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Abstract

Relating visual information to its linguistic semantic
meaning remains an open and challenging area of research.
The semantic meaning of images depends on the presence of
objects, their attributes and their relations to other objects.
But precisely characterizing this dependence requires ex-
tracting complex visual information from an image, which
is in general a difficult and yet unsolved problem. In this pa-
per, we propose studying semantic information in abstract
images created from collections of clip art. Abstract images
provide several advantages. They allow for the direct study
of how to infer high-level semantic information, since they
remove the reliance on noisy low-level object, attribute and
relation detectors, or the tedious hand-labeling of images.
Importantly, abstract images also allow the ability to gener-
ate sets of semantically similar scenes. Finding analogous
sets of semantically similar real images would be nearly
impossible. We create 1,002 sets of 10 semantically simi-
lar abstract scenes with corresponding written descriptions.
We thoroughly analyze this dataset to discover semantically
important features, the relations of words to visual features
and methods for measuring semantic similarity.

1. Introduction

A fundamental goal of computer vision is to discover
the semantically meaningful information contained within
an image. Images contain a vast amount of knowledge in-
cluding the presence of various objects, their properties,
and their relations to other objects. Even though “an im-
age is worth a thousand words” humans still possess the
ability to summarize an image’s contents using only one or
two sentences. Similarly humans may deem two images as
semantically similar, even though the arrangement or even
the presence of objects may vary dramatically. Discovering
the subset of image specific information that is semantically
meaningful remains a challenging area of research.

Numerous works have explored related areas, including
predicting the salient locations in an image [17, 26], ranking
the relative importance of visible objects [1, 5, 16, 31] and
semantically interpreting images [7, 18, 24, 38]. Semantic
meaning also relies on the understanding of the attributes of

Figure 1. An example set of semantically similar scenes created by
human subjects for the same given sentence.

the visible objects [2, 6] and their relations [7, 12]. In com-
mon to these works is the desire to understand which visual
features and to what degree they are required for semantic
understanding. Unfortunately progress in this direction is
restricted by our limited ability to automatically extract a
diverse and accurate set of visual features from real images.

In this paper we pose the question: “Is photorealism nec-
essary for the study of semantic understanding?” In their
seminal work, Heider and Simmel [14] demonstrated the
ability of humans to endow even simple objects such as tri-
angles and circles with the emotional traits of humans[21].
Similarly, cartoons or comics are highly effective at convey-
ing semantic information without portraying a photorealis-
tic scene. Inspired by these obervations we propose a novel
methodology for studying semantic understanding. Unlike
traditional approaches that use real images, we hypothesize
that the same information can be learned from abstract im-
ages rendered from a collection of clip art, as shown in Fig-
ure 1. Even with a limited set of clip art, the variety and
complexity of semantic information that can be conveyed
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Figure 2. An illustration of the clip art used to create the children (left) and the other available objects (right.)

with their combination is impressive. For instance, clip art
can correspond to different attributes of an object, such as
a person’s pose, facial expression or clothing. Their combi-
nation enables an exponential number of potential appear-
ances, Figure 2.

The use of synthetic images provides two main advan-
tages over real images. First, the difficulties in automat-
ically detecting or hand-labeling relevant information in
real images can be avoided. Labeling the potentially huge
set of objects, their properties and relations in an image
is beyond the capabilities of state-of-the-art automatic ap-
proaches, and makes hand labeling expensive and tedious.
Hand-labeling in many instances is also often ambiguous.
Using abstract images, even complex relation information
can be easily computed given the relative placement of the
clip art, such as “Is the person holding an object?” or “Is
the person’s or animal’s gaze directed towards a specific ob-
ject?” Second, it is possible to generate different, yet seman-
tically similar scenes. We accomplish this by first asking
human subjects to generate novel scenes and correspond-
ing written descriptions. Next, multiple human subjects are
asked to generate scenes depicting the same written descrip-
tion without any knowledge of the original scene’s appear-
ance. The result is a set of different scenes with similar
semantic meaning, as shown in Figure 1. Collecting analo-
gous sets of semantically similar real images would be pro-
hibitively difficult.

Contributions:
• Our main contribution is a new methodology for studying

semantic information using abstract images. We envision
this to be useful for studying a wide variety of tasks, such
as generating semantic descriptions of images, or text-
based image search. The dataset and code are publicly
available on the author’s webpage.

• We measure the mutual information between visual fea-
tures and the semantic classes to discover which visual
features are most semantically meaningful. Our seman-
tic classes are defined using sets of semantically similar
scenes depicting the same written description. We show
the relative importance of various features, such as the
high importance of a person’s facial expression or the oc-
currence of a dog, and the relatively low importance of

some spatial relations.

• We compute the relationship between words and visual
features. Interestingly, we find the part of speech for a
word is related to the type of visual features with which
it shares mutual information (e.g. prepositions are related
to relative position features).

• We analyze the information provided by various types
of visual features in predicting semantic similarity. We
compute semantically similar nearest neighbors using a
metric learning approach [35].

Through our various experiments, we study what aspects
of the scenes are semantically important. We hypothesize
that by analyzing the set of semantically important features
in abstract images, we may better understand what informa-
tion needs to be gathered for semantic understanding in all
types of visual data, including real images.

2. Related work
Numerous papers have explored the semantic under-

standing of images. Most relevant are those that try to
predict a written description of a scene from image fea-
tures [7, 18, 24, 38]. These methods use a variety of ap-
proaches. For instance, methods generating novel sentences
rely on the automatic detection of objects [9] and attributes
[2, 6, 25], and use language statistics [38] or spatial rela-
tionships [18] for verb prediction. Sentences have also been
assigned to images by selecting a complete written descrip-
tion from a large set [7, 24]. Works in learning semantic
attributes [2, 6, 25] are becoming popular for enabling hu-
mans and machines to communicate using natural language.
The use of semantic concepts such as scenes and objects
has also been shown to be effective for video retrieval [20].
Several datasets of images with multiple sentence descrip-
tions per image exist [11, 28]. However, our dataset has the
unique property of having sets of semantically similar im-
ages, i.e. having multiple images per sentence description.
Our scenes are (trivially) fully annotated, unlike previous
datasets that have limited visual annotation [11, 28, 36].

Several works have explored visual recognition of dif-
ferent parts of speech. Nouns are the most commonly col-
lected [29, 31] and studied part of speech. Many methods
use tagged objects in images to predict important objects
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Figure 3. A screenshot of the AMT interface used to create the
abstract scenes.

directly from visual features [1, 5, 16, 31], and to study
the properties of popular tags [1, 31]. The works on at-
tributes described above includes the use of adjectives as
well as nouns relating to parts of objects. Prepositions as
well as adjectives are explored in [12] using 19 comparative
relationships. Previously, the work of Biederman et al. [3]
split the set of spatial relationships that can exist in a scene
into five unique types. [30] and [39] study the relationships
of objects, which typically convey information relating to
more active verbs, such as “riding” or “playing”. In our
work, we explicitly identify which types of visual features
are informative for different parts of speech.

3. Generating abstract images
In this section we describe our approach to generating

abstract images. The following sections describe various
experiments and analysis performed on the dataset.

There are two main concerns when generating a collec-
tion of abstract images. First, they should be comprehen-
sive. The images must have a wide variety of objects, ac-
tions, relations, etc. Second, they should generalize. The
properties learned from the dataset should be applicable
to other domains. With this in mind, we choose to cre-
ate abstract scenes of children playing outside. The actions
spanned by children playing cover a wide range, and may
involve interactions with a large set of objects. The emo-
tions, actions and interactions between children have certain
universal properties. Children also tend to act out “grown-
up” scenes, further helping the generalization of the results.

Our goal is to create a set of scenes that are semantically
similar. We do this in three stages. First, we ask subjects on
Amazon’s Mechanical Turk (AMT) to create scenes from a
collection of clip art. Next, a new set of subjects are asked to
describe the scenes using a one or two sentence description.
Finally, semantically similar scenes are generated by asking
multiple subjects to create scenes depicting the same written
description. We now describe each of these steps in detail.

Initial scene creation: Our scenes are created from a col-
lection of 80 pieces of clip art created by an artist, as shown
in Figure 2. Clip art depicting a boy and girl are created

from seven different poses and five different facial expres-
sions, resulting in 35 possible combinations for each, Figure
2(left). 56 pieces of clip art represent the other objects in the
scene, including trees, toys, hats, animals, etc. The subjects
were given five pieces of clip art for both the boy and girl
assembled randomly from the different facial expressions
and poses. They are also given 18 additional objects. A
fixed number of objects were randomly chosen from differ-
ent categories (toys, food, animals, etc.) to ensure a con-
sistent selection of options. A simple background is used
depicting grass and blue sky. The AMT interface is shown
in Figure 3. The subjects were instructed to “create an il-
lustration for a children’s story book by creating a realistic
scene from the clip art below”. At least six pieces of clip
art were required to be used, and each clip art could only
be used once. At most one boy and one girl could be added
to the scene. Each piece of clip art could be scaled using
three fixed sizes and flipped horizontally. The depth order-
ing was automatically computed using the type of clip art,
e.g. a hat should appear on top of the girl, and using the clip
art scale. Subjects created the scenes using a simple drag
and drop interface. In all of our experiments, subjects were
restricted to United States residents to increase the quality
of responses. Example scenes are shown in Figure 1.

Generating scene descriptions: A new set of subjects were
asked to describe the scenes. A simple interface was created
that showed a single scene, and the subjects were asked to
describe the scene using one or two sentences. For those
subjects who wished to use proper names in their descrip-
tions, we provided the names “Mike” and “Jenny” for the
boy and girl. Descriptions ranged from detailed to more
generic. Figure 1 shows an example description.

Generating semantically similar scenes: Finally, we gen-
erated sets of semantically similar scenes. For this task, we
asked subjects to generate scenes depicting the written de-
scriptions. By having multiple subjects generate scenes for
each description, we can create sets of semantically simi-
lar scenes. The amount of variability in each set will vary
depending on the ambiguity of the sentence description.
The same scene generation interface was used as described
above with two differences. First, the subjects were given
a written description of a scene and asked to create a scene
depicting it. Second, the clip art was randomly chosen as
above, except we enforced any clip art that was used in the
original scene was also included. As a result, on average
about 25% of the clip art was from the original scene used
to create the written description. It is important to note that
it is critical to ensure that objects that are in the written de-
scription are available to the subjects generating the new
scenes. However this does introduce a bias, since subjects
will always have the option of choosing the clip art present
in the original scene even if it is not described in the scene
description. Thus it is critical that a significant portion of
the clip art remains randomly chosen. Clip art that was
shown to the original scene creators, but was not used by
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them are not enforced to appear.
In total, we generated 1,002 original scenes and descrip-

tions. Ten scenes were generated from each written descrip-
tion, resulting in a total of 10,020 scenes. That is, we have
1,002 sets of 10 scenes that are known to be semantically
similar. Figure 1 shows a set of semantically similar scenes.
See the author’s webpage for additional examples.

4. Semantic importance of visual features
In this section, we examine the relative semantic impor-

tance of various scene properties or features. While our re-
sults are reported on abstract scenes, we hypothesize that
these results are also applicable to other types of visual data,
including real images. For instance, the study of abstract
scenes may help research in semantic scene understanding
in real images by suggesting to researchers which properties
are important to reliably detect.

To study the semantic importance of features, we need a
quantitative measure of semantic importance. In this paper,
we use the mutual information shared between a specified
feature and a set of classes representing semantically sim-
ilar scenes. In our dataset, we have 1002 sets of semanti-
cally similar scenes, resulting in 1002 classes. Mutual in-
formation (MI) measures how much information the knowl-
edge of either the feature or the class provide of the other.
For instance, if the MI between a feature and the classes
is small, it indicates that the feature provides minimal in-
formation for determining whether scenes are semantically
similar. Specifically, if X is the set of feature values, and Y
is the set of scene classes,

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
). (1)

Most of our features X are binary valued, while others have
continuous values between 0 and 1 that we treat as proba-
bilities.

In many instances, we want to measure the gain in infor-
mation due to the addition of new features. Many features
possess redundant information, such as the knowledge that
both a smile and person exist in an image. To measure the
amount of information that is gained from a feature X over
another feature Z we use the Conditional Mutual Informa-
tion (CMI),

I(X;Y |Z) =
∑

z∈Z

∑

y∈Y

∑

x∈X

p(x, y, z) log(
p(x, y|z)

p(x|z)p(y|z) ).

(2)
In the case that we want to condition upon two variables,
we compute the CMI for each variable individually and take
the minimum value [34]. All scores were computed using
10 random 80% splits of the data. The average standard de-
viation between splits was 0.002. Next, we describe various
sets of features and analyze their semantic importance using
Equations (1) and (2).

Occurrence: We begin by analyzing the simple features
corresponding to the occurrence of the various objects that
may exist in the scene. For real images, this would be the
same information that object detectors or classifiers attempt
to collect [9]. For occurrence information we use two sets of
object types, instance and category. In our dataset, there ex-
ist 58 object instances, since we group all of the variations
of the boy together in one instance, and similarly for girl.
We also created 11 categories by grouping objects of sim-
ilar type together. These categories, such as people, trees,
animals, and food are shown in Figure 2. The ranking of
instances and categories based on their MI scores can been
seen in Figure 4. Many of the results are intuitive. For in-
stance, objects such as the bear, dog, girl or boy are more
semantically meaningful than background objects such as
trees or hats. In general, categories of objects have higher
MI scores than instances. The semantic importance of an
object does not directly depend on how frequently it oc-
curs in the scenes. For instance, people (97.6%) and trees
(50.3%) occur frequently but are less semantically impor-
tant, whereas bears (11.1%) and soccer balls (11.5%) occur
less frequently but are important. Interestingly, the individ-
ual occurrence of boy and girl have higher scores than the
category people. This is most likely caused by the fact that
people occur in almost all scenes (97.6%), so the category
people is not by itself very informative.

Person attributes: Since the occurrence of the boy and
girl are semantically meaningful, it is likely their attributes
are also semantically relevant. The boy and girl clip art have
five different facial expressions and seven different poses.
For automatic detection methods in real images the facial
expressions are also typically discretized [8], while poses
are represented using a continuous space [37]. We compute
the CMI of the person attributes conditioned upon the boy
or girl being present. The results are shown in Figure 4. The
high scores for both pose and facial expression indicate that
human expression and action are important attributes, with
expression being slightly higher.

Co-occurrence: Co-occurrence has been shown to be
a useful feature for contextual reasoning about scenes
[27, 32, 36]. We create features corresponding to the co-
occurrence of pairs of objects that occur at least 100 times
in our dataset. For our 58 object instances, we found 376
such pairs. We compute CMI over both of the individual
objects, Figure 4. Interestingly, features that include com-
binations of the boy, girl and animals provide significant
additional information. Other features such as girl and bal-
loons actually have high MI but low CMI, since balloons
almost always occur with the girl in our dataset.

Absolute spatial location: It is known that the position
of an object is related to its perceived saliency [33] and can
even convey its identity [23]. We measure the position of
an object in the image using a Gaussian Mixture Model
(GMM) with three components. In addition, a fourth com-
ponent with uniform probability is used to model outliers.
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Figure 4. The mutual information measuring the dependence between classes of semantically similar scenes and the (left) occurrence of
obejcts, (top) co-occurrence, relative depth and position, (middle) person attributes and (bottom) the position relative to the head and hand,
and absolute position. Some mutual information scores are conditioned upon other variables (see text.) The pie chart shows the sum of
the mutual information or conditional mutual information scores for all features. The probability of occurrence of each piece of clip art
occurring is shown to the left.
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Thus each object has four features corresponding to its ab-
solute location in an image. Once again we use the CMI
to identify the location features that provide the most addi-
tional information given the object’s occurrence. Intuitively,
the position of the boy and girl provide the most additional
information, whereas the location of toys and hats matters
less. The additional information provided by the absolute
spatial location is also significantly lower than that provided
by the features considered so far.

Relative spatial location: The relative spatial location
of two objects has been used to provide contextual informa-
tion for scene understanding [4, 10]. This information also
provides additional semantic information over knowledge
of just their co-occurrence [3]. For instance, a boy holding
a hamburger implies eating, where a hamburger sitting on
a table does not. We model relative spatial position using
the same 3 component GMM with an outlier component as
was used for the absolute spatial model, except the positions
are computed relative to one of the objects. The CMI was
computed conditioned on the corresponding co-occurrence
feature. As shown in Figure 4, the relative positions of the
boy and girl provide the most information. Objects worn by
the children also provide significant additional information.

One interesting aspect of many objects is that they are
oriented either to the left or right. For instance the children
may be facing in either direction. To incorporate this infor-
mation, we computed the same relative spatial positions as
before, but we changed the sign of the relative horizontal
positions based on whether the reference object was fac-
ing left or right. Interestingly, knowledge of whether or not
a person’s gaze is directed towards an object increases the
CMI score. This supports the hypothesis that eye gaze is an
important semantic cue.

Finally, we conducted two experiments to measure how
much information was gained from knowledge of what a
child was holding in their hands or wearing on their head.
A single feature using a Gaussian distribution was centered
on the children’s heads and hands. CMI scores were condi-
tioned on both the object and the boy or girl. The average
results for the boy and girl are shown in Figure 4. This does
provide some additional information, but not as much as
other features. As expected, objects that are typically held
in the hand and worn on the head have the highest score.

Depth ordering: The relative 3D location of objects can
provide useful information for their detection [13, 15]. The
depth ordering of the objects also provides important se-
mantic information. For instance, foreground objects are
known to be more salient. Our depth features use both ab-
solute and relative depth information. We create 3 absolute
depth features for each depth plane or scale. The relative
features compute whether an object is in front, behind or on
the same depth plane as another object. The absolute depth
features are conditioned on the object appearing while the
relative depth features are conditioned on the corresponding
pair co-occurring. Surprisingly, as shown in Figure 4, depth

Figure 5. Retrieval results for various feature types. The retrieval
accuracy is measured based on the number of correctly retrieved
images given a specified number of nearest neighbors.

provides significant information, especially in reference to
absolute and relative spatial position.

There are numerous interesting trends present in Figure
4, and we encourage the reader to explore them further. To
summarize our results, we computed the sum of the MI or
CMI scores for different feature types to estimate the total
information provided by them. The pie chart in Figure 4
shows the result. It is interesting that even though there are
relatively few occurrence features, they still as a set con-
tain more information than most other features. The person
attribute features also contain significant information. Rel-
ative spatial and depth features contain similar amounts of
information as well, but spread across a much greater num-
ber of features. It is worth noting that some of the features
contain redundant information, since each was only condi-
tioned upon one or two features. The real amount of infor-
mation represented by a set of features will be less than the
sum of their individual MI or CMI scores.

5. Measuring the semantic similarity of images
The semantic similarity of images is dependent on the

various characteristics of an image, such as the object
present, their attributes and relations. In this section, we
explore the use of visual features for measuring semantic
similarity. For ground truth, we assume a set of 10 scenes
generated using the same sentence are members of the same
semantically similar class, Section 3. We measure seman-
tic similarity using nearest neighbor search, and count the
number of nearest neighbors from the same class. We study
the recall accuracy using various subsets of our features.
In each set, the top 200 features are selected based on MI
or CMI score ranking. We compare against low-level im-
age features such as GIST [22] and Spatial Pyramid Models
(SPM) [19] since they are familiar baselines in the commu-
nity. We use a GIST descriptor with 512 dimensions and
a 200 visual word SPM reduced to 512 dimensions using
PCA. To account for the varying usefulness of features for
measuring semantic similarity, we learn a linear warping of
the feature space using the LMNN metric learning approach
[35] trained on a random 80% of the classes, and tested on
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Figure 6. The words with the highest total MI and CMI scores across all features for different part of speech (left). The words with highest
total scores across different features types (top-right). Colors indicate the different parts of speech. Top non-nouns for several relative
spatial features using object orientation (bottom-right).

the rest. After warping, the nearest neighbors are found us-
ing the Euclidean distance.

Figure 5 shows that the low-level features GIST and
SPM perform poorly when compared to the semantic (clip
art) features. This is not surprising since semantically im-
portant information is commonly quite subtle, and scenes
with very different object arrangements might be semanti-
cally similar. The ability of the semantic features to repre-
sent similarity shows close relation to their MI or CMI score
in Section 4. For instance the combination of occurrence
and person attributes provides a very effective set of fea-
tures. In fact, occurrence with person attributes has nearly
identical results to using the top 200 features overall. This
might be partially due to overfitting, since using all features
does improve performance on the training dataset.

6. Relating text to visual phenomena
Words convey a variety of meanings. Relating these

meanings to actual visual phenomena is a challenging prob-
lem. Some words such as nouns, may be easily mapped

to the occurrence of objects. However, other words such
as verbs, prepositions, adjectives or adverbs may be more
difficult. In this section, we study the information shared
between words and visual features. In Figure 6, we show
for words with different parts of speech the sum of the MI
and CMI scores over all visual features. Notice that words
with obvious visual meanings (Jenny, kicking) have higher
scores, while those with visual ambiguity (something, do-
ing) have lower scores. Since we only study static scenes,
words relating to time (before, finally) have low scores.

We also rank words based on different types of visual
features in Figure 6. It is interesting that different feature
types are informative for different parts of speech. For in-
stance, occurrence features are informative of nouns, while
relative position features are predictive of more verbs, ad-
verbs and prepositions. Finally, we show several examples
of the most informative non-noun words for different rel-
ative spatial position features in Figure 6. Notice how the
relative positions and orientations of the clip art can dramat-
ically alter the words with highest score.
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7. Discussion

The potential of using abstract images to study the high-
level semantic understanding of visual data is especially
promising. Abstract images allow for the creation of huge
datasets of semantically similar scenes that would be im-
possible with real images. Furthermore, the dependence on
noisy low-level object detections is removed, allowing for
the direct study of high-level semantics.

Numerous potential applications exist for semantic
datasets using abstract images, which we’ve only begun
to explore in this paper. High-level semantic visual fea-
tures can be learned or designed that better predict not
only nouns, but other more complex phenomena repre-
sented by verbs, adverbs and prepositions. If successful,
more varied and natural sentences can be generated using
visually grounded natural language processing techniques
[7, 18, 24, 38].

Finally, we hypothesize that the study of high-level se-
mantic information using abstract scenes will provide in-
sights into methods for semantically understanding real im-
ages. Abstract scenes can represent the same complex rela-
tionships that exist in natural scenes, and additional datasets
may be generated to explore new scenarios or scene types.
Future research on high-level semantics will be free to focus
on the core problems related to the occurrence and relations
between visual phenomena. To simulate detections in real
images, artificial noise may be added to the visual features
to study the effect of noise on inferring semantic informa-
tion. Finally by removing the dependence on varying sets
of noisy automatic detectors, abstract scenes allow for more
direct comparison between competing methods for extrac-
tion of semantic information from visual information.
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