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Abstract

This paper addresses the problem of semantic segmen-
tation of 3D point clouds. We extend the inference ma-
chines framework of Ross et al. by adding spatial factors
that model mid-range and long-range dependencies inher-
ent in the data. The new model is able to account for se-
mantic spatial context. During training, our method auto-
matically isolates and retains factors modelling spatial de-
pendencies between variables that are relevant for achiev-
ing higher prediction accuracy. We evaluate the proposed
method by using it to predict 17-category semantic seg-
mentations on sets of stitched Kinect scans. Experimental
results show that the spatial dependencies learned by our
method significantly improve the accuracy of segmentation.
They also show that our method outperforms the existing
segmentation technique of Koppula et al.

1. Introduction

Probabilistic graphical models are a powerful tool for

modeling interactions between random variables. They are

used to solve a wide range of labelling problems encoun-

tered in computer vision (semantic segmentation [5, 7, 11],

dense stereo estimation [18], denoising [20, 13]) and be-

yond (part of speech tagging in natural language process-

ing, gene finding in bioinformatics). Prediction using these

models typically comprises two key steps: learning, which

involves estimation of the dependencies between variables

from training data, and inference, which involves estima-

tion of the most probable values of the variables of interest

under the model.

Most methods for learning graphical model parameters

are inspired by statistical learning theory and follow the

principle of empirical risk minimization. Inference of the

maximum a posteriori (MAP) solution in graphical models,

too, is a well studied problem. Although it is NP-hard to

find the exact MAP solution of a general model, a number

of methods (like graph cuts or message-passing algorithms

such as belief propagation) have been proposed to find exact

or approximate solution in certain families of models.

Pairwise Markov random field (MRF) is a widely-used

variant of graphical models that incorporates dependencies

only between pairs of random variables. The dependencies

in pairwise random fields are typically sparse (with few ex-

ceptions, e.g. [9]). In other words, most pairs of variables

are assumed to be conditionally independent given the rest

of the variables. This enables efficient inference of the MAP

solution under the model, but low expressive power of such

sparse MRFs limits their prediction accuracy. Although re-

cent work has tried to overcome this limitation using higher

order models, such methods suffer from increased compu-

tational cost [7].

Labelling via sequential classification. Sequential clas-

sification is an alternative prediction mechanism that can

also handle dependencies between variables. Starting from

an initial estimate, it works by repeatedly obtaining refined

estimates of the variables using the inferred values of vari-

ables from the previous iteration. Initially, it was applied in

natural language processing for part of speech tagging [2];

subsequently, it spread to computer vision applications. The

auto-context algorithm [19] is a typical example. It uses a

sequence of classifiers to infer pixel labels. Each classi-

fier takes as argument the image labelling from the previous

iteration. Specifically, the classifier uses the previous la-

belling of pixels at certain displacements with respect to the

pixel of interest to estimate the label of that pixel. Seman-
tic texton forest (STF) [17] is a two-stage sequential clas-

sification algorithm that works in a similar manner. In the

first stage, STF computes semantic textons and region pri-

ors using local appearance of pixels. In the second stage, it

classifies pixels according to the output response of the first

stage pooled in rectangles around the point. Entanglement
forest model [10] generalizes both auto-context and STF. It

comprises of a collection of decision trees. Each node of

each tree computes features based on the predictions made

by the nodes in the upper (previous) levels of the tree.

Munoz et al. [12] introduced the stacked hierarchical la-
beling framework for semantic segmentation that was later

applied to 3D point cloud data by Xiong et al. [21]. In

that model, sequential classification is performed on con-

secutive layers of a hierarchical image segmentation, from

coarse to fine. For each region, the probabilistic classifier

computes the posterior distribution over labels and passes

it to the classifiers for regions of the lower layer of the

segmentation hierarchy as features. Ross et al. [15] inter-
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pret this idea as performing generalized message-passing

inference in graphical models and develop the inference ma-
chines framework to explain it. Under this framework, the

solution to the labelling problem is found by performing in-

ference in a graphical model. However, instead of learning

the parameters of potential functions and then performing

inference using a message passing algorithm, they propose

to learn the messages passed by the inference algorithm di-

rectly. Their method is efficient and achieves results that are

similar in accuracy to a computationally expensive conven-

tional non-linear MRF training method (namely, functional

gradient boosting [11]). However, it does suffer from a lim-

itation: it only captures local interactions via small higher-

order factors, and does not take the scene context into ac-

count.

The importance of accounting for scene context is widely

acknowledged in the computer vision community [14, 19, 6,

3]. Semantic context—the dependency of labels on the la-

bels of different parts of the scene [17]—is particularly dif-

ficult to account for in models based on local dependencies.

While in theory inference machines can employ factors that

span different parts of the scene, it remains unclear how to

define them. Moreover, message update rules would be-

come more complicated and would require more expressive

message predictors, which would lead to overfitting.

Incorporating context in inference machines. We build

on the model of Ross et al. [15] by incorporating contextual

dependencies. Our method is different from the conven-

tional inference machine based method proposed in [15] in

the following ways:

• we learn the message prediction functions using a

two-stage procedure: first, we train probabilistic out-

put classifiers that predict individual factor messages

using the aggregated messages from the previous

message passing step as the argument; second, we

learn weights that will be used for aggregating the

individual messages;

• we change the notion of a factor that generates the

factor-to-node message: in our formulation it is an

ordered pair of source and destination variable sets.

The source (group of variables) of the factor affects

the belief about the label of the destination (individual

variable) by passing a message in this direction;

• we incorporate prior knowledge about different kinds

of contextual dependencies by means of factor types.

A separate prediction function is learned for each fac-

tor type, which helps to keep them simple. The aim of

factor type design is to model mid-range (scene con-

text) dependencies that can be highly anisotropic un-

like to close-range (low-level) dependencies. We show

how to use these factors to account for spatial semantic

context in 3D point cloud segmentation.

We evaluate our method on 3D point clouds provided by

Koppula et al. [8] that were generated by stitching Kinect

depth frames. Experimental results show that our method

outperforms the semantic segmentation technique proposed

by Koppula et al. [8] in terms of both speed and accuracy.

2. Graphical models and inference machines

Notation and background. Prior to describing the spatial

inference machines framework, we review the formulation

of graphical models in terms of factor graphs to settle the

notation. Our task is to predict the value of a vector of dis-

crete random variables y ∈ LN , where L is the set of states,

and N is the number of variables. In semantic segmenta-

tion, each variable state yv may denote the label assigned to

the corresponding super-pixel—a group of co-located simi-

lar image pixels or 3D points.

Graphical models express relations between variables in

form of factors. We define a factor f ∈ F as a group of

variables along with the corresponding potential function
φf (·), which scores label assignments to the variables. The

probability of any label configuration y is defined as

p(y) =
1

Z

∏
f∈F

φf

( ⋃
v∈f
{yv}

)
, (1)

where Z is the normalizing constant that makes it a proper

probability distribution.

Pairwise random field is a special case of this formu-

lation where each factor is a set of exactly two variables.

For segmentation of image pixels or 3D point clouds, those

pairwise factors typically correspond to the pairs of super-

pixels that are spatially close to each other and/or have sim-

ilar appearance. The potential function of any given factor

is typically modeled as a parametric function defined over

the variables from the the factor scope and features of lo-

cal scene appearance. During training, parameters of these

functions are estimated by minimizing some loss function

(e.g. some approximation of log-likelihood loss [4] or regu-

larized hinge loss [8, 16]) on a training set. Learning algo-

rithms typically proceed by iteratively calling an inference-

based oracle, which is time-consuming in practice.

Message-passing algorithms are widely used for esti-

mating marginal distributions over variables in the above-

mentioned models. These methods work by iteratively pass-

ing messages between variables and factors. The messages

sent from factors to variables in the n-th iteration of the al-

gorithm are computed as

μn
f→v(yv) =

∑
y′:y′

v=yv

φ(y′)
∏

v′∈f\{v}
μn
v′→f (y

′
v), (2)

298429842986



where μn
v→f are the messages from variables to factors:

μn
v→f (yv) =

∏
f ′: v∈f ′,f ′ �=f

μn−1
f ′→v(yv). (3)

Messages are typically initialized to uniform distributions

over labels.

To obtain the final unnormalized estimates of

marginal probabilities for each variable, messages

from the corresponding factors are multiplied:

p(yv) ∝ ∏
f : v∈f μ

n
f→v(yv). The order in which

messages are computed for different variables or factors

(so-called scheduling policy) may vary. For graphical

models with cycles this loopy belief propagation method

may not converge, though running it for a restricted number

of iterations often works well in practice, especially for the

graphs without many tight loops.

Message-passing inference machines. Learning param-

eters of the potential functions in a graphical model is typ-

ically achieved by minimizing hinge loss or (some proxy

for) maximum likelihood loss. In both cases, optimization

procedure is iterative and requires MAP inference in each

step, which makes training computationally demanding.

Note that the message-passing formalism allows us to di-

rectly deal with messages rather than factors forming the

graphical model. So instead of learning the factors, one

may try to directly learn how to update messages that are

circulating during loopy belief propagation. Ross et al. [15]

suggest a message-passing approach to sequential classifi-
cation. In their method, messages to factors are treated as

arbitrary functions of the previous iteration messages to fac-

tors:

μn
v→f (yv) = ḡn

(
xf ,

⊕
f ′: v∈f ′,
f ′ �=f

xf ′ ,
⊕

v′,f ′: v′∈f ′,
v∈f ′,f ′ �=f

μn−1
v′→f ′(yv′)

)
.

(4)

Here, the operation ⊕ is domain-specific and can imply, for

instance, feature averaging or stacking (concatenation), and

xf is a vector of appearance features for the factor scope

(e.g. color or texture features of the corresponding super-

pixels). Similar to belief propagation, inference machines

recompute messages iteratively, applying (4). In the last

iteration, the classifier applies a function with a slightly dif-

ferent signature: for each variable it takes as argument all

the messages from the neighbouring factors and returns the

predicted label of the variable.

Since message computation in (4) avoids using poten-

tial functions, they don’t need to be modelled explicitly.

Training an inference machine involves directly learning the

functions ḡn that can be different in each iteration. The

function ḡn depends on the factor f only by means of its

features xf . If factors have different impact on the label

assigned to a variable depending on the local features, one

needs to train a quite complex function to reflect this fact.

The prediction function ḡn can take form of any proba-

bilistic output classifier. During training, the previous itera-

tion messages are estimated on the hold-out set. The rest of

the data are used for fitting the prediction functions, where

ground truth values of yv serve as values of the target vari-

ables.

3. Spatial inference machines
This section explains how we extend the inference ma-

chine model by employing the new notion of factor types.

We first define d-factor (short for directed factor) using a

pair p = (df , Sf ) composed of a destination variable df
and a set of source variables Sf . Each d-factor f belongs to

one of the factor types t(f) ∈ T , which encodes how source

variables’ labels and corresponding features impact the la-

bel of destination. Factor types allow us to include prior

knowledge about the interactions between source and desti-

nation variables. This is important for modelling mid-range

dependencies that can be highly anisotropic. Such explicit

coding leads to simpler message prediction functions and

reduces the risk of overfitting. We compute the messages

from the source to the destination variables using learned

factor type specific functions:

μn
Sf→df

(ydf
) =

gn,t(f)
(
pn−1(ydf

),xdf
,xf ,xSf

,Ev∼Sf
(pn−1(yv))

)
. (5)

Here gn,t(f)(·) is the prediction function used in the n-th

iteration for the factor type t(f). We use random forest [1]

for prediction, but any other probabilistic output classifier

can also be used. The d-factor features are combined with

destination features xdf
, the previous iteration beliefs about

the label pn−1(ydf
), d-factor features xf , aggregated source

features xSf
, and the averaged source set beliefs from pre-

vious iteration Ev∼Sf
(pn−1(yv)). In the n-th iteration of

the algorithm, the belief (probability of each label yv) is

defined as the weighted product of d-factor messages from

Sf to df :

pn(yv) ∝
∏

{f :df=v}
(μn

Sf→v(yv))
αn

t(f) , (6)

where αt(f) is the weight of the response of the factor type

t(f).
The last argument in (5) averages the beliefs associ-

ated with different class labels from the previous iteration.

This causes the loss of information about the layout of

the labels within the source region, but prevents overfitting

and makes inference computationally tractable and inde-

pendent of point density. Source regions should be chosen

to be small enough to prevent excessive averaging, but large

enough to be robust.
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(a) Ross et al. [15] (b) Our method

Figure 1: Different ways to apply sequential classification. Vari-

ables are shown as circles, factors as squares. To compute the

message that a variable (red circle) sends to a factor, Ross et al.

[15] (a) use the previous iteration messages that have been sent to

all variables that share a factor with the marked variable. Mes-

sages from that variable to the two other factors are computed in a

similar way. In our method (b), three d-factors (sources are sets of

variables within the corresponding coloured boxes) send messages

to the common destination (red circle), which are multiplied to get

the next iteration (or final) label

Note that in contrast to (4), our message prediction func-

tion does not depend on previous iteration messages di-

rectly; instead it takes their weighted products, i.e. iteration

beliefs. Also, the scope of our predictors is smaller: they

take the predicted labels for only the variables involved in a

single factor, while the prediction functions used by Ross

et al. [15] take concatenated messages from all the vari-

ables that share a factor with v, excluding the target fac-

tor f . Fig. 1 illustrates the difference. We combine the

results of the small-scope predictors explicitly using (6) to

get the beliefs for the next iteration or final marginal proba-

bilities. Weights αn could be just set to ones or learned by

a different procedure, as described later in this section.

Preventing overfitting of the model. Training of our

model involves learning the parameters of the prediction

function (5) and (optionally) the weights in (6). Since mes-

sage prediction functions depend on the beliefs from the

previous iteration, usage of the same training set for es-

timation of previous iteration beliefs might lead to a bi-

ased model. To prevent overfitting, we use k-fold cross-

validation in each iteration to get beliefs, motivated by

Munoz et al. [12]. For a certain fold, the predictors for each

factor type are trained on all the other folds, and then used

to get the fold labels for the next iteration. To train the final

predictors to be used at inference stage, all folds are used.

We summarize the training process in Algorithm 1.

Spatial d-factors. Spatial factors are important special

types of d-factors that model dependencies between vari-

ables that represent points in some coordinate space. For

example, factor types could be parameterized by a pair:

Algorithm 1 Inference machine training

1: Input: labeled instance (x,y), set of factors F divided

on folds f , set of factor types T , number of iter’s N .

2: Output: set of prediction functions {gn,t(·)}t∈T,n∈[1,N ]

3: set uniform initial beliefs p0(yv), ∀yv ∈ y
4: for n = 1 to N do
5: for all f ∈ F do
6: for all t ∈ T do
7: fit temporary prediction function gtmp,t(·) from (5)

using d-factors
{
f ∈ ⋃

f ′∈F\{f} f
′
∣∣∣ t(f) = t

}
8: end for
9: μn

Sf→df
(ydf

)← gtmp,t(f)(〈features off〉), ∀f ∈ f
10: end for
11: for all t ∈ T do
12: fit this iteration prediction function gn,t(·)

using d-factors
{
f ∈ ⋃

f ′∈F f ′
∣∣∣ t(f) = t

}
13: end for
14: specify factor type weights αn, e.g. by setting αn = 1,

or by maximizing (7)

15: if n < N then
16: for all yv ∈ y do
17: obtain this iteration beliefs pn(yv)

estimated on the hold-out sets using (6)

18: end for
19: end if
20: end for

(δv, r). This means that each 2D pixel v = (x, y) or 3D

point v = (x, y, z) induces one d-factor of each spatial

type, where v is the destination, and all the pixels/points

within the distance r from the point v + δv form the d-

factor source. This formulation allows us to model arbitrary

mid- and long-range dependencies. Pairwise dependencies

between neighboring points may form a special factor type

too. These structural d-factors are responsible for close-

range interactions. They are not associated with any par-

ticular displacements, since they typically express isotropic

interactions.

Learning factor type weights. Using a large number of

factor types may lead to overfitting and degradation of fi-

nal predictive performance. To prevent this, we introduce

weights αn
t (6) that modulate the contribution of different

factors. The parameters αn are learned at each iteration

n by maximizing the regularized sum of probabilistic es-

timates for correct labels:

max
α≥0

∑
v

( ∏
{f :df=v}(μ

n
Sf→v(ȳv))

αt(f)∑
l∈L

∏
{f :df=v}(μ

n
Sf→v(l))

αt(f)
+C

∑
t∈T

αt

)
,

(7)

where ȳv is the ground truth label of v, and l sums over all
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Table 1: Factor types used in our model for point cloud segmenta-

tion. The rows contain names of factor types and their acronyms,

followed by relative coordinates of corresponding support regions

# name ac b. box ((x0, y0, z0), (x1, y1, z1)), m

0 structural S n/a

1 Local Lo ((−0.1,−0.1,−0.1), (0.1, 0.1, 0.1))
2 To-Down Td ((0.1,−0.3,−∞), (∞, 0.3,−0.1))
3 From-Up Fu ((−∞,−0.3, 0.1), (−0.1, 0.3,∞))
4 Down D ((−0.3,−0.3,−∞), (0.3, 0.3,−0.1))
5 Left-Restr Lr ((−0.3,−1.0,−0.3), (0.3,−0.1, 0.3))
6 Right-Restr Rr ((−0.3, 0.1,−0.3), (0.3, 1.0, 0.3))
7 From F ((−∞,−0.3,−0.3), (−0.1, 0.3, 0.3))
8 To T ((0.1,−0.3,−0.3), (∞, 0.3, 0.3))
9 Up U ((−0.3,−0.3, 0.1), (0.3, 0.3,∞))

the class labels L. L1 regularization of weights is used to

remove weak factor types and leads to a sparse representa-

tion. In particular, if the data lacks mid-range dependencies,

the corresponding factor types’ weights are set to zero due

to regularization (see Section 5). C is the per-variable reg-

ularization parameter. Maximization is performed using a

first-order optimization method. Note that this factor type

selection step is conceptually similar to the one in the things
and stuff model [6], although the authors solve a different

problem, i.e. object detection. Their spatial dependencies

of the form “the detection i is about 100 pixels away from

the region j” are similar to our spatial factors. They gen-

erate a large set of such dependencies and select the rel-

evant ones using the structured expectation-maximization

algorithm, while we use L1 regularization.

(a) Point src region (b) Superpixel source region

Figure 2: Regions used to collect source points when the des-

tination element is represented by point (a) and superpixel (b)

for Down factor type. The red sphere and plain segment de-

note the destination point and superpixel in the point cloud, re-

spectively. The statistics that form feature vectors (xSf and

Ev∼Sf (pn−1(yv))) are estimated using the points within the blue

regions

4. Implementation details
We now demonstrate how the model can be applied to

semantic segmentation of colored 3D point clouds (Fig. 3a).

Model structure. The ground truth labelling generated by

Koppula et al. [8] was done at the super-pixel level and re-

sulted in all points within each super-pixel taking the same

label. Given this, we found it was reasonable to classify su-

perpixels rather than individual points, particularly, for ef-

ficiency reasons. We also keep the structure of interactions

of Koppula et al. [8]: all the superpixels that have minimum

distance less than 0.6 m are connected by structural links.

A structural link which connects any superpixels v and u
induces two pairwise d-factors (v, {u}) and (u, {v}).

To define spatial d-factors, we introduce a coordinate

system associated with each spatial d-factor destination

point. Because the point clouds capture indoor scenes,

we can define those coordinate systems such that no de-

grees of freedom are left. The vertical direction is defined

unambiguously. For every point, the position of camera

that filmed it is known, and most objects are situated close

enough to walls, so there is another dedicated direction: to-

wards camera, orthogonally to the closest wall.

We used an heuristic algorithm for finding walls (robust

vertical plane fitting), which was able to find almost all

walls. Note that this is not our final result for wall detec-

tion: we just use it to compute the direction orthogonal to

the closest wall, which is our X axis; Z is directed upwards;

and the Y axes (horizontally, along the wall) is estimated as

the orthogonal direction to them both. We define spatial

d-factors for this problem using bounding boxes (possibly

open) in this relative coordinate system. See Table 1 for

the list of spatial factor types we use. For example, Down
factor type (line 4) assumes that spatial d-factor source in-

cludes all the points lower than the destination with 10 cm

gap in the 60 cm × 60 cm corridor (Fig. 2).

Since our elementary unit is a superpixel, we define its

source as the union of all sets that would be sources for in-

dividual points of the superpixel. Thus, for a tabletop seg-

ment, Down factor type collects all the points below it with

10 cm gap and including a 30 cm border (Fig. 2b). Note

that this definition of spatial d-factors is similar to the de-

pendencies Desai et al. [3] used for object detection in im-

ages where the pairwise potentials indicated one of the far,
near, above, below, next-to and on-top relative locations of

candidate detections.

Features. We use the unary and pairwise features from

Koppula et al. [8]. Unary features describe appearance of

the superpixel, e.g. its planarness, orientation, and color

gradient histogram. Edge features describe the relation be-

tween superpixels, e.g. angle between normals or vertical

displacement between centroids. See Table 2 and the orig-
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Table 2: Unary and pairwise features derived from Koppula et al.

[8]. λi refers to the vector of eigenvectors of the superpixel co-

variance matrix, sorted in the order of decreasing eigenvalues

Unary features for superpixel i cnt

Visual appearance 48
Histogram of HSV color values 14

Average HSV color value 3

Average of HOG features of the blocks in image spanned

by the points of a superpixel

31

Local shape and geometry 8
Linearness (λi0 − λi1), planarness (λi1 − λi2), scatter λi0 3

Vertical component of the normal niz 1

Vertical position of the centroid ciz 1

Vertical and horizontal extent of the bounding box 2

Distance from the scene boundary 1

Pairwise features for (i, j) cnt

Visual appearance 3
Difference of average HSV color values 3

Local shape and geometry 2
Coplanarity and convexity 2

Geometric context 6
Horizontal distance between centroids 1

Vertical displacement between the centroids (ciz − cjz) 1

Dot product of the normals ni · nj 1

Difference in the angles between the normals and the ver-

tical vector (cos−1 niz − cos−1 njz)
1

Distance between the closest points 1

Relative position from the camera (in front of / behind) 1

inal paper for more details. The basic classifiers (5) use

concatenation of local feature vectors and previous iteration

labels, which may depend on the factor type. For spatial d-

factors we concatenate local features of destination, mean

previous iteration labels of source and destination, totally

56 + 2|L| values, where |L| is the number of class labels.

For structural links we also add factor features as defined

by Koppula et al. [8], totally 56 + 11 + 2|L| values. Note

that our spatial factors do not include any source or edge

features.

Form of predictors. We use random forest [1] of 100

trees as a prediction function for inference machines. To

determine a split function at a node, splits on d randomly

selected features are tested according to Gini index; d is

chosen as the square root of the number of features.

5. Experiments

Dataset. We evaluate our method on a recent dataset col-

lected by Koppula et al. [8]. The authors of this dataset

used Kinect to collect depth maps and RGB images of of-

fice and living room interiors. Scans corresponding to com-

mon scenes were stitched automatically to get colored 3D

point clouds. Each of the 24 office and 28 home scenes

was reconstructed from 8–9 scans. The point clouds were

segmented into 17 categories by labelling superpixels. The

point clouds corresponding to office scenes were given the

labels: (wall, floor, tableTop, tableDrawer, tableLeg, chair-
BackRest, chairBase, chairBack, monitor, printerFront,
printerSide, keyboard, cpuTop, cpuFront, cpuSide, book,
paper), while those corresponding to home scenes were la-

belled with (wall, floor, tableTop, tableDrawer, tableLeg,
chairBackRest, chairBase, sofaBase, sofaArm, sofaBack-
Rest, bed, bedSide, quilt, pillow, shelfRack, laptop, book).

Protocol. We try to repeat the protocol of Koppula et al. [8]

exactly. We perform 4-fold cross-validation for both home

and office scenes such that no scene can be shared by two

or more folds. The structural links used by our model corre-

spond to the pairwise factors used in [8] which only operate

on points that labelled with one of the 17 classes, i.e. points

corresponding to the background are discarded from both

training and test. This results in 690 super-pixels for the of-

fice scenes and 800 for the home scenes. Most super-pixels

belong to the wall class in both sets.

To aggregate precision over classes, both micro- and

macro-averaging are used. Both measures are impor-

tant, because micro-precision (accuracy) p tends to under-

estimate mislabeling of under-represented classes, while

macro-precision P and recall R treat all classes equally re-

gardless of their size:

p =

∑|L|
i=1 TPi∑|L|

i=1 TPi + FPi

=

∑|L|
i=1 TPi∑|L|

i=1 TPi + FNi

= r, (8)

P =
1

|L|
|L|∑
i=1

TPi

TPi + FPi
, R =

1

|L|
|L|∑
i=1

TPi

TPi + FNi
, (9)

where L is the set of class labels, TPi, FPi, TNi, FNi are

the true positive, false positive, true negative, and false neg-

atives rates for the i-th class, respectively. The results are

summarized in Table 3.

Segmentation quality. The model with only structural de-

pendencies (STR) works better than the linear CRF [8], al-

though the same structure and features are used. This prob-

ably happens because of the non-linear prediction function

used in our method.

It turns out that adding spatial factor types without learn-

ing weights (STR+SPAT), in spite of being well-motivated

from a probabilistic viewpoint, performs worse than just us-

ing structural factors. Learning of weights (STR+SPAT C)

works better than the previous approaches in theory, be-

cause it is more general: when all weights are set to 1, it

corresponds to combination of structural and spatial fac-

tor types, the latter could be switched off by setting their
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Table 3: Results on Office and Home scenes. Micro and macro pre-

cision and recall after 5 iterations of training on cross-validation.

STR: only structural factors are used. STR+SPAT: structural and

all spatial factor types are combined, all weights are assumed to

be 1. STR+SPAT C: 10 factor types, learn coefficients with regu-

larization, C = 0.03

Method

Office scenes Home scenes

micro macro micro macro

P/R Prec Rec P/R Prec Rec

chance 0.262 0.058 0.058 0.293 0.058 0.058

SVM CRF [8] 0.840 0.805 0.726 0.722 0.568 0.548

STR 0.889 0.872 0.825 0.777 0.690 0.609

STR+SPAT 0.866 0.811 0.794 0.711 0.578 0.527

STR+SPAT C 0.902 0.882 0.844 0.783 0.716 0.620

(a) Source colored

point cloud

(b) Only structural

factor types

(c) With spatial fac-

tor types

Figure 3: Scene example where spatial factor types improve seg-

mentation quality. The model with only structural factor types (b)

misclassifies the book superpixel (on the left) and the floor super-

pixel (on the right), while the model with structural and spatial fac-

tor types (c) classifies the whole scene correctly. Color map: wall,
floor, tableTop, chair, monitor, keyboard, cpuTop, cpuFront, cpu-
Side, book. Better viewed in color

weights to 0. Regularization is used to prevent overfitting.

In practice, large regularization coefficients lead to the spa-

tial factor types being discarded (they are assigned zero

weights).

In office scenes learned spatial factor types gain 1–1.5%

improvement. Their poorer performance on home scenes

can be explained by the idiosyncracies of the data. While

a single wall is present in office data, corners are usual in

home data. Near the corners, the relative angle the to wall

is ambiguous, so “horizontal” spatial factor types are not

reliable. While “vertical” factor types are still reliable in

this case, they are often overpowered by structural factors,

which connect the superpixels within 0.6 m distance and

thus almost surely connect superpixels that are close by hor-

izontal position.

Please note that we fixed the value of the hyper-

parameter C = 0.03; task-specific learning of this parame-

ter can further improve results, but we refrained from doing

this because the datasets were too small to obtain a separate
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(a) Office weights
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(b) Home weights

Figure 4: Factor type weights averaged across iterations and folds,

and rate of non-null d-factors of each type for Office and Home
data [8]. It can be seen that structural (S) factor type weights are

never null, while left (Lr) and right (Rr) factor types are almost

useless. This may mean that there is no particular order of objects

on tables

validation set. Spatial factor types (Table 1) were defined

suboptimally, which also provides room for improvement.

The parametrization of spatial factor types with continuous

variables potentially allows for efficient search of the best-

performing factor types using gradient-based or sampling

techniques, which is a promising direction for future work.

The model with only structural factors classifies book on

the left in Fig. 3b as cpuTop due to neighboring cpuFront
and cpuSide superpixels. Spatial features of structural de-

pendencies are not expressive enough to forbid cpuTop any-

where except on the top of cpuFront and cpuSide. Spatial

d-factors account for that explicitly, the book is classified

correctly (Fig. 3c). Also, structural factors are restricted to

the length of 0.6 m, so they cannot encode the dependency

between the tableTop and floor superpixels on the right.

Increasing the distance threshold for structural dependen-

cies would lead to capturing spurious dependencies given

the limited training data [8]. The model with spatial factor

types classifies the floor superpixel correctly.

Computation time. An important advantage of inference

machines is fast inference. For the model with the structural

and 9 spatial factor types, average inference time for an of-

fice scene is 0.7 second for 5 iterations on 8-core CPU. Note

that this does not include pre-processing time, where source

indices and features of structural and spatial d-factors are

computed. Extracting source indices might take up to sev-

eral minutes per scene if they are estimated for the whole su-

perpixel (as shown in Fig. 2b), not just for only the centroid

of the superpixel. In contrast, MAP inference in CRF us-

ing mixed-integer programming takes 18 minutes per scene;

solving the linear programming relaxation using quadratic

pseudo-boolean optimization is faster (10 seconds), but 2–

3% less accurate [8]. Thus, our inference is either thousands

times faster and 6% more accurate, or ten times faster and

at least 8% more accurate.
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Figure 5: Left: evolution of test set and training set error during training on Office scenes for 100 trees in random forest. Training error

is decreasing, while test error tends to stabilize or even increase after the iteration 5–6 due to overfitting. Center: error after 5 iterations

depending on the number of trees used in random forest. Right: error after 5 iterations when depth of trees is restricted during training

Relevance of spatial factor types. Because of L1 regular-

ization in the objective function (7), the learned weights are

sparse. The null weights mean irrelevant factor types, so the

weights can give us a clue on which subset of factor types is

sufficient for modeling the relations (see Fig. 4). The degree

of sparsity depends on the number of iteration and regular-

ization coefficient C. In our experiments, we observed that

in the first iteration only the weights corresponding to struc-

tural factors were assigned non-zero weights for both the

home and office datasets. This hints to the fact that struc-

tural factors define strong relationships, which can be later

improved by spatial d-factors. This also reflects the fact

that close-range dependencies are generally more informa-

tive than mid-range ones. Another explanation is that there

are typically several structural factors for each destination

(that have a single weight for all) and one d-factor of each

spatial type (with separate weights), so the regularization

penalizes the latter more.

Number of iterations. We discovered that 5 iterations of

training are typically enough. After that, accuracy stabilizes

and sometimes even slightly degrades because of overfitting

(Fig. 5). During the entire training process, accuracy is uni-

formly higher in the model with spatial factor types than

without them.

6. Conclusions

In this paper we introduce a method for 3D point cloud

segmentation that builds on the inference machines frame-

work [15] by explicitly accounting for spatial semantic con-

text. The resulting method outperforms max-margin condi-

tional random field learning [8] both in terms of speed and

accuracy. Note that such a technique can be applied to other

segmentation problems where mid-range context dependen-

cies are expected, e.g. to image segmentation.
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