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Abstract

This paper is concerned with recognizing realistic hu-
man actions in videos based on spatio-temporal interest
points (STIPs). Existing STIP-based action recognition ap-
proaches operate on intensity representations of the im-
age data. Because of this, these approaches are sensi-
tive to disturbing photometric phenomena such as high-
lights and shadows. Moreover, valuable information is ne-
glected by discarding chromaticity from the photometric
representation. These issues are addressed by Color STIPs.
Color STIPs are multi-channel reformulations of existing
intensity-based STIP detectors and descriptors, for which
we consider a number of chromatic representations derived
from the opponent color space. This enhanced modeling of
appearance improves the quality of subsequent STIP detec-
tion and description. Color STIPs are shown to substan-
tially outperform their intensity-based counterparts on the
challenging UCF sports, UCF11 and UCF50 action recog-
nition benchmarks. Moreover, the results show that color
STIPs are currently the single best low-level feature choice
for STIP-based approaches to human action recognition.

1. Introduction
Human activities play a central role in video data that is

abundantly available in archives and on the internet. Infor-

mation about the presence of human activities is therefore

valuable for video indexing, retrieval and security applica-

tions. However, these applications demand recognition sys-

tems that work in unconstrained scenarios. For this reason,

research has shifted from recognizing simple human actions

under controlled conditions to more complex activities and

events ‘in the wild’ [9]. This requires the methods to be

robust against disturbing effects of illumination, occlusion,

viewpoint, camera motion, compression and frame rates.

High-level approaches for unconstrained human activity

recognition aim at modeling image sequences based on the

detection of high level concepts [12], and may build on low-

level building blocks [18] which typically consider generic

video representations based on local photometric features

[6, 8, 23]. High-level approaches are based on complex,

computationally expensive video processing operations but

may be superior to low-level approaches in terms of recog-

nition rates. However, high-level approaches are sensitive

to local geometric disturbances such as occlusion and are

consequently less scalable [12]. Low-level approaches are

conceptually simple, easy to implement, sparse and effi-

cient. Due to the local nature of features on which low-

level approaches are based, they are naturally robust against

geometric disturbances such as occlusion and viewpoint

changes. Therefore, in this paper, we focus on low-level

representations for recognizing human actions in video.

Low-level action recognition approaches are typically

based on spatio-temporal interest points (STIPs) where im-

age sequences are represented by descriptors extracted lo-

cally around STIP detections. These spatio-temporal fea-

ture detectors and descriptors typically use intensity-only

representations of the video data and are therefore sensitive

to disturbing illumination conditions such as shadows and

highlights. More importantly, discriminative information is

ignored by discarding chromaticity from the representation.

In a variety of image matching and object recognition

tasks, color descriptors outperform intensity descriptors

[2, 19] in the spatial (non-temporal) domain. We identify

two benefits of adding color to the temporal domain. By

using color, our approach can extract more temporal vari-

ations, since pure chromatic temporal transitions such as

e.g., red-green, or yellow-blue motion may not be visible in

gray-scale. Further, because color is more discriminative, it

allows for better estimation of motion and temporal varia-

tion. Where motion of colored objects may be ambiguous

in gray-scale, color can be conclusive. Adding color to the

temporal domain thus gives more information and it may

improve the quality of the estimations.

In this paper, we propose to incorporate chromatic rep-

resentations in the spatio-temporal domain. This comprises

a reformulation of STIP detectors and descriptors for multi-

channel video representations. For this, videos are repre-

sented in a variety of color spaces exhibiting different lev-

els of photometric invariance. By this enhanced modeling

of appearance, we aim to increase the quality (robustness

and discriminative power) of STIP detectors and descriptors
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for recognizing human activities in video. This is validated

through a set of repeatability and recognition experiments

on challenging video benchmarks. The results show that our

color STIPs significantly outperform their intensity-based

counterparts. Compared to existing work, color STIPs are

favored over all other STIP-based approaches and perform

competitively on the UCF50 dataset in comparison to the

state of the art.

1.1. Related Work

In the spatial domain, multi-channel photometric invari-

ant feature detectors [16, 20, 21] increase repeatability, en-

tropy, and image categorization over intensity-based detec-

tions. For descriptors, multi-channel formulations [2, 19]

propose various color SIFT variants where OpponentSIFT

considerably improves performance. Based on this, we for-

mulate a family of increasingly invariant photometric rep-

resentations which are incorporated in multi-channel for-

mulations of spatio-temporal feature detectors and descrip-

tors. In contrast to other color-STIPS [15], we improve

over standard baselines, use a well-founded representation

model and we evaluate detectors and descriptors separately.

1.1.1 Spatio-temporal Detectors

In the spatio-temporal domain, pioneering work by Laptev

[7] extends the Harris function to 3D. Alternatively, there is

the Gabor STIP detector of Dollàr et al. [4] which applies

a Gabor filter along the temporal axis and is not based on

differential image structure. The authors argue that differ-

ential based STIP detectors are incapable of detecting subtle

and periodic motion patterns. Gabor STIPs are therefore es-

sentially different from Harris STIPs and we develop multi-

channel formulations for both detectors to study differential

as well as raw spatio-temporal image data.

As an alternative to STIP-based sampling, local descrip-

tors may be extracted along motion trajectories [22]. Here,

densely sampled points are tracked from frame to frame

based on optical flow. As the method involves tracking and

multi-scale optical flow computation, the associated com-

putational complexity is typically higher than that of STIP-

based approaches, but may compare favorably in terms of

recognition rates. However, it is shown in [10] that motion-

based descriptors are not scalable with respect to the num-

ber of action categories. This can be reasonably assumed

to also hold for trajectory-based sampling of descriptors. In

this paper, we focus on the sparser and more scalable STIP-

based approach.

1.1.2 Spatio-temporal Descriptors

Among the local spatio-temporal descriptors available in lit-

erature, the HOG3D descriptor [6] is well-suited for large

scale video representation and multi-channel extensions. In

contrast to e.g. HOG/HOF [8], MoSIFT [3] or MBH [22]

descriptors, the HOG3D algorithm serves as an integrated

and efficient approach, as it excludes optical flow which

is computationally expensive [10]. Also, good results in

a STIP-based bag-of-features recognition framework using

the HOG3D descriptor have been achieved, especially in

combination with the Gabor STIP detector [23]. Therefore,

we derive several multi-channel variants of the HOG3D de-

scriptor and evaluate their performance for realistic human

action recognition.

Another recently proposed video descriptor for human

action recognition in web videos is Gist3D [14]. This is a

global descriptor based on a 3D filter bank, and describes

the spatio-temporal ‘gist’ of a video. Reasonable recog-

nition performance is achieved only in combination with

STIPs.

The works mentioned above comprise low/medium level

approaches to action recognition. Higher level approaches

such as Action Bank by Sadanand et al. [12] give excel-

lent results on some datasets. However, such high-level

approaches are typically not scalable. In contrast, low-

level approaches are widely applicable, conceptually sim-

ple, sparse and exhibit reasonable computational complex-

ity. Moreover, they may serve as powerful building blocks

for higher level methods [18]. We contribute by considering

a variety of photometric representations for STIP detection

and description for enhancing low-level approaches to ac-

tion recognition.

2. Photometric Representations
We model image formation by the dichromatic reflection

model [13],

f = e(mbcb + mici), (1)

where a RGB vector f = (R,G, B)T is the sum of the body

reflectance color cb with the interface reflection color ci.

The contributions of these reflectance colors are weighted

by their respective magnitudes mb and mi, that depend on

the surface orientation and illumination direction. Addition-

ally, the specular reflection mi is viewpoint dependent. The

intensity of the light source is represented by e.

Invariance against highlights (shifts in the signal) can

be achieved by representations that cancel out the addi-

tive interface reflection term mici. Signal scalings, such

as those caused by shadows and shading, can be addressed

by dividing-out the light source intensity e. Here, we con-

sider the transformation of the RGB image to the opponent

color space [2, 5, 19, 20]

⎛
⎝

O1

O2

O3

⎞
⎠ =

⎛
⎝

R−G
R + G− 2B
R + G + B

⎞
⎠ . (2)

The transformation approximately decorrelates the image
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I-Harris C-Harris N-Harris H-Harris I-Gabor C-Gabor N-Gabor H-Gabor

Figure 1. Superimposed Harris and Gabor responses for Intensity, Chromatic, Normalized chromatic and Hue on three images of a rotating

object on which a strong highlight is present. The Harris energy function mainly responds to differential changes in the signal, whereas the

Gabor function fires on general spatio-temporal fluctuations. Note the dampened response to the highlight in the invariant channels.

Intensity Chromatic N-Chromatic Hue

Representation O3 [O1, O2]
[

O1
O3

, O2
O3

] O1
O2

Invariant to - Highlights Shadows Hl. & Sh.

Reference I C N H

Table 1. Photometric image representations. Chromatic combina-

tions with the intensity channel yield IC, IN and IH.

channels, resulting in intensity O3 and chromatic compo-

nents O1, O2. Based on these formulations, several photo-

metric properties can be derived.

Highlights. Due to subtraction of RGB components in

eq. (2), the reflection term from eq. (1) is canceled out in

the formulations of O1 and O2, making the chromatic op-

ponent components invariant to signal shifts such as those

caused by (white) highlights.

Shadow-shading. The chromatic components are normal-

ized by the intensity O3, canceling out the light source in-

tensity term from eq. (1). This yields the shadow and shad-

ing invariants
[

O1
O3

, O2
O3

]
.

Shadow-shading-highlights. Invariance against both scal-

ings and shifts in the signal is achieved by considering the

ratio of chromatic components: O1
O2

. This results in the

shadow-shading-highlight invariant hue representation.

We refer to these photometric image representations

as I(intensity), C(hromatic), N (ormalized chromatic) and

H(ue). These can be ordered with respect to their invariance

level: H � N � C � I . The intensity I preserves most

image structures and is the most discriminative representa-

tion. Therefore, the intensity-normalized representations N
and H have a higher level of photometric invariance than C,

in which the light source intensity is preserved. We summa-

rize the representations and their properties in table (1).

The lack of discriminative power associated with the

chromatic representations C, N and H typically renders

them unsuitable for matching and recognition tasks. Com-

binations of intensity and chromatic channels result in IC,

IN and IH . Note that the three-channel representation

IC comprises the original opponent channels [O1, O2, O3].
These representations are established first, i.e., prior to any

subsequent processing. All channels are min-max normal-

ized so as to weight them equally a-priori.

3. Multi-Channel STIP Detection

Multi-channel Harris STIPs. Harris STIPs are lo-

cal maxima of the 3D Harris energy function based on

the structure tensor [7]. A multi-channel formulation of

the structure tensor has been developed in e.g. [21] which

prevents opposing color gradient directions to cancel each

other out. Here, we incorporate multiple channels in the

spatio-temporal structure tensor [7].

The multi-channel volume V consisting of nc channels is

denoted by V = (V 1, V 2, ..., V nc)T . The individual chan-

nels are represented in scale space V j = g(·;σo, τo)∗f j(·),
where g(·; ·, ·) is the 3D Gaussian kernel with equal scales

along the spatial dimensions, σo and τo are the spatial and

temporal observation scales and f j : R
3 → R is the imag-

ing function of channel j.

Let Vd = (V 1
d , V 2

d , ..., V nc

d )T , d ∈ {x, y, t} denote the

per-channel partial Gaussian derivatives of the volume. The

multi-channel spatio-temporal structure tensor is then de-

fined by

S = g(·;σi, τi) ∗
⎛
⎝

Vx · Vx Vx · Vy Vx · Vt

Vy · Vx Vy · Vy Vy · Vt

Vt · Vx Vt · Vy Vt · Vt

⎞
⎠ , (3)

where σi and τi denote the spatial and temporal integra-

tion scale respectively. In figure (1), we illustrate the re-

sponse per representation. Incorporating increasingly in-

variant photometric representations has a dramatic effect

on the Harris energy. The highlight on the object surface

triggers a strong response from the original I-based energy
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functions. This effect is clearly dampened in the C repre-

sentation. However, the illumination reflected by the col-

ored matte-shiny (left) object part still triggers response, as

this reflection causes signal changes that are not captured

by a simple shift. Intensity normalization of the chromatic

components (N ) then causes this response to be dampened,

while emphasizing colorful transitions on the object sur-

face. Finally, the scaling- and shift- invariant H representa-

tion eliminates essentially all response except salient color

transitions.

Multi-channel Gabor STIPs. The Gabor STIP detector

is based on a Gabor filtering procedure along the tempo-

ral axis [4]. Invoking multiple channels is straightforward

because the energy function is positive definite by formula-

tion. Hence, no additional care has to be taken to account

for conflicting response signs between channels

R =
nc∑

j=1

(g(·; σo)∗hev(·; τo)∗V j)2+(g(·; σo)∗hod(·; τo)∗V j)2.

(4)

Here, the 2D Gaussian smoothing kernel g(·; ·) is applied

spatially, whereas the Gabor filter pair {hev(·; ·), hod(·; ·)}
measures the periodicity of the observed signal along the

temporal dimension. As illustrated in figure (1), the I-

Gabor energy is mainly clustered around an incidental high-

light, whereas the response-triggering local photometric

events become increasingly rare and colorful along with the

level of photometric invariance level of the representation.

4. Multi-Channel STIP Description

The HOG3D [6] descriptor is formulated as a discretized

approximation of the full range of continuous directions of

the 3D gradient in the video volume. That is, the unit sphere

centered at the gradient location is approximated by a reg-

ular n-sided polyhedron with congruent faces. Tracing the

gradient vector along its direction up to intersection with

any of the polyhedron faces identifies the dominant quan-

tized direction. Quantization proceeds by projecting the

gradient vector on the axes running through the gradient lo-

cation and the face centers with a matrix multiplication of

the 3D gradient vector g,

q = (q1, ..., qn)T =
P · g
||g||2 , (5)

where P is the n×3 matrix holding the face center loca-

tions and q is the projection result (i.e. the histogram of 3D

gradient directions). Note that the contribution is distributed

among nearby polyhedron faces. Descriptor dimensionality

may be reduced by allocating opposing gradient directions

to the same orientation bin. The descriptor algorithm pro-

ceeds by centering a cuboid at the STIP location, which is

tessellated into a spatio-temporal grid. Histograms are com-

Gradient Orientation Gradient Direction

Channel Integration C1,1 : D/2 C1,0 : 1D
Channel Concatenation C0,1 : ncD/2 C0,0 : ncD

Table 2. Multi-channel HOG3D variants. C denotes some photo-

metric representation comprising nc channels. The dimensional-

ity of an integrated direction-based descriptor is considered default

(1D, 360 in this paper), based on which we derive the dimension-

ality of the other descriptor variants.

puted over every grid cell and concatenated to form the final

descriptor [6].

Chromaticity is incorporated in the HOG3D descrip-

tor by considering the representations from section (2) in

a multi-channel formulation of the gradient vector g in

eq. (5). We evaluate the standard practice of concatenation

of the per-channel descriptors [2, 5, 19]:

g′ = {gj}, j = 1, ..., nc. (6)

We also evaluate a single gradient variant where we prevent

the effect of opposing color gradient directions by using ten-

sor mathematics. In tensors, opposing directions reinforce

each other by summing the gradient orientations as opposed

to their directions [21],

g′′ =
nc∑

j=1

gj · gj . (7)

This formulation of the gradient defines half of the full

sphere of directions which is one of the HOG3D flavors in

[6]. Here, it naturally follows from a tensor formulation of

the multi-channel 3D gradient.

We formulate another variation as the summation of per-

channel full direction descriptors. Together with the tensor-

based approach, we call this descriptor integration as op-

posed to concatenation. This variant benefits from the ex-

pressiveness associated with the full set of multi-channel

directions while maintaining the same dimensionality as a

single channel descriptor. Note that the differences between

integration and concatenation of channels do not apply to

single-channel descriptors. The descriptor variants and their

associated dimensionalities are summarized in table (2).

5. Experiments
We evaluate the multi-channel STIP detectors and de-

scriptors through a set of repeatability and action recogni-

tion datasets.

5.1. Implementation Details and Notation

We base our implementation of STIP detectors on the

activity recognition toolbox by Dollàr et al. [4] while re-

implementing the HOG3D descriptor of Kläser et al. [6].

STIP scale. For the Gabor detector, we set the spatial scale
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σo = 2 and the temporal scale τo =
√

8 in eq. (4). Note

that this setting for τo is in conflict with e.g. [23], but we

have found that the proposed default setting of τo = 4 is

too large for descriptor extraction in short sequences. For

the Harris detector, we consider a reduced set of spatial

scales with respect to prior work. We have found this to

be satisfactory in terms of discriminative power and com-

putational load. Specifically, for computing Harris energy

based on eq. (3), we consider σo =
√

2i, i ∈ {2, 3, 4} and

τo =
√

2j , j ∈ {1, 2}. As in e.g. [23, 8], we do not perform

STIP scale selection because of its associated high compu-

tational costs and decreased recognition performance [7].

Cuboids. Descriptors are extracted from cuboids centered

at STIP locations. The spatio-temporal extent as well as the

grid layout of these cuboids may be discriminatively opti-

mized such as in [6]. In this paper, we refrain from such

an optimization scheme in order to maintain focus on the

integration of chromatic channels. Instead, we consider one

particular setting (from e.g. [23]) in which the extent of a

cuboid is defined as Δx = Δy = 18σo and Δt = 8τo. For

feature aggregation, we employ a 3x3x2 spatio-temporal

pooling scheme. This grid layout is attractive due its com-

pactness, whereas we have not found significant dependen-

cies of our results on these settings for our purpose.

Descriptors. We consider the four variants of the multi-

channel HOG3D descriptor as summarized in table (2). The

variants are denoted by flagging the descriptor names. The

first flag denotes whether the descriptor channels are in-

tegrated (or otherwise concatenated), whereas the second

flag denotes the usage of gradient orientations (as opposed

to directions). For example, IC0,1 denotes the concate-

nated orientation-based Opponent-HOG3D descriptor. In-

tegrated, orientation-based descriptors such as IN1,1 follow

from the tensor-based approach in eq. (7). There is no dif-

ference between I0,· and I1,· as I is a single channel.

We use integral video histograms for aggregating fea-

tures over grid cells. We refrain from gradient approxima-

tion based on integral video representations of the partial

derivatives as in [6], because this affects the very informa-

tion that we wish to study. For descriptor normalization,

we adopt the method proposed by Brown et al. [1] in which

the normalization cut-off threshold is a discriminatively op-

timized function of the descriptor dimensionality. By this,

we discard the usually quite influential and time consuming

task of determining the optimal normalization parameters

per descriptor variant.

In summary, apart from the photometric representations,

our HOG3D implementation differs slightly from the origi-

nal [6] by 1) exact gradient computation, 2) descriptor nor-

malization and 3) spatio-temporal pooling.

Recognition. Based on the multi-channel STIP detectors

and descriptors, we perform action recognition in a standard

bag-of-features learning framework. Unless stated other-

wise, we closely follow the setup of [23]. Here, codebooks

are created by clustering 200K randomly sampled HOG3D

descriptors using k-means in 4000 clusters. A sequence is

then represented by quantizing the extracted HOG3D de-

scriptors based on the learned codebook. A SVM is trained

based on the χ2 distance between codebook descriptors.

Evaluation of the learned classifier is usually performed in a

leave-n-out cross validation setup. Every experiment is re-

peated three times for different codebooks, which produces

typical standard deviations between 0.2 and 1 percentage

point (depending on the amount of videos and the number

of STIPs).

5.2. Datasets

We measure STIP repeatability on videos from the FeE-
val dataset [17]. This dataset consists of 30 videos taken

from television series, movies and lab recordings. Every

video is artificially distorted by applying different types of

photometric and geometric transformations. Every transfor-

mation type is associated to a challenge, in which the distor-

tion is applied in increasingly severe steps. We consider the

videos from television series up to the first occurring shot

boundary. That is, we do not aim at studying STIP behavior

in controlled settings, cartoons or in typical movie settings

for which editing effects are frequent. We consider the full

set of challenges: blur, compression, darken, lighten, me-

dian filter, noise, sampling rate and scaling and rotation.

For an in-depth evaluation of detector and descriptor set-

tings, we use the UCF sports dataset [11]. The dataset

exhibits 10 sports action categories in 150 videos, all of

which are horizontally flipped to increase the dataset size.

Performance is evaluated in a leave-one-out cross validation

scheme, in which the flipped version of the considered test

video is removed from the training set. The authors of [23]

have kindly provided us with an exact copy of the dataset as

used in their experiments. The best performing experimen-

tal settings are applied to UCF11 [9] which has 11 human

actions in 1200 videos, and its superset UCF50 [10] with 50

human action classes in about 6700 videos. These challeng-

ing datasets comprise youtube videos exhibiting real human

activities. Here, performance is evaluated through a leave-

one-group-out cross validation scheme over 25 groups, in

which we exactly follow the authors’ guidelines1.

I IC IN IH C N H

Harris 61.3% 61.6% 61.3% 37.0% 45.6% 40.5% 28.7%

Gabor 43.6% 43.6% 43.6% 24.4% 25.4% 22.9% 19.3%

Table 3. STIP repeatability for multi-channel Harris and Gabor

detectors based on the considered photometric representations.

1http://crcv.ucf.edu/data/UCF50.php
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5.3. Color STIP Detector Repeatability

We poll the detectors for an average amount of 10 STIPs

per frame of the FeEval videos. A repeatability score is

obtained by considering the detections in the challenge se-

quence, and computing the relative overlap of the cuboid

around the detected STIP location with the correspond-

ing location in the original sequence. We take the spatio-

temporal extent of the cuboid to be equal to the observation

scale. The repeatability scores averaged over all sequences

and challenges are presented in table (3).

Harris STIPs are much more stable than Gabor STIPs.

Nonlinear differential spatio-temporal signal changes are

more distinctive than temporal fluctuations only. The be-

havior of the detector in different photometric represen-

tations are in line with figure (1). As the representation

becomes increasingly invariant, repeatability progressively

decreases. Also, combining the invariants with intensity

does not increase repeatability with respect to using inten-

sity only (save marginal improvements for the IC repre-

sentation). Moreover, the IH representation attains much

lower repeatability scores than I . The reason for this is that,

as disturbing conditions such as highlights and shadows are

effectively ignored, so is spatio-temporal image structure on

which stable STIPs are detected. Adding C or N to the in-

tensity I basically leaves the repeatabililty unaltered on this

dataset. However, the STIP discriminability experiments

will show that adopting these representations does result in

different recognition scores.

From here on, the pure chromatic representations are dis-

carded from the experimental batch due to the associated

lack of discriminative power and we focus only on I , IC,

IN , IH .

5.4. Color STIP Detector Discriminability

For evaluating action recognition performance on the

UCF sports dataset, we consider the photometric variants of

both the Harris and Gabor detector. Direction-based inten-

sity HOG3D (I·,0) descriptors are extracted around multi-

channel STIP detections (i.e. the descriptor representation

is fixed). Recognition accuracy is computed for an aver-

age of {10, 20, 30, 40, 50} STIPs per frame by varying the

detection threshold. Results are given in figures (2a,b).

We first validate our implementation by comparing

recognition accuracies with the evaluations reported on in-

tensity in [23]. Here, the average number of Harris STIPs is

33, for which an accuracy of 79.9% is attained. We obtain

80.4% for 30 STIPs per frame. As for the Gabor detector,

[23] reports an accuracy of 82.9% for 44 STIPs. This is

comparable to our performance of 83.4% for 40 STIPs.

From figures (2a,b) it stands out that discriminative

power is severely hampered by integrating H in the energy

functions. This is expected because H is associated to the

highest level of photometric invariance. As more detections

are requested, however, performance converges to that of I-

STIPs. Harris STIPs appear more discriminative than Ga-

bor STIPs for relatively small amounts of detections. This

relative performance difference reverses as more STIPs are

considered. The reasons for this are related to sparsity, dis-

tinctiveness and scale.

Considering Harris STIPs in figure (2a), using the C
and N representations leads to marginal performance dif-

ferences compared to I . For small to moderate amounts

of STIPs, recognition accuracy is somewhat improved, in

particular by IN . The primary characterization of Harris

STIPs in terms of distinctiveness and sparseness is mainly

due to nonlinear fluctuations in the spatio-temporal inten-

sity signal. Adding chromatic components to the formu-

lation of the energy function does not drastically alter this

characterization.

For the multi-channel Gabor detector in figure (2b)

higher quality STIPs are detected for the C and especially

N channels as compared to using I alone. While I by itself

contains the most important information regarding spatio-

temporal signal fluctuations, invariants may prevent the de-

tector to fire on disturbing factors such as highlights and

shadows. Also, we assume the specific colorfulness of lo-

cal spatio-temporal events associated to certain actions to

be informative (e.g. ‘Diving’ (skin color, blue water) and

‘Riding-Horse’ (brown horse, green field and trees)).

5.5. Color STIP Descriptor Discriminability

For the following action recognition experiments on the

UCF sports dataset, descriptors are extracted around Ga-

bor STIPs as these have shown superior recognition per-
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formance over Harris STIPs in figure (2a,b). The detector

representation is fixed to I . We adopt the detection thresh-

old that yields 50 STIPs per frame on average. Recognition

accuracies are reported in figure (2c).

General conclusions about photometric invariance relate

to the discriminative power of the descriptors. That is, the

IC-based descriptors typically outperform IN descriptors,

which in turn are favored over IH . Multi-channel descrip-

tors usually outperform the I-based descriptor. We observe

a general preference for direction-based descriptors over

orientation-based descriptors (table 2). This is due to the

associated wider range of expressiveness. Most apparent in

this respect is the IC representation, i.e. IC0,0 improves

over IC0,1 by almost 4 percentage points, whereas IC1,0

attains 2 percentage points more than IC1,1. Thus, every

channel exhibits discriminative power in the full range of

gradient directions. It may even be the case that the (im-

plicit) preservation of opposing gradient directions between

channels is informative. Furthermore, IC-based descrip-

tors favor channel integration over concatenation, which

is not the case for IN - and IH- based descriptors. In

fact, one would expect concatenation-based descriptors to

perform better in general due the enhanced expressiveness

associated to multiple channels and increased dimension-

ality. This is also the most widely spread approach to

multi-channel descriptors, e.g. [2, 19, 5]. However, we ob-

tain the positive side-effect of increased recognition perfor-

mance against reduced descriptor dimensionality. That is,

the multi-channel descriptor dimensionality remains equal

to that of a single channel. Although the difference with

IC0,0 is marginal, we report a top performance of 85.6%

for IC1,0 against 1) our I·,0 baseline of 83.4% and 2) 82.9%

reported in [23].

We conduct a final investigation on the codebook size.

We consider ‘OpponentSTIP’ combinations of I and IC
Gabor STIPs with I·,0 and IC1,0 HOG3D descriptors. We

drop the orientation-based descriptors for now. Recogni-

tion results for varying codebook sizes are depicted in fig-

ure (2d). We observe that the I-IC (detector-descriptor)

combination performs best up to a codebook size of 4000.

Top performance is marginally improved to 85.7% by the

IC-IC combination for a codebook size of 8000. The com-

putational load associated to such a vocabulary is not worth

the effort, considering the performance of 85.5% attained

by the I-IC combination for a much smaller codebook size

of 1000. We have not observed a relationship between de-

scriptor dimensionality and codebook size.

In contrast to these low/medium level action recognition

approaches, the high level Action Bank approach of [12]

reaches an accuracy of 95% on UCF sports. Here, we focus

on low-level approaches, and our best performance for 50

STIPs per frame is on par with the performance of 85.6%

for densely sampled I-HOG3D descriptors in [23], which

on average yields over 600 descriptors per frame. Based

on a combination of HOG, HOF and MBH descriptors ex-

tracted along dense motion trajectories, a performance of

88.2% is achieved in [22]. Compared to this, our STIP-

based approach does a good job considering that it outper-

forms all reported individual features on UCF sports.

5.6. UCF11 & UCF50

Based on the in-depth evaluations on UCF sports, we se-

lect the I , IC and IN representations for both STIP de-

tection and description for evaluation on the UCF11 and

UCF50 datasets. Results are presented in table (4).

Differences between performance in the detectors are

again small, but we observe a consistent top-performing

combination of IN -Gabor STIPs with IC-based HOG3D.

Thus, we conclude that a certain amount of invariance

against local photometric events is beneficial for STIP de-

tection, whereas the descriptor should be extracted from the

most discriminative representation.

We achieve a baseline result of 73.8% on the UCF11

dataset for the intensity-based STIP variant. This compares

to the trajectory-based harvesting of HOG and HOF fea-

tures in [22], for which 74.5% and 72.8% is achieved re-

spectively. However, they report a superior performance of

83.9% for MBH. In our case, adding chromaticity increases

the recognition accuracies substantially where best perfor-

mance is achieved by the direction-based IC descriptors:

78.4% for IC1,0 on IC-Gabor STIPs and 78.6% for IC0,0

on IN -Gabor STIPs. The representation of the detector ap-

pears to be more influential on this dataset, although its con-

tribution is marginal on average.

Interestingly, best performance on UCF50 is achieved by

orientation-based descriptors. As the number of categories

increases, descriptor robustness becomes more important.

We observe a baseline result of 68.8% for I·,1. This is sub-

stantially higher than the results reported in [12] for Action

Bank (57.9%) and Harris STIP + HOG/HOF (47.9%) (see

table (5) for an overview of recent results on UCF50). We

conclude from this that the Action Bank method is not scal-

able, and probably suffers from increased amounts of ge-

ometric variations. As for Harris STIP + HOG/HOF, we

conclude that the high degree of distinctiveness of spatio-

temporal corners limits generalization capacity. A perfor-

mance of 76.9% is reported in [10] for a combination of

scene context and spatio-temporal descriptors. Here, the

best performing single spatio-temporal descriptor is MBH

[22], which achieves 71.9%. This shows the generalization

capacity of differential optical flow descriptors. In [14], a

recognition accuracy of 73.7% is reported for a combina-

tion of Gist3D and STIP (HOG/HOF) descriptors. How-

ever, their performance of the individual descriptors are at

most 65.3%.

We report a top performance of 72.9% for IC1,1-
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I·,0 IC1,0 IC0,0 IN1,0 IN0,0 I·,1 IC1,1 IC0,1 IN1,1 IN0,1

U
C

F
1
1 I −Gabor 73.8% 77.5% 78.2% 76.0% 76.4% 71.6% 75.8% 74.2% 73.8% 74.6%

IC −Gabor 73.8% 78.4% 78.1% 76.6% 76.3% 71.5% 75.4% 73.7% 73.9% 74.3%

IN −Gabor 74.5% 77.5% 78.6% 76.7% 76.4% 72.4% 76.0% 74.6% 74.2% 74.0%

U
C

F
5
0 I −Gabor 68.3% 71.7% 70.9% 71.2% 72.1% 68.8% 72.6% 69.7% 71.8% 72.0%

IC −Gabor 68.5% 71.8% 70.8% 71.2% 71.9% 68.8% 72.4% 69.8% 71.5% 72.4%

IN −Gabor 68.4% 71.8% 71.1% 71.0% 71.8% 68.5% 72.9% 69.9% 71.6% 72.5%

Table 4. Color STIP action recognition results on UCF11 and UCF50 datasets. The first 5 columns show results for direction-based

descriptors, whereas results for orientation-based descriptors are shown in the remaining columns.

Ref. Description %

[10] Scene context + STIP(MBH) 76.9%

Scene Context 47.6%

STIP(MBH) 71.9%

[14] Gist3D + STIP(HOG/HOF) 73.7%

Gist3D 65.3%

STIP(HOG/HOF) 54.3%

[12] Action Bank 57.9%

STIP(HOG/HOF) 47.9%

Here Color STIP(HOG3D) 72.9%

Table 5. Recent UCF50 results available in literature.

HOG3D extracted around IN -Gabor STIPs. This result is

highly competitive compared to the state of the art, consid-

ering that it involves only a single descriptor type.

6. Conclusion
We have reformulated existing STIP detectors and de-

scriptors to incorporate multiple photometric channels, re-

sulting in Color STIPs. This enhanced modeling of appear-

ance results in higher quality detections and descriptions.

Color STIPs are thoroughly evaluated and shown to signifi-

cantly outperform their intensity-based counterparts for rec-

ognizing human actions on a number of challenging video

benchmarks. In general, best results are obtained based on

unnormalized opponent color representations.
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