2] M. Ambai and Y. Yoshida. CARD: Compact and real-time descrip-

tors. In ICCV, 2011.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF: Speeded up

robust features. CVIU, 2008.

[4] X. Boix, G. Roig, and L. V. Gool. Nested sparse quantization for

efficient feature coding. In ECCV, 2012.

[5] H. Bristow and S. Lucey. V1-inspired features induce a weighted

margin in SVMs. In ECCV, 2012.

[6] M. Brown, G. Hua, and S. Winder. Discriminative learning of local

image descriptors. PAMI, 2011.

[7] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and

P. Fua. BRIEF: Computing a local binary descriptor very fast. PAMI,
2011.

[8] A. Coates and A. Ng. The importance of encoding versus training

with sparse coding and vector quantization. In ICML, 2011.

[9] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-

man. The PASCAL visual object classes challenge 2007 (VOC2007).

IJCV, 2010.

[10] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object

categories. PAMI, 2006.

[11] M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse

coding and dictionary learning for symmetric positive definite matri-

ces: A kernel approach. In ECCV, 2012.

[12] J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation of

binary features. In ECCV, 2012.

[13] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the

best multi-stage architecture for object recognition? In ICCV, 2009.

[14] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representa-

tion for local image descriptor. In CVPR, 2004.

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification

with deep convolutional neural networks. In NIPS, 2012.

[16] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary robust

invariant scalable keypoints. In CVPR, 2011.

[17] D. Lowe. Distinctive image features from scale-invariant keypoints.

IJCV, 2004.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation of local

image descriptors. PAMI, 2005.

[19] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning

for efficient retrieval. In ECCV, 2010.

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An effi-

cient alternative to SIFT or SURF. In ICCV, 2011.

[21] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learning

using convex optimisation. In ECCV, 2012.

[22] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua. Learning image

descriptors with the boosting-trick. In NIPS, 2012.

[23] T. Trzcinski and V. Lepetit. Efficient discriminative projections for

compact binary descriptors. In ECCV, 2012.

[24] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J. M.

Geusebroek. Visual word ambiguity. PAMI, 2010.

[25] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library

of computer vision algorithms, 2008.

[26] S. Winder, G. Hua, and M. Brown. Picking the best daisy. In CVPR,

2009.

[27] K. Yu, Y. Lin, and J. Lafferty. Learning image representations from

the pixel level via hierarchical sparse coding. In CVPR, 2011.

284728472849

