
Keypoints from Symmetries by Wave Propagation

Samuele Salti
University of Bologna

samuele.salti@unibo.it

Alessandro Lanza
University of Bologna

alessandro.lanza2@unibo.it

Luigi Di Stefano
University of Bologna

luigi.distefano@unibo.it

Abstract

The paper conjectures and demonstrates that repeatable
keypoints based on salient symmetries at different scales
can be detected by a novel analysis grounded on the wave
equation rather than the heat equation underlying tradi-
tional Gaussian scale–space theory. While the image struc-
tures found by most state-of-the-art detectors, such as blobs
and corners, occur typically on planar highly textured sur-
faces, salient symmetries are widespread in diverse kinds
of images, including those related to untextured objects,
which are hardly dealt with by current feature-based recog-
nition pipelines. We provide experimental results on stan-
dard datasets and also contribute with a new dataset fo-
cused on untextured objects. Based on the positive exper-
imental results, we hope to foster further research on the
promising topic of scale invariant analysis through the wave
equation.

1. Introduction
Partial Differential Equations (PDEs) are a common tool

in the field of image processing. Their interpretation as

Euler-Lagrange solutions of variational optimization prob-

lems provides an elegant unified framework for diverse but

related basic problems such as denoising, deblurring and in-

painting. Purposely, a variety of PDEs are currently being

used and provide state-of-the-art approaches for these prob-

lems. The most popular is certainly the heat or diffusion

equation, but other non-linear second-order [16], fourth-

order [12] and, very recently, fractional-order PDEs [3]

have been deployed for image processing. Although the

great majority of these equations are parabolic, researchers

are also investigating on the use of hyperbolic equations,

such as the shock-filters [15] or the telegrapher equation

[17].

On the other hand, PDEs are notably less investigated

in image analysis and computer vision problems, one

prominent exception being the linear scale–space based

on the heat equation. The scale–space theory was devel-

oped in seminal works by Witkin [24] and Koenderink
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Figure 1: (a-b) keypoints by our algorithm; (c-d) keypoints

by DoG [10]. Symmetries are more likely than blobs to ap-

pear in untextured objects (a-c): only a few DoG keypoints

actually lay on the object. On the other hand, a similar num-

ber of keypoints is detected on textured surfaces (b-d): yet,

the proposed keypoints concentrate on more evident (i.e.

likely more repeatable) structures.

[8], and later popularized by the automatic scale selection

principle proposed by Lindeberg [9]. Lindberg’s scale–

normalized derivatives provide the theoretical foundations

for the Differences-of-Gaussians (DoG) keypoint detector

[10], arguably among the most influential contributions in

the field of computer vision. Despite such a relevant result,

other kinds of PDEs are unexplored in problems related to

detection and/or description of local invariant features. In-

stead, in work dating back to the 90’s [6, 4, 19], the wave

equation was used for skeletonization of binary silhouettes

and detection of circular objects, due to its ability of elicit-

ing the symmetry set. More recently, PDEs other than the

heat equation have been used for description of global sil-

houettes [21].
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In this paper we investigate on the use of PDEs in image

analysis from the modern perspective of local invariant fea-

tures. In particular, we focus on the problem of keypoints

detection and advocate the use of the wave equation. When

applied to images, the wave equation exhibits the ability to

highlight symmetries at different scales. Salient symme-

tries are likely to be found in a large range of images, and in

particular in those related to man-made untextured objects

(Fig. 1), where the established recognition paradigm based

on matching local features is prone to fail due to scarcity

of cues, especially when occlusions need to be withstood.

Nevertheless, many salient symmetries arise in textured ob-

jects alike (Fig. 1). Thus, the proposed approach quali-

fies as a general tool for repeatable salient regions detec-

tion. Surprisingly, there has been relatively little work on

the use of symmetry as a cue to detect and describe local

features. The most recent contribution on this topic is due

to Haugge et Snavely [7], who propose a detector-descriptor

pair relying on a local symmetry score computed densely on

the image and across scales. Unlike our proposal, though,

their formalization of symmetry is specifically engineered

to capture effectively the salient regions likely to be found

in architectural images and relies on the classic Gaussian

scale–space rather than our novel formulation grounded on

the wave PDE. Earlier related works such as [18, 11] fo-

cus on detecting interest points featuring radial symmetries

(e.g. eye centres) but are neither really conceived nor eval-

uated as local invariant features for general purpose image

matching tasks.

2. The wave equation

The wave equation is a well-known linear second-order

hyperbolic partial differential equation. It is used in sev-

eral important fields of physics that need to model waves

propagating through time and space, such as in acoustics,

electromagnetism and fluid dynamics.

The initial boundary value problem modeling wave prop-

agation that we use is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt(x, y; t) = c2∇2u(x, y; t) (x, y; t) ∈ Ω× R
+

u(x, y; 0) = I(x, y) (x, y) ∈ Ω̄

ut(x, y; 0) = 0 (x, y) ∈ Ω̄

ut(x, y; t) = c un(x, y; t) (x, y; t) ∈ ∂Ω× R
+

(1)

where c ∈ R
+ is the wave speed, ∇2 is the 2-D spatial

Laplacian operator, I is the image, Ω̄ = (Ω ∪ ∂Ω) ⊂ R
2

is the (rectangular) image domain, n is the inward point-

ing unit normal to the image domain boundary ∂Ω. The

solution u(x, y; t) models the height of the wave, i.e. the

graylevel intensities at each space-time location. The ini-

tial conditions, defined by the second and third equations,

are trivial. The boundary conditions, defined by the fourth

equation, represent the first order highly absorbing local ap-

proximation of the perfectly absorbing boundary conditions

[5], which are inherently non-local in space and time, i.e.

to advance one time level at a single point they require in-

formation over the entire boundary from all previous times.

Absorbing boundary conditions have been chosen to avoid

reflections of waves at image boundaries, that would cause

unwanted interferences. The selected initial and boundary

conditions render the problem (1) well-posed [5].

To numerically solve (1) we use a fully explicit finite

difference scheme based on the following standard approx-

imations of second order time and space partial derivatives:

utt(xi, yj , t
n) � (

un+1
i,j − 2un

i,j + un−1
i,j

)
/ Δt2 (2)

∇2u(xi, yj , t
n) � (

un
i−1,j−1 + 2un

i−1,j + un
i−1,j+1+ (3)

2un
i,j−1 − 12un

i,j + 2un
i,j+1+

un
i+1,j−1 + 2un

i+1,j + un
i+1,j+1

)
/ 4Δx2

on the regular space-time domain mesh yi = iΔy, xj =
jΔx, tn = nΔt. Letting the spatial mesh coincide with

the pixel grid (Δx=Δy=1, i = 1, . . . , h, j = 1, . . . , w,

with w and h the image width and height in pixels, re-

spectively), denoting by r = cΔt/Δx ∈ R
+ the Courant

number and substituting the above finite difference formu-

lae into the wave equation, we obtain the following explicit

time-marching scheme:

un+1
i,j =

r2

4

(
un
i−1,j−1 + 2un

i−1,j + un
i−1,j+1+ (4)

2un
i,j−1 − 12un

i,j + 2un
i,j+1+

un
i+1,j−1 + 2un

i+1,j + un
i+1,j+1

)
+ 2un

i,j − un−1
i,j

for the numerical approximations un
i,j � u(xi, yj , t

n)
of the solution at the inner mesh nodes, i.e. for

(i, j, n) ∈ {2, . . . , w − 1} × {2, . . . , h− 1} × {2, . . .}. To

compute the solution at the remaining nodes, we exploit the

initial conditions, whose discretization easily yields an ex-

plicit solution for the inner nodes at the first iteration:

u1
i,j =

r2

8

(
u0
i−1,j−1 + 2u0

i−1,j + u0
i−1,j+1+ (5)

2u0
i,j−1 − 12u0

i,j + 2u0
i,j+1+

u0
i+1,j−1 + 2u0

i+1,j + u0
i+1,j+1

)
+ u0

i,j

as well as the boundary conditions, whose discretization

yields an explicit solution for the image boundary nodes:

un+1
i,1 = un

i,1 + r(un
i,2 − un

i,1)

un+1
1,j = un

1,j + r(un
2,j − un

1,j)

un+1
i,w = un

i,w + r(un
i,w−1 − un

i,w)

un+1
h,j = un

h,j + r(un
h−1,j − un

h,j) .

(6)
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(a) (b) (c)

Figure 2: (a) initial image I; (b-c) function u(x, y; t), from

a side and a top view respectively, at the time t when the

wave has traveled a distance equal to the radius of the circle

(graylevel intensities get higher from blue to red).

Numerical stability of the proposed explicit scheme con-

strains the product cΔt, i.e. the space traveled by the wave

in one unit of discretized time, rather than the two constants

individually. To obtain a stable scheme as well as an eas-

ily interpretable family of output signals, we fix cΔt = 1
2 ,

i.e. the wave travels half pixel every Δt. In particular, we

obtain this by setting c =
√
2
2 , Δt =

√
2
2 .

Despite this constraint on Δt, we can use an explicit

scheme because we are not interested in computing with

few iterations the solution at large times, but rather in an-

alyzing the wave evolution with time steps commensurable

to the image lattice. Such a scheme results in an efficient

algorithm.

3. Wave–based scale analysis
The evolution of image intensities obtained through the

wave equation (1) allows for multi–scale signal analysis. In

particular, as shown in [6], by simulating wave propagation

on images it is possible to detect circles of varying radii.

This derives directly from Huygens’ principle of superpo-

sition: if we consider a circle as depicted in Fig. 2a, and

think of it as a wave at time 0, then the wave front after the

wave has traveled a distance equal to the radius of the circle

is given by the sum of circular waves originating from each

point on the circle edge. Therefore, the wave propagation

attains an extremum at the center of the circle at a time that

is proportional to the scale of the original circle. This is

shown by numerical simulation in Fig. 2b-2c.

Detection of circle centers is actually a particular case

of the more general property of wave propagation of elic-

iting the symmetry set of curves [19]. The symmetry set

is defined as the locus of centers of circles bi-tangent to a

curve and can be detected by summing u(x, y; t) over t into

an accumulator and inserting at each iteration the local spa-

tial extrema of the accumulator into the set. Such approach

detects all kind of symmetries, regardless of their saliency,

and is effective to skeletonize binary shapes. To define re-

peatable keypoints, only the points of locally maximal sym-

metry must be considered, which correspond to the shock

Figure 3: Temporal evolution of the intensity at the center

of the circle in Fig. 2a under the discretized wave process

(left) and the discretized wave-diffusion process (right).

points of the wave propagation (see [21] for a deep analy-

sis of shock points). They can be detected by analyzing the

solution u(x, y; t) of (1).

Given the property of u(x, y; t) to enable scale-invariant

analysis of images, and slightly abusing the terminology, we

may think of it as a wave–based scale–space, although this

one-parameter family of signals does not satisfy the classi-

cal scale–space axioms. Indeed, one interesting future work

is the theoretical investigation on the definition of a sound

scale–space theory from the wave equation.

Unfortunately, discretization of the wave propagation is

prone to quite significant numerical errors, mainly due to

numerical (or grid) dispersion [23]. This can be clearly seen

in Fig. 3, left, where numerical dispersion causes spurious

oscillations. To overcome such issues, we adopt a solution

similar to that proposed in [19]: we interleave a wave prop-

agation step to a linear diffusion step governed by the heat

equation with diffusivity k ∈ R
+,

ut(x, y; t) = k∇2u(x, y; t) , (7)

which we discretize using, for the spatial Laplacian, the

same scheme (3) used for the wave equation and, for the

time derivative, forward differences. These choices result in

the following explicit scheme, that we interleave with (4),

un+1
i,j =

p

4

(
u
n+ 1

2
i−1,j−1 + 2u

n+ 1
2

i−1,j + u
n+ 1

2
i−1,j+1+ (8)

2u
n+ 1

2
i,j−1 − 12u

n+ 1
2

i,j + 2u
n+ 1

2
i,j+1+

u
n+ 1

2
i+1,j−1 + 2u

n+ 1
2

i+1,j + u
n+ 1

2
i+1,j+1

)
+ u

n+ 1
2

i,j

where p = kΔt
Δx2 and un+ 1

2 is the output of the last wave

propagation step. We found experimentally that the previ-

ous choice of c = Δt =
√
2
2 together with k = 0.16 guar-

antees stability also of the interleaved process. The benefic

effect of the wave-diffusion process is clearly visible in Fig.

3, right, where spurious oscillations have been filtered out.

4. Extrema detection and validation
As can be seen in Fig. 4, the spatio-temporal extrema

of u(x, y; t) identify perceptually meaningful structures of
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) initial image I; (b) extrema of u(x, y; t);(c-

d) wave state when the two smaller keypoints are detected,

from a side and a top view, respectively; (e-f) wave state

when the third keypoint is detected.

images: in the considered example, three extrema show up,

two corresponding to the symmetries arising at the center of

the square-like structures formed by the sides of the rectan-

gle and one corresponding to the center of the rectangle.

The time of an extremum (xext, yext, text) is related to

the scale (the radius) rext of the detected symmetry by the

following simple relation:

rext =
c text
Δx

=
cΔt next

Δx
. (9)

Such scale is directly expressed in pixels. This is a prac-

tically relevant difference with respect to diffusive scale–

spaces, where the relationship between the scale σ and the

associated image patch is somewhat arbitrary, due to the

theoretically infinite extent of the Gaussian kernel.

Given such scale covariant extrema in our family of sig-

nals, we define as keypoints the sharp local extrema of

u(x, y; t). Although on the synthetic images showed so far

the requirement of sharpness of local extrema is redundant,

as all extrema are indeed sharp, in real images, weak (i.e.

not repeatable) symmetries may be detected if all local ex-

trema are accepted.
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Figure 5: Definition of sharp extrema: (a) Temporal evo-

lution of the intensity at the center (xc, yc) of circles of

varying radius. The extrema (minima) show up at times

proportional to the circles radius. Black dots on each curve

indicate the neighborhood used at each scale for sharpness-

based keypoints filtering; (b) size of the neighborhoods de-

fined by the black dots in (a) and their linear regression as

a function of radius; (c) linear regression as a function of

radius of the absolute difference between the value at the

extremum and the mean value in the neighborhood .

We define a sharp extremum as one whose value is sig-

nificantly larger (or smaller) than the average of the values

in its temporal neighborhood:

|u(xext, yext, text)− ū(xext, yext, text)| ≥ θ, (10)

ū(xext, yext, text) =
1

t2 − t1

t2∑
k=t1

u(xext, yext, k) . (11)

Both the neighborhood [t1, t2] and the threshold θ must

adapt with scale, as the absolute value at the extrema as

well as their smoothness increase with scale (Fig. 5a). They

also change according to the contrast at the edges defining

the symmetry. Sharpness could be measured by consider-

ing spatial and/or temporal neighborhoods. However, spa-

tial neighborhoods are not defined at the edge of the image

and the computation of the average is computationally more

demanding than over 1-D temporal neighborhoods (efficient

schemes, such as integral images or histograms can be, of

course, deployed in both cases). We experimentally found

that measuring sharpness only along time suffices to prune

unwanted weak symmetries.

The definition of the neighborhood must fulfill two con-

tradicting requirements: it must be small enough to avoid

the influence of clutter and occlusions in real applications,

but also large enough to allow discriminating between weak
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Figure 6: Reference objects in the untextured dataset.

and repeatable symmetries. To limit the influence of clutter

and occlusions, we select as end of the neighborhood the

extremum itself, t2 = text, so that any texture external to

the symmetry does not influence its detection. To define

the starting point t1 of the neighborhood, we analyze the

behavior of the most symmetrical shape with the highest

contrast, i.e. a circle like that depicted in Fig. 2a. The trend

of u(x, y; t) at the center of the circle starts with a plateau

and then exhibits a sudden drop toward the extremum: in-

deed, this would be a discontinuity in the continuous case.

Therefore, we define the starting point of the neighborhood

as the end of the plateau (Fig. 5a). As the trend deviates

more and more from the continuous ideal solution when the

scale gets larger, because of the numerical dispersion and

the diffusion that we interleave with propagation, we learn

a starting point for each scale by regressing the neighbor-

hood of the circle (Fig. 5b). In particular, a linear model

seems appropriate and gives the following equation,

t1(rext) = 0.274rext + 11.43 . (12)

Finally, using again the same image, we regress the value

of the absolute difference |u− ū| (Fig. 5c): this defines the

maximum meaningful value θmax for the threshold θ. We

choose again a linear model, which yields

θmax(rext) = 2.95rext + 360 . (13)

As we are interested in detecting weaker, though repeatable,

symmetries than a high-contrast circle, the actual value θ
used at each scale is defined as a fraction ρ of θmax(rext).

The domain for searching local extrema must also take

into account the peculiarity of the discretized wave propaga-

tion. The most straightforward estimation of local extrema

of 3D continuous signals, given their discretized version, is

represented by extrema within a 3x3x3 neighborhood in the

discrete domain. However, in wave propagation time and

space discretizations are bound by the constant c, which

means, in particular, that it takes 1
cΔt discrete time inter-

vals for the wave to travel 1 pixel. Therefore, to correctly

determine if the wave state at (x, y, t) is a local extremum

we have to compare it not only with its 3x3 neighbors at

time t− 1 and t+ 1, but with all the 3x3 neighbors at time

k ∈ [t − 1
cΔt , t +

1
cΔt ]. In other words, to read the cor-

rect wave state in past and future times we have to give

to all the contributions the time to move to a given pixel

from its neighbors, process that can take at most 1
cΔt time

steps. With our choice of Δt and c, we have 1
cΔt = 2, and,

hence, it turns out that we have to perform the search for lo-

cal extrema in a 3x3x5 neighborhood. The overall detector

is summarized in Alg. 1.

5. Experimental results

The proposed algorithm has been tested on two publicly

available datasets. The first is the standard Oxford bench-

mark for detectors evaluation introduced in the well-know

comparison by Mikolajczyk et al. [14]. It includes 8 planar

scenes and 5 nuisance factors: scale and rotation changes,

viewpoint changes, decreasing illumination, blur and JPEG

compression. Performance is measured according to re-

peatability and number of correct correspondences.

The second dataset is the recently introduced DTU

Robot dataset [1]. It contains 60 scenes of planar and non-

planar objects from a variety of categories such as minia-

ture buildings, fabrics, and groceries. Each scene is cap-

tured from a set of repeatable positions along four paths by

using a robotic arm. The dataset is somewhat complemen-

tary to the Oxford dataset in that it considers less nuisances

(namely, only scale changes, viewpoint changes and relight-

ing), but comprises a more varied pool of scenes, therefore

allowing to gain more insights on the general applicability

of tested detectors. The authors consider only the recall rate,

an analogous of repeatability in the previous dataset.

Moreover, to test the performance of detectors on chal-

lenging, untextured objects, we introduce a novel dataset

consisting of 5 man-made objects (Fig. 6). The dataset

focuses on scale and rotation invariance, but having been

acquired with a hand-held camera, it also includes small

out-of-plane rotations as well as slight defocus and light

changes due to automatic parameter adjustments done by

the camera driver. We estimated the ground-truth homogra-

phies between reference and test images and then used the

evaluation tool provided together with the Oxford dataset.

An unoptimized C++ implementation of our detec-

tor runs at about 1.5 frames/second on 640x480 images.

Such implementation, together with our untextured objects

dataset are publicly available at the project website1. We

compare our proposal to a set of state-of-the-art detec-

tors, whose code is publicly available. In particular, for

DoG [10], Harris-Affine, Harris-Laplace, Hessian-Affine,

Hessian-Laplace [14], IBR, EBR [22] and MSER [13] we

used the binaries provided by the authors of [14]; for Fas-

tHessian [2] we used the original SURF code2.

As for parameters, we use Δt = c =
√
2
2 and k = 0.16 as

mentioned. We set ρ = 0.1, i.e. we accept extrema at least

1http://vision.deis.unibo.it/ssalti/Wave
2http://www.vision.ee.ethz.ch/˜surf/

290029002902



Algorithm 1 The WADE algorithm

Input: graylevel image I , threshold fraction ρ ∈ [0, 1] ,

min and max features radius rmin, rmax

Output: A list K of keypoints: (ik, jk, rk)
1: N0 ← rmin

cΔt , N ← rmax

cΔt , K ← ∅
2:

3: u0 ← I � initial conditions

4: for all inner pixels (i, j) do � wave

5: u
1
2
i,j ← eq. (5)

6: end for
7: for all boundary pixels (i, j) do
8: u

1
2
i,j ← eq. (6)

9: end for
10: for all inner pixels (i, j) do � heat

11: u1
i,j ← eq. (8)

12: end for
13: for all boundary pixels (i, j) do
14: u1

i,j ← eq. (6)
15: end for
16:

17: for n = 2→ N − 1 do
18: for all inner pixels (i, j) do � wave

19: u
n+ 1

2
i,j ← eq. (4)

20: end for
21: for all boundary pixels (i, j) do
22: u

n+ 1
2

i,j ← eq. (6)
23: end for
24: for all inner pixels (i, j) do � heat

25: un+1
i,j ← eq. (8)

26: end for
27: for all boundary pixels (i, j) do
28: un+1

i,j ← eq. (6)
29: end for
30: end for
31:

32: for n = N0 → N − 1 do � detection

33: r ← n ∗ c ∗Δt, Θ← ρ ∗Θmax(r), t1 ← t1(r)
34: for all internal pixels (i, j) do
35: ūn

i,j ← eq (11)

36: if un
i,j is max in 3×3× (1+ 2

cΔt ) window then
37: if |un

i,j − ūn
i,j | > Θ then

38: K = K ∪ (i, j, r)
39: end if
40: end if
41: end for
42: end for

as sharp as 10% of the maximum sharpness θmax, to allow

low contrast symmetries to be detected in dark or overex-

posed images. We start to search for extrema after 12 itera-

tions (i.e. the smallest feature we detect has radius rmin = 6

pixels) and we perform 200 iterations (i.e. the greatest fea-

ture has radius rmax = 100 pixels). In the legends, we refer

to our proposal as WADE (WAve-based DEtector).

5.1. Oxford Dataset

Fig. 7 reports results on the Oxford dataset. We present

repeatability charts for each of the nuisances of the dataset.

On the Boat set of images (Fig. 7a), which tests scale and

rotation invariance, such theoretical properties of our algo-

rithm are evidently confirmed. Moreover, the intuition that

symmetries are a powerful and robust cue for finding repeat-

able keypoints is supported by the large margin in perfor-

mance between our proposal and previous detectors based

on other cues. Leuven images (Fig. 7b) allow for assessing

robustness against lighting changes, and our method turns

out on par with MSER, which is known to be the best de-

tector for this nuisance [14]. On Graffiti images (Fig. 7c),

which deal with robustness to affine deformations, our de-

tector provides the same performance as DoG: one major

drawback of both detectors is the lack of an affine renor-

malization of the extracted patch, which hinders their re-

sults in such comparison. In UBC images (Fig. 7d), the nui-

sance is JPEG compression: our detector turns out to be on

par with the best previous detectors, Hessian-Laplace and

Harris-Laplace. Finally, Bikes images (Fig. 7e) show how

symmetries are definitely the best cue to overcome blur:

this makes sense as, intuitively, symmetries are largely un-

affected by isotropic smoothing.

As for the number of correspondences, we cannot report

the charts here due to space limits. However, our detector

finds a number of keypoints similar to DoG, which is usu-

ally slightly larger than the other methods: for example, the

scene with more keypoints is Boat were both methods find

about 7000 keypoints on the reference image, whereas the

scene with less features is Bikes, where our method finds

about 650 keypoints and DoG about 750 keypoints.

5.2. Robot Dataset

Fig. 7f shows the results for the Robot Dataset. Here we

focus on the linear path, which tests scale invariance, with

stable, diffuse illumination (the experiment depicted by Fig.

9.d in [1]). For memory and time constraints (the whole

dataset amounts to 730 GB), we run our proposal only on

the reduced dataset selected by the authors to speed up the

tests. Hence results for our method are available only at the

minimum, middle and maximum scale variation, whereas

results for all other detectors were kindly provided by the

authors of [1]. The proposed algorithm shows the best re-

call rate at the middle scale variation and outperforms by a

large margin all the other detectors at the maximum scale

variation. This result confirms the findings on the Oxford

Boat dataset and reinforces them by demonstrating that they

hold for a variety of scenes.

290129012903



1.5 2 2.5
0

50

100

re
pe

at
ab

ili
ty

 %

Scale

boat

(a)

2 4 6
0

50

100

re
pe

at
ab

ili
ty

 %

Decreasing Light

leuven

(b)

20 40 60
0

50

100

re
pe

at
ab

ili
ty

 %

Viewpoint angle

graf

(c)

60 70 80 90
0

50

100

re
pe

at
ab

ili
ty

 %

JPEG Compression

ubc

(d)

2 4 6
0

50

100

re
pe

at
ab

ili
ty

 %

Blur

bikes

(e)

0.5 0.6 0.7 0.8
0

0.5

1

linearpath

A
va

ra
ge

 R
ec

al
lR

at
e Robot dataset

(f)

2 4 6
0

50

100

re
pe

at
ab

ili
ty

 %

Scale

Untextured dataset

(g)

2 4 6
0

50

100

nb
 o

f c
or

re
sp

on
de

nc
es

Scale

Untextured dataset

(h)

ebr haraff harlap hesaff heslap ibr mser dog fasthes proposed
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Figure 8: Correct matches of SIFT descriptors versus over-

lap error of keypoints on Oxford and untextured datasets.

5.3. Untextured Dataset

Fig. 7g-7h report the results on our novel, untextured ob-

jects dataset. We provide the mean repeatability and mean

number of correspondences for each method. We were un-

able to run IBR and EBR on all set of images as the bi-

naries crashed on some sets: yet, performance on the re-

maining sets was significantly worse than others, so we

do not report them in the charts. Untextured objects set

forth significant difficulties for current state-of-the-art de-

tectors: the number of correct correspondences drops (Fig.

7h) by two orders of magnitude with respect to the other

datasets, and repeatability falls below 50%. Please note that

on this dataset we lower from 40% to 20% the overlap error

to consider two keypoints as repeatable: as shown by Fig.

8, we found that on the Oxford dataset, a robust descrip-

tor (i.e. SIFT) can correctly match about 51% of the key-

points whose overlap error is smaller than 40% but on our

tougher dataset only 38% of such keypoints can be matched,

and 48% can be achieved only with overlap errors smaller

than 10%. Therefore, we found that with untextured objects

keypoints should be localized more accurately, when used

with existing descriptors, to reach performance comparable

to those attained on planar, highly textured objects. Hence,

we selected 20% as a guideline. Symmetries confirm to be

a robust cue even in this challenging scenario: their repeata-

bility is the least affected by the increasing difficulties of the

scenes. They also turn out to provide the highest number of

correspondences, an important practical trait to enable their

use in recognition of untextured objects in presence of oc-

clusions.

6. Concluding remarks

We have shown that the traditional linear scale-space the-

ory may not be the unique way to address scale-invariant

feature detection within an elegant conceptual framework.

Instead of the heat equation, hyperbolic PDEs, and in par-
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ticular the wave equation, can indeed be used to derive a

one-parameter family of signals that enables scale–invariant

image analysis. The wave equation fires on symmetries, and

we have shown these to provide robust and discriminative

cues for detection of repeatable keypoints on a broader set

of image structures than those found on planar highly tex-

tured surfaces.

As shown by prominent evaluations [1, 14], salient re-

gions are usually complementary, so that a bunch of diverse

detectors might be deployed whenever one cannot predict

in advance the likely scene structures. The proposed algo-

rithm, based on an underexploited cue as symmetry, might

turn out highly complementary with respect to current state-

of-the-art detectors. As vouched by earlier work [4], our ap-

proach is nicely implementable on fine grained data-parallel

architectures, and as such holds the potential for effective

acceleration via GPU processing.

We hope that the encouraging results shown in this paper

will generate interest toward our intuition, as many ques-

tions remain unanswered. First of all, a theoretical inves-

tigation should be carried out to understand the relation-

ship between the traditional Gaussian scale–space and our

wave–based family of signals. Next, more sophisticated nu-

merical schemes for discretizing the wave equation for fea-

ture detection might be helpful: in particular, to reduce nu-

merical dispersion and diffusion as well as to achieve higher

rotational invariance. Finally, several interesting extensions

are possible, such as defining a symmetry descriptor from

u(x, y; t) and extending feature detection to color images

via the model of images as manifold embedded in a com-

bined spatial-color space [20].
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