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Abstract

Graph matching (GM) is a fundamental problem in com-
puter science, and it has been successfully applied to many
problems in computer vision. Although widely used, exist-
ing GM algorithms cannot incorporate global consistence
among nodes, which is a natural constraint in computer
vision problems. This paper proposes deformable graph
matching (DGM), an extension of GM for matching graphs
subject to global rigid and non-rigid geometric constraints.
The key idea of this work is a new factorization of the
pair-wise affinity matrix. This factorization decouples the
affinity matrix into the local structure of each graph and
the pair-wise affinity edges. Besides the ability to incor-
porate global geometric transformations, this factorization
offers three more benefits. First, there is no need to com-
pute the costly (in space and time) pair-wise affinity ma-
trix. Second, it provides a unified view of many GM meth-
ods and extends the standard iterative closest point algo-
rithm. Third, it allows to use the path-following optimiza-
tion algorithm that leads to improved optimization strate-
gies and matching performance. Experimental results on
synthetic and real databases illustrate how DGM outper-
forms state-of-the-art algorithms for GM. The code is avail-
able at http://humansensing.cs.cmu.edu/fgm.

1. Introduction

Graph matching (GM) has been widely applied in com-

puter vision to solve a variety of problems such as object

categorization [10], feature tracking [13, 17], symmetry

analysis [12], kernelized sorting [20] and action recogni-

tion [3]. From an optimization view-point, the GM problem

is typically formulated as a quadratic assignment problem

(QAP) [18]. Unlike the linear assignment problem, which

can be efficiently solved with the Hungarian algorithm [4],

the QAP is known to be NP-hard and exact optimal algo-

rithms using variations of branch-and-bound [22] are only

practical for very small graphs (e.g., 30 nodes). Therefore,

the main body of research in GM has focused on devising

more accurate and faster algorithms to approximate it.

Although extensive research has been done on GM for

Figure 1. Matching two human poses with 5 and 4 features using

DGM. DGM simultaneously estimates the correspondence and a

smooth non-rigid transformation between nodes. DGM is able to

factorize the 20×20 pair-wise affinity matrix as a Kronecker prod-

uct of six smaller matrices. The first two groups of matrices of size

5× 16 and 4× 10 encode the structure of each of the graphs (i.e.,

adjacency matrix). The last two matrices encode the affinities for

nodes (5× 4) and edges (16× 10).

decades, there are still two main challenges: (1) Many

matching problems in computer vision naturally require

global constraints among nodes in the graph. For in-

stance, given two sets of coplanar points in two images,

the matching between points should be constrained by an

affine transformation (under orthographic projection). Sim-

ilarly, when matching the deformations of non-rigid ob-

jects between two consecutive images that deformation is

typically smooth in space and time. Existing GM algo-

rithms do not constrain the nodes of both graphs to a given

geometric transformation (e.g., similarity, affine or non-

rigid). (2) Optimizing GM is still difficult because the

objective function is in general non-convex and the con-

straints are combinatorial. While there are a number of

papers [6, 8, 11, 14, 24, 26, 15] addressing the second is-

sue, the first has been rarely explored. This paper proposes

DGM, an extension of GM that solves the first problem, and

improves upon the second issue.

In order to incorporate global transformations, the key
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idea of our method is to factorize the pairwise affinity ma-

trix into matrices that preserve the local structure of each

graph and matrices that encode the similarity between nodes

and edges. This factorization is general and can be applied

to both directed and undirected graphs. Consider the two

graphs shown in Fig. 1 as an example. Using the factoriza-

tion, we are able to factorize the large 20-by-20 pair-wise

affinity matrix into six smaller matrices. Because we have

decoupled the local structure for the nodes in each graph, it

is easy to add global geometric constraints. Moreover, us-

ing this factorization has three additional benefits for GM.

First, there is no need to compute the costly (in space and

time) pair-wise affinity matrix. Second, it provides a unified

view of many GM methods, which allows to understand the

commonalities and differences between them. It also con-

nects GM methods with the classical iterative closest point

(ICP) algorithm, and provides a pair-wise generalization of

ICP. Third, it allows the use of path-following optimization

algorithms in general GM problems that leads to improved

optimization strategies and matching performance. We il-

lustrate the benefits of DGM in synthetic and real matching

experiments on standard databases.

2. Previous works

2.1. Graph matching (GM)

We denote (see notation1) a graph with n nodes and

m directed edges as a 4-tuple G = {P,Q,G,H}. The

features for nodes and edges are specified by P =
[p1, · · · ,pn] ∈ R

dp×n and Q = [q1, · · · ,qm] ∈ R
dq×m

respectively. The topology of the graph is encoded by two

node-edge incidence matrices G,H ∈ {0, 1}n×m, where

gic = hjc = 1 if the cth edge starts from the ith node and

ends at the jth node. For instance, Fig. 2a illustrates two

synthetic graphs, whose edge connection between nodes is

encoded by the corresponding matrices shown in Fig. 2b-

c. A similar representation of graph was adopted in [29].

However, the work in [29] is only valid for undirected

graphs. Our representation is more general and valid for

directed and undirected graphs. Directed graphs typically

occur when the features are asymmetrical such as the angle

between an edge and the horizontal line. Our model incor-

porates directed graphs by encoding the starting and ending

node in G and H respectively.

Given two graphs, G1 = {P1,Q1,G1,H1} and G2 =

1Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x. xi represents the ith column of the matrix X. xij denotes

the scalar in the ith row and jth column of the matrix X. All non-bold

letters represent scalars. 1m×n,0m×n ∈ R
m×n are matrices of ones

and zeros. In ∈ R
n×n is an identity matrix. ‖x‖p = p

√∑ |xi|p de-

notes the p-norm. |X| represents the determinant of the square matrix X.

vec(X) denotes the vectorization of matrix X. diag(x) is a diagonal ma-

trix whose diagonal elements are x. X ◦Y and X⊗Y are the Hadamard

and Kronecker products of matrices.

{P2,Q2,G2,H2}, we compute two affinity matrices,

Kp ∈ R
n1×n2 and Kq ∈ R

m1×m2 , to measure the simi-

larity of each node and edge pair respectively. More specif-

ically, κpi1i2 = φp(p
1
i1
,p2

i2
) measures the similarity be-

tween the ith1 node of G1 and the ith2 node of G2, and

κqc1c2 = φq(q
1
c1 ,q

2
c2) measures the similarity between the

cth1 edge of G1 and the cth2 edge of G2. For instance, Fig. 2d

illustrates an example pair of Kp and Kq for the two syn-

thetic graphs.
It is more convenient to encode the node and edge affini-

ties in a global affinity matrix K ∈ R
n1n2×n1n2 , whose

element is computed as follows:

κi1i2j1j2 =

⎧⎪⎪⎨
⎪⎪⎩

κp
i1i2

, if i1 = j1 and i2 = j2,
κq
c1c2 , if i1 �= j1 and i2 �= j2 and

g1i1c1h
1
j1c1g

2
i2c2h

2
j2c2 = 1,

0, otherwise.

Given two graphs and K, the problem of GM consists in
finding the optimal correspondence X between nodes, such
that the following score is maximized,

max
X

Jgm(X) = vec(X)TK vec(X), s. t. X ∈ Π. (1)

where X ∈ Π is usually constrained to be a one-to-one map-
ping, i.e., Π is the set of partial permutation matrices:

Π = {X|X ∈ {0, 1}n1×n2 ,X1n2 ≤ 1n1 ,X
T1n1 = 1n2}.

The inequality in the above definition is used for the case

when the graphs are of different sizes. Without loss of gen-

erality, we assume n1 ≥ n2 throughout the rest of the paper.

Advances in GM: GM can be formulated as a quadratic

assignment problem [18] and optimizing Eq. 1 is known to

be NP-hard. Therefore, major research in GM has focused

on finding better optimization strategies. Broadly speaking,

most relaxations of the permutation constraints fall into two

categories: spectral and doubly-stochastic.

The first group of methods approximates the permutation

matrix with an orthogonal one, i.e., XTX = I. Under the

orthogonal constraint, optimizing Jgm(X) can be solved in

closed-form as an eigen-value problem [23, 21]. However,

these methods can only work for a restricted case, where

K = K1 ⊗ K2 is composed by two weighted adjacency

matrices, K1 ∈ R
n1×n1 and K2 ∈ R

n2×n2 , defined on

each graph respectively. In order to handle more complex

problems in computer vision, Leordeanu and Hebert [14]

proposed to optimize Eq. 1 by relaxing the constraints on

X to be of unit length, i.e., ‖ vec(X)‖22 = 1. In this case,

the optimal X can be simply computed as the leading eigen-

vector of K. Cour et al. [8] incorporated additional affine

constraints to solve a more general spectral problem.
The second group of methods relaxes X ∈ D to be a

doubly stochastic matrix, the convex hull of X ∈ Π,

D = {X ∈ R
n1×n2 |X1n2 ≤ 1n1 ,X

T1n1 = 1n2 ,X ≥ 0}.
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Figure 2. An example GM problem. (a) Two synthetic graphs. (b)

The 1st graph’s incidence matrices G1 and H1, where the non-

zero elements in each column of G1 and H1 indicate the start-

ing and ending nodes in the corresponding directed edge, respec-

tively. (c) The 2nd graph’s incidence matrices G2 and H2. (d)

The node affinity matrix Kp and the edge affinity matrix Kq be-

tween graphs. (e) The node correspondence matrix X and the edge

correspondence matrix Y. (f) The global affinity matrix K.

Under this constraint, optimizing Eq. 1 can be treated as

a non-convex quadratic programming problem and various

strategies have been proposed to find a local optima. For

instance, Gold and Rangarajan [11] proposed the graduated

assignment algorithm to iteratively solve a series of linear

approximations of the cost function using Taylor expan-

sions. Leordeanu et al. [15] proposed an integer projec-

tion algorithm to optimize the objective function in an in-

teger domain. More recently, Zhou and De la Torre [29]

used a path-following algorithm [25]. In addition to the

optimization-based work, probabilistic frameworks [6, 26]

were shown to be useful for interpreting and solving GM.

Our work is closely related to recent higher-order tensor

factorization [5, 9, 26]. It has been noticed that K encoding

the pairwise geometry is susceptible to scale and rotation

differences between sets of points. In order to make GM

invariant to rigid deformations, [5, 9, 26] extended the pair-

wise matrix K embedded into a tensor that encodes high-

order geometrical relations. However, a small increment in

the order of relations leads to a combinatorial explosion of

the amount data needed to support the algorithm. There-

fore, most of high-order GM methods can only work on

very sparse graphs with no more than 3-order features. On

the other hand, it is unclear on how to extend high-order

methods to incorporate non-rigid deformations.

2.2. Iterative closest point (ICP)
Given two sets of points, P1 = [p1

1, · · · ,p1
n1
] ∈ R

d×n1

and P2 = [p2
1, · · · ,p2

n2
] ∈ R

d×n2 , iterative closest point
(ICP) algorithms (e.g., [2, 27]) aim to find the correspon-
dence and the geometric transformation between points
such that the sum of distances is minimized:

min
X,T

Jicp(X, T ) =
∑
i1i2

xi1i2‖p1
i1 − τ(p

2
i2)‖

2
2 + ψ(T ), (2)

s. t. X ∈ Π, T ∈ Ψ,

where X ∈ {0, 1}n1×n2 denotes the correspondence be-

tween points. Depending on the problem, X denotes ei-

ther a one-to-one or many-to-one mapping. In this paper,

we consider a one-to-one mapping between points and X
is thus constrained to be a permutation matrix i.e., X ∈ Π.

τ(·) : Rd → R
d denotes a geometric transformation and it

is parameterized by T . For instance, if τ(·) is a 2-D sim-

ilarity transformation, then τ(p) = sRp + t and T =
{s,R, t}, where s ∈ R is the scaling factor, R ∈ R

2×2

is the rotation matrix and t ∈ R
2 is the translation vec-

tor. In addition, the rotation matrix has to satisfy the con-

straint, Ψ = {R|RTR = I2, |R| = 1}. If τ(·) is chosen

to be a non-rigid transformation, a penalization cost ψ(T )
is needed to further constrain the parameter. See [28] for

a more comprehensive review of various transformations

adopted in ICP.

To connect ICP with GM methods, we re-write Eq. 2 as:

Jicp(X, T ) = − tr
(
Kp(T )TX

)
+ ψ(T ). (3)

where Kp(T ) ∈ R
n1×n2 encodes the Euclidean distances

between nodes, that is, κpi1i2(T ) = −‖p1
i1
−τ(p2

i2
)‖22. Eq. 3

reveals two commonalities of ICP algorithms: (1) The op-

timization over X given the transformation T can be cast

as a linear matching problem, which can be efficiently op-

timized by the Hungarian algorithm (if X is a one-to-one

mapping) or the winner-take-all manner (if X is a many-to-

one mapping). (2) In general, the joint optimization over X
and T is non-convex, and no closed-form solution is known.

Typically, some sort of alternated minimization (e.g., EM,

coordinate-descent) is needed to find a local optima.

3. Factorized graph matching
This section derives a new factorization of the pair-wise

affinity matrix K. As we will see in the following sec-

tions, this factorization allows the unification of GM meth-

ods, adding geometric constraints to GM and elaborating

better optimization strategies.
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To illustrate the intuition behind the factorization, let us
consider the synthetic graph shown in Fig. 2. Notice that
K ∈ R

n1n2×n1n2 is composed by two types of affinities:
the node affinity (Kp) on its diagonal and the pairwise edge
affinity (Kq) on its off-diagonals. Let’s ignore the diagonal
first. Then, K is a sparse block matrix with three unique
structures: (1) K is composed by n2-by-n2 smaller blocks
Kij ∈ R

n1×n1 . (2) Some of the Kijs are empty if there

is no edge connecting the ith and jth nodes of G2. In an-
other word, these empty blocks can be indexed by G2H

T
2 ,

i.e., Kij = 0n1×n1 if [G2H
T
2 ]ij = 0. (3) For the non-

empty blocks, Kij can be computed in a closed form as

G1 diag(k
q
c)H

T
1 , where c is the index of the edge connect-

ing the ith and jth nodes of G2, i.e., g2ic = h2jc = 1. Based
on these three observations, and after some linear algebra,
it can be shown that K can be exactly factorized as:

K = diag(vec(Kp)) + (G2 ⊗G1) diag(vec(Kq))(H2 ⊗H1)
T .

(4)

This factorization decouples the graph structure (G1, H1,

G2 and H2) from the similarity (Kp and Kq). It is impor-

tant to notice that our factorization significantly differs from

the one proposed in [29] in two aspects: (1) Eq. 4 is pro-

posed for more general graphs composed by directed edges

while [29] can be only applied for simpler graphs composed

by undirected edges; (2) Unlike a joint factorization pro-

posed in [29], Eq. 4 separates Kp and Kq in the factoriza-

tion in two independent terms. This separation enables us to

introduce geometric transformations on Kp and Kq in GM.
Eq. 4 is the key contribution of this work. Previous work

in GM computed the computationally expensive (in space
and time) K. On the contrary, Eq. 4 offers an alternative
framework by replacing K with six smaller matrices. For
instance, plugging Eq. 4 into Eq. 1 leads to an equivalent
objective function:

Jgm(X) = tr
(
KT

p X
)
+ tr

(
KT

q Y
)
, (5)

where Y = (GT
1 XG2 ◦ HT

1 XH2) ∈ {0, 1}m1×m2 is an

auxiliary variable that encodes the correspondence between

edges, i.e., yc1c2 = 1 if cth1 edge in G1 is matched to the

cth2 edge in G2. For instance, Fig. 2e illustrates the node and

edge correspondence matrices for the matching defined in

Fig. 2a. In addition, Eq. 5 reveals a connection between GM

and ICP. In particular, maximizing the first term of Eq. 5 is

equivalent to ICP (Eq. 3).
Observe that Kq can always be factorized (e.g., SVD) as

Kq = UVT , where U ∈ R
m1×c and V ∈ R

m2×c. Taking
advantage of the low-rank structure of Kq , Eq. 5 can be
further re-formulated as follows:

Jgm(X) = tr
(
KT

p X
)
+

c∑
i=1

tr
(
A1

iXA2
iX

T
)
, (6)

where A1
i = G1 diag(ui)H

T
1 and A2

i = G2 diag(vi)H
T
2 .

The factorization (Eq. 4) and the two equivalent ob-

jectives (Eq. 5 and Eq. 6) allow to unify GM meth-

ods. For instance, Eq. 6 reveals the connection be-

tween two types of GM problems, the less general one

[1, 23, 25] that maximizes tr(A1XA2X
T ), versus the

more general one [6, 8, 11, 14, 15, 24, 26] that maxi-

mizes vec(X)TK vec(X). In particular, maximization of

vec(X)TK vec(X) is equivalently to the maximization of

the sum of c traces tr(A1
iXA2

iX
T ), where A1

i and A2
i can

be interpreted as adjacency matrices.

3.1. A path-following algorithm

Given Eq. 6 we can optimize GM with the path-
following algorithm proposed for the simplified GM prob-
lem (tr(A1XA2X

T )) [1, 23, 25]. More specifically, we
solved a series of concave-convex problems:

max
X∈D

Jα(X) = (1− α)Jvex(X) + αJcav(X), (7)

where α ∈ [0, 1] is a trade-off between the convex relax-

ation Jvex(X) and the concave relaxation Jcav(X) of the

original objective Jgm(X).

To employ the path-following algorithm, we need to find
proper convex and concave relaxations of Jgm(X). Fortu-
nately, the factorization (Eq. 4) offers a principled way for
deriving them:

Jvex(X) = Jgm(X)− 1

2
Jcon(X)

= tr
(
KT

p X
)
− 1

2

c∑
i=1

‖XTA1
i −A2

iX
T ‖2F , (8)

Jcav(X) = Jgm(X) +
1

2
Jcon(X)

= tr
(
KT

p X
)
+

1

2

c∑
i=1

‖XTA1
i +A2

iX
T ‖2F . (9)

Jcon(X) =
∑
i

tr
(
A1

i
T
XXTA1

i

)
+ tr

(
A2

iX
TXA2

i
T
)
,

where Jcon(X) = γ is a constant with respect to a permuta-

tion or orthogonal matrix X because XXT = XTX = I. It

is worth to point out that it not clear how to derive the relax-

ations (Jvex(X) and Jcav(X)) and apply the path-following

algorithm without the propose factorization of K. Please re-

fer [28] for details about the path-following optimization.

The advantages of the path-following algorithm over

conventional GM algorithms are three-fold: (1) The algo-

rithm starts with a convex problem (α = 0) and it is guaran-

teed to find a globally optimal solution. (2) The algorithm

ends at a concave problem (α = 1) and the local optimal so-

lution is always discrete; (3) By smoothly increasing α from

α = 0 to α = 1, the path-following algorithm is more likely

to find better local optima than gradient-based method.
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4. Deformable graph matching (DGM)
This section describes how to incorporate rigid and non-

rigid transformation into the GM framework. Moreover, we

illustrate how the factorization can be used into the DGM to

derive an improved optimization strategy.

4.1. Objective function

To simplify the discussion and to be consistent with

ICP, we compute the node feature of each graph G =
{P,Q,G,H} simply as the node coordinates, P =
[p1, · · · ,pn] ∈ R

d×n. Similarly, the edge features Q =
[q1, · · · ,qm] ∈ R

d×m are computed as the coordinate dif-

ference between the connected nodes, i.e., qc = pi − pj ,

where gic = hjc = 1. In this case, the edge feature

can be conveniently computed in a matrix form as, Q =
P(G−H).

Suppose that we are given two graphs, G1 =
{P1,Q1,G1,H1} and G2 = {P2,Q2,G2,H2}, and a ge-
ometrical transformation defined on points by τ(·). Similar
to ICP, we compute the node affinity Kp(T ) ∈ R

n1×n2 and
the edge affinity Kq(T ) ∈ R

m1×m2 as a function of the
Euclidean distance, i.e.:

κp
i1i2

(T ) = −‖p1
i1 − τ(p

2
i2)‖

2
2,

κq
c1c2(T ) = β − ‖ (p1

i1 − p1
j1)︸ ︷︷ ︸

q1
c1

− (τ(p2
i2)− τ(p

2
j2))︸ ︷︷ ︸

τ(q2
c2

)

‖22, (10)

where β is chosen to be reasonably large to ensure that the

pairwise affinity is greater than zero.
Recall that the factorization (Eq. 4) reveals that the goal

of GM (Eq. 5) is similar to ICP (Eq. 3). In order to make
the GM more robust to geometric deformations, DGM aims
to find the optimal correspondence X as well as the optimal
transformation T such that the global consistency can be
maximized:

max
X,T

Jdgm(X, T ) = tr
(
Kp(T )TX

)
+ λ tr

(
Kq(T )TY

)

− ψ(T ), (11)

s. t. X ∈ Π, T ∈ Ψ,

where λ ≥ 0 is used to balance between the importance of

the node and edge consistency. Similar to ICP, ψ(T ) and Ψ
are used to constrain the transformation parameter. Eq. 11

unifies GM and ICP. In particular, if λ = 0, solving DGM

is equivalent to ICP. In other case when λ > 0 and T is

known, solving DGM is identical to a GM problem.

Due to the non-convex nature of the objective, we opti-

mize DGM by alternatively solving the correspondence (X)

and the transformation parameter (T ). The initialization

is important for the performance of DGM. However, the

way of choosing a good initialization is beyond the scope

of this paper and we simply set the initial transformation as

an identity one, i.e., τ(p) = p.

4.2. Optimization

Optimizing Eq. 11 will alternate between optimizing for

the correspondence and the geometric transformation.

Optimization for the correspondence: Given the trans-

formation T , DGM is equivalent to a traditional GM prob-

lem. To find the node correspondence X, we adopt the path-

following algorithm by optimizing Eq. 7.
Optimization for the geometric transformation:

Given the correspondence matrix X, the optimization over
the transformation parameter T is similar to ICP. The main
difficulty lies in the fact that the transformation parameter T
appears not only in the node affinity Kp(T ), but also in the
edge affinity Kq(T ). After some linear algebra, however, it
can be shown that for certain choices of transformations in
2-D (e.g., similarity, affine, RBF non-rigid), the parameter
can be computed in closed-form. For instance, let P̄1 =
P1 − p̄11

T
n1
∈ R

2×n1 and P̄2 = P2 − p̄21
T
n2
∈ R

2×n2 be

the centralized point sets, where p̄1 =
P1X1n2

1T
n1

X1n2
∈ R

2 and

p̄2 =
P2X

T 1n1

1T
n1

X1n2
∈ R

2 are the mean vectors of the two point

sets respectively. Then the parameters for the 2-D similarity
transformation could be computed as:

t = p̄1 − sRp̄2, R = U diag(1, · · · , |UVT |)VT ,

s =
tr(Σ)

tr
(
1n1×2(P̄2 ◦ P̄2)XT

)
+ λq tr

(
1m1×2(Q2 ◦Q2)YT

) ,

where UΣVT = P̄1XP̄T
2 + λqQ1YQT

2 is computed by

SVD. Please refer [28] for the derivation of the optimal

affine and non-rigid transformations.

It is well known that the performance of ICP algorithms

largely depends on the effectiveness of the initialization

step. In the following example, we empirically illustrate

how by adding additional pair-wise constrains, DGM is less

sensitive to the initialization. Fig. 3a illustrates the prob-

lem of aligning two fish shapes under varying values for the

initial rotation and scale parameters. As shown in Fig. 3b,

ICP gets trapped into a local optima if the orientation gap

is larger than 1
3π (the error should be 0). Similarly, DGM

fails for large orientation gap after two iterations (the left

column of Fig. 3c). However, as the number of iterations

increases, DGM is able to match shapes with very large de-

formation in rotation and scales. After 24 iterations, DGM

ultimately finds the optimal matching for all the initializa-

tions (the right column of Fig. 3c). This experiment shows

that adding pairwise constraints can make the ICP algorithm

more robust to the problem of local optima.

5. Experiments
This section reports experimental results on three bench-

mark datasets and compares FGM for Directed graphs

(FGM-D) and DGM to several state-of-the-art methods for

GM and ICP respectively. The first two experiments com-

pare the path-following algorithm to other GM approaches
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Figure 3. Comparison between ICP and DGM to align shapes for

several initial values of rotation and scale parameters. (a) Exam-

ples of initializations. (b) Objective surfaces obtained by ICP for

different initializations. (c) Objective surfaces obtained by DGM.

using undirected and directed edges. In the third experi-

ment we add a known geometrical transformation between

graphs and compare it with ICP algorithm on the problem

of matching non-rigid shapes.

5.1. CMU house image dataset

The CMU house image dataset consists of 111 frames

of a house, each of which has been manually labeled with

30 landmarks. We connected the landmarks via Delaunay

triangulation. In this experiment, we focused on the sim-

ple case, where the edge is undirected and the edge feature

is symmetric. In particular, the edge feature qc was com-

puted as the pairwise distance between the connected nodes.

Given an image pair, the edge-affinity matrix Kq was com-

puted by kqc1c2 = exp(− (q1c1
−q2c2

)2

2500 ) and the node-affinity

Kp was set to zero.

This experiment tested the performance of the path-

following algorithm. We compared FGM-D against eight

state-of-the-art algorithms: GA [11], SM [14], SMAC [8],

IPFP [15] initialized with a uniform correspondence (IPFP-

U) and spectral matching (IPFP-S), PM [26], RRWM [6]

and FGM for Undirected graphs (FGM-U) [29]. We tested

the performance of all methods as a function of the separa-

tion between frames. We matched all possible image pairs,

spaced exactly by 0 : 10 : 90 frames and computed the aver-

age matching accuracy and objective ratio (
Jgm(Xalg)
Jgm(Xdgm) ) per

gap. Fig. 4a demonstrates an example pair of two frames.

We tested the performance of GM methods under two

scenarios. In the first case (Fig. 4b) we used all 30 land-

marks and in the second one (Fig. 4c) we matched sub-

graphs by randomly picking 25 landmarks. It can be ob-

served that in both cases, FGM-U and FGM-D consistently

achieved the best performance. The results demonstrate the

advantages of the path-following algorithm over other state-

of-the-art methods in solving general GM problems. In ad-

dition, it is interesting to notice that FGM-U and FGM-D

performed similarly in both cases. This is because FGM-

U can be considered as a special case of FGM-D when the

graph only has undirected edges.

5.2. Car and motorbike image dataset

The car and motorbike image dataset was created in [16].

This dataset consists of 30 pairs of car images and 20 pairs

of motorbike images. Each pair contains 30 ∼ 60 ground-

truth correspondences. We computed for each node the

feature, pi, which is the orientation of the normal vector

to the contour. We adopted the Delaunay triangulation to

build the graph. In this experiment, we consider the most

general graph where the edge is directed and the edge fea-

ture is asymmetrical. More specifically, each edge was

represented by a couple of values, qc = [dc, θc]
T , where

dc is the pairwise distance between the connected nodes

and θc is the angle between the edge and the horizontal

line. Thus, for each pair of images, we computed the node

affinity as kpij = exp(−|pi − pj |) and the edge affinity

as kqc1c2 = exp(− 1
2 |dc1 − dc2 | − 1

2 |θc1 − θc2 |). Fig. 5a

and Fig. 5b demonstrate example pairs of car and motor-

bike images respectively. To test the performance against

noise, we randomly selected 0 ∼ 20 outlier nodes from the

background. Similarly, we compared FGM-D against eight

state-of-the-art methods. However, we were unable to di-

rectly use FGM-U to match directed graphs. Therefore, we

ran FGM-U on an approximated undirected graph, where

for each pair of directed edges, we computed its new edge

affinity as the average value of the original ones.

As observed in Fig. 5c-d, the proposed FGM-D consis-

tently outperformed other methods in both datasets. As we

show in the previous experiment, the path-following algo-

rithm used by FGM-D provides a better optimization strat-

egy than existing approaches. On the other hand, although

FGM-U has a similar path-following strategy, it did not per-

form well because it is only applicable to undirected edges.

Finally, it is important to remind the reader that without the

factorization proposed in this work it is not possible to apply

the path-following method to general graphs.

5.3. Fish and character shape dataset

The UCF shape dataset [7] has been widely used for

comparing ICP algorithms. In our experiment, we used

two different templates. The first one has 91 points sam-

pled from the outer contour of a tropical fish. The second

one consist of 105 points sampled from a Chinese character.

For each template, we designed two series of experiments

to measure the robustness of an algorithm under different

deformations and outliers. In the first series of experiments,

we rotated the template with a varying degree (between 0
and π). In the second set of experiments, a varying amount

of outliers (between 0 and 20) were randomly added in the

bounding box of template. For instance, Fig. 6a-b illustrate

two pairs of example shapes with 20 outliers. We repeated
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Figure 4. Comparison of GM methods on the CMU house datasets. (a) An example pair of frames with the correspondence generated by

our method, where the blue lines indicate incorrect matches. (b) Performance of several algorithms using 30 nodes. (c) Performance using
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Figure 6. Comparison between DGM and ICP on the UCF shape

datasets. (a-b) Two example pairs of shapes aligned using DGM.

The red shape (left) is a rotated version of the blue one (right) by
2
3
π and 20 random outliers were added. (c-d) Matching perfor-

mance as a function of the initial rotations. (e-f) Matching perfor-

mance as a function of the number of outliers.

the random generation 50 times for different levels of noise

and compared DGM with the standard ICP algorithm and

the coherent point drifting (CPD) [19]. The ICP algorithm

was implemented by ourselves and CPD implementation

was taken from the authors’ website. We initialized all the

algorithms with the same transformation, i.e., τ(p) = p.

In DGM, Delaunay triangulation was employed to compute

the graph structure. Recall that DGM simultaneously com-

putes the correspondence and the rotation.

As shown in Fig. 6c-d, the proposed DGM can perfectly

match the shapes across all the rotations without outliers,

whereas both ICP and CPD get trapped in the local optimal

when the rotation is larger than 2
3π. When the number of

outliers increases, DGM can still match most points under

large rotation at 2
3π. In contrast, ICP and CPD drastically

failed in presence of outliers and large rotations (Fig. 6e-f).

In addition to a similarity transform, DGM can also in-

corporate non-rigid transformations in GM. Similar to the

rigid case described in the main submission, we synthesized

the non-rigid shape from the UCF shape dataset [7]. To

generate the nonrigid transformation, we followed a similar

setting in [19], where the domain of the point set was pa-

rameterized by a mesh of control points. The deformation

of the mesh was modeled as an spline-based interpolation

of the perturbation of the control points. We repeated the

random generation 50 times. Fig. 7a illustrates a synthetic

pair of graphs.

We compared DGM with other two state-of-the-art GM

methods: SM [14] and RRWM [6]. In addition, we tested

the performance of our algorithm (FGM-D) only using the

path-following algorithm for computing the correspondence

but without estimating the transformation. As shown in

Fig. 7b-c, FGM-D performed better than the other two GM

methods. This is due to the path-following algorithm that is

more accurate in optimizing GM problems. DGM signifi-

cantly improved FGM-D by estimating the transformation.

5.4. Conclusions

This paper proposes DGM, an extension of GM for

matching points under a global geometric transformation

for directed and undirected graphs. The key idea for DGM

is a novel factorization of the pairwise affinity matrix. Sev-
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Figure 7. Comparison between DGM and GM methods for align-

ing non-rigidly deformed shapes. (a) An example of two fishes,

where the red one is generated by a non-rigid transformation from

the blue one. (b) Accuracy. (c) Results of GM methods, where

the green and black lines indicate correct and incorrect correspon-

dence respectively.

eral benefits follow from the factorization. First, it avoids

the expensive (in space and time) computation of the pair-

wise affinity matrix. Second, it allows for a unification of

GM methods and provides a clean connection with existing

ICP algorithms. Finally, the decomposition enables the use

of path-following algorithms that improve the performance

of GM methods.
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