
It’s Not Polite To Point: Describing People With Uncertain Attributes

Amir Sadovnik
as2373@cornell.edu

Andrew Gallagher
acg226@cornell.edu

Tsuhan Chen
tsuhan@ece.cornell.edu

School of Electrical and Computer Engineering, Cornell University

Abstract

Visual attributes are powerful features for many differ-
ent applications in computer vision such as object detection
and scene recognition. Visual attributes present another ap-
plication that has not been examined as rigorously: verbal
communication from a computer to a human. Since many
attributes are nameable, the computer is able to communi-
cate these concepts through language. However, this is not
a trivial task. Given a set of attributes, selecting a subset
to be communicated is task dependent. Moreover, because
attribute classifiers are noisy, it is important to find ways to
deal with this uncertainty. We address the issue of commu-
nication by examining the task of composing an automatic
description of a person in a group photo that distinguishes
him from the others. We introduce an efficient, principled
method for choosing which attributes are included in a short
description to maximize the likelihood that a third party will
correctly guess to which person the description refers. We
compare our algorithm to computer baselines and human
describers, and show the strength of our method in creating
effective descriptions.

1. Introduction
Imagine you are at a party with many people, and need

to point out one of them to a friend. Because it is impo-

lite to point (and it is difficult to follow the exact pointing

direction in a large group), you describe the target person

to your friend in words. Most people can naturally decide

what information to include in what is known in the Natu-

ral Language Processing field as a referring expression. For

example, in Figure 1, we might say: (a) “The man who is

not wearing eyeglasses” (b) “The man who is wearing eye-

glasses” or (c) “The woman”.

The task of generating these expressions requires a bal-

ance between the two properties of Grice’s Maxim of Quan-

tity [10]. The maxim states:

• Make your contribution as informative as is required.

• Do not make your contribution more informative than is

required.

Figure 1. In this paper we introduce an efficient method for choos-

ing a small set of noisy attributes needed to create a description

which will refer to only one person in the image. For example,

when the target person is person (b), our algorithm produces the

description: “Please pick a person whose forehead is fully visible

and has eyeglasses”

In our context, in which the computer attempts to refer to

a single person, we interpret these as follows. First, the de-

scription ideally refers to only a single target person in the

group such that the listener (guesser) can identify that per-

son. Second, the describer must try to make the description

as short as possible.

Although people find this describing task to be easy, it

is not trivial for a computer. First, computers must deal

with uncertainty. That is, the attribute classifiers the com-

puter uses are known to be noisy and this uncertainty must

be considered in an effective model. In addition, given that

each person in our image might have many attributes de-

scribing him, selecting the smallest set of attributes with

which to describe him uniquely is an NP-hard problem[4].

For example, a brute-force method is to first try all descrip-

tions with one attribute, then try all descriptions with two

attributes and so on. Although this will find the shortest

description, the computational complexity is exponential in

the number of available attributes.

This task represents an important part of a broader set

of problems which address generating general descriptions

for images. This is evident from the fact that referring ex-

pression generation is considered one of the basic build-

ing blocks for any natural language generation system [18].
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When giving a general description one might be required

to refer to specific objects within the scene. For example

in Figure 1, we might say “The person wearing eyeglasses

is the company’s president,” instead of simply “The person

is the company’s president.” This type of referral is crucial

in generating informative image captions. Our algorithm

provides a method for selecting which attributes should be

mentioned in such a case.

This research has practical applications. In security,

surveillance cameras and action recognition algorithms can

identify suspicious people. A security guard could receive

concise verbal descriptions of the suspect to investigate.

Both properties of the description are extremely crucial.

First, the description needs to refer only to the suspect to

prevent investigating the wrong person. Second, it must not

be too long as to confuse the guard or waste his time.

Another application involves navigation systems. Using

a front-facing camera on a car and a GPS system, we can

develop a system which can provide more intuitive driving

directions. For example, instead of saying: “Turn right in

200 feet,” it might be more useful to say: “Turn right at

the yellow building with the red awning,” or even “Follow

the green car that just turned right.” Although we use our

algorithm for describing people, it is is not confined to this

specific domain. By employing object detection algorithms,

in addition to other attribute classifiers, a general system can

be realized.

Our main contributions are: We present the first attempt

at generating referring expressions for objects in images.

This task has been researched in the NLG community, but

had yet to use visual data with actual uncertainties. In

addition, we present a novel and computationally efficient

method for evaluating the probability that a given descrip-

tion will result in a correct guess from the listener. Finally,

we develop a new algorithm for attribute selection which

takes into consideration the uncertainty of the classifiers.

That is, although we cannot guarantee that the description

we compose will describe only the target person, we are

able to select attribute combinations for a high probability

of this occurring.

1.1. Previous Work

There has been active computational research on refer-

ring expression generation in the NLG community for 20

years. Most consider a setup in which there exists a finite

object domain D each with attributes A. The goal is to find

a subset of attribute-value pairs which is true for the target

but false for all other objects in D. We build on this work

from a computer vision point-of-view, using actual attribute

predictions made from analyzing real images of people.

One of the earliest works include Dale’s Full Brevity al-

gorithm [3] which finds the shortest solution by exhaustive

search. Since this results in an exponential-time algorithm

two main extensions were introduced in [4]. The Greedy

Heuristic method chooses items iteratively by selecting the

attribute which removes the most distractors that have not

been ruled out previously until all distractors have been

ruled out. The Incremental Algorithm considers an addi-

tional ranking based on some internal preference of what a

human describer would prefer, in an effort to produce more

natural sounding sentences. Our goal is the same (to pro-

duce discriminative descriptions), but we consider the con-

fidence scores of real attribute classifiers, and introduce an

efficient algorithm for dealing with this uncertainty.

Other extensions to these three main algorithms have

been proposed. For example, Krahmer et al. propose a

graph base approach for referring expression generation

[14]. The reason for using this approach is that it allows for

relationships between objects to be expressed (for example

spatial relationships) in addition to the individual attributes

of each object. We use a similar graph in our work.

Horacek proposes an algorithm which deals with condi-

tions of uncertainty [12]. This method is similar to the one

we are proposing since it does not rely on the fact that the

describer and the listener agree on all attributes. However,

our algorithm differs in important ways. First, we provide a

method for efficient calculation under uncertain conditions

whereas in Horacek’s paper the calculation is computation-

ally expensive. In addition, Horacek’s definition of the un-

certainty causes is heuristic, but we use calculated uncer-

tainties of classifiers. And, in contrast to [12], we provide

experimental data to show our algorithm’s strength.

Although this is the first attempt at generating referring

expressions for objects in images, our work is an extension

of previous work researching attribute detection and de-

scription generation. For example, Farhadi et al. [5] detect

attributes of objects in scene, and use them as a description.

The initial description includes all attributes and results in a

lengthy description. With no task in mind, they are not able

to measure the usefulness of the description. In our work,

which is task specific, we are able to select attributes in a

smart way, and show the utility of our descriptions.

Attributes improve object classification [17, 20] and

search results [13]. For example, Kumar et al. describe

in-depth research on nameable attributes for human faces.

These attributes can be used for face verification and image

retrieval [16], and similarity search [22]. These works all

use human-generated attribute feedback to help a computer

at its task. In contrast, in our case the computer (not a hu-

man) is the one generating descriptive attribute statements,

so the emphasis is on selecting attributes, even when the

classifier scores are uncertain.

In recent years, attributes have been used to automati-

cally compose descriptions of entire scenes. Although this

is different from describing a specific object within a scene,

there are similarities. For example, Berg et al. [1] predict
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Choose the person to 
the left of a person 

who is male and bald 

(a) (b) (c) (d) (e) (f) 

Figure 2. An overview of our algorithm. (a) Given an image of a group of people (b) detect all faces and select a random target. (c) For

each face run a set of attribute classifiers. (d) Select neighbors by detecting rows of people. (d) Find a small set of attributes which refers

to the target face with confidence c (e) Construct a sentence and present to a guesser.

what is important to mention in a description of an image by

looking at the statistics of previous image and description

pairs. They mention a few factors (e.g., size, object type

and unusual object-scene pairs) to help predict whether an

item will be mentioned in a description.

Both Farhadi et al. [6] and Ordonez et al. [19] find a

description from a description database that best fits the im-

age. Gupta et al. [11] use a similar approach, but break

descriptions into phrases to realize more flexible results.

Kulkarni et al. [15] use a CRF infer objects, attributes and

spatial relationships that exist in a scene, and compose all

of them into a sentence. The main difference between this

line of work and ours is the fact that our description is goal-

oriented. That is, prior works focus solely on the informa-

tion and scores within the scene. In contrast, we consider

attribute scores for all objects to describe the target object

(person) in a way that discriminates him from others.

Finally, Sadovnik et al. [21] produces referring expres-

sions for entire scenes. However, our method improves on

[21] in major ways. First,[21] ranked various attributes, but

did not provide a calculation of how many attributes should

be used. In our method, we calculate the necessary descrip-

tion length. Second, we rigorously deal with the uncertainty

of the attribute detectors, instead of using a heuristic penalty

for low confidence as in [21]. Finally, creating referring ex-

pressions for objects in a scene as opposed to entire scenes

is more natural and has more practical applications (as de-

scribed in Sec. 1).

2. Attributes and Neighbors

2.1. Attribute detection

Although the description algorithm we present is gen-

eral, we choose to work with people attributes because of

the large set of available attributes. Kumar et al. [16] define

and provide 73 attribute classifiers via an online service. We

retain 35 of the 73 attributes by removing attributes whose

classification rate in [16] is less than 80%, and removing

attributes which are judged to be subjective (such as attrac-

tive woman) or useless for our task (color photo). In the

future other attributes can be easily incorporated into this

framework such as clothing or location in the image.

Each classifier produces an SVM classification score for

each attribute. Since our method requires knowledge about

the attribute’s likelihood, we normalize these scores. We

use the method described in [23] which fits an isotonic func-

tion to the validation data. We first collect a validation set

for our 35 attributes, and fit the isotonic function using the

method described in [2].

2.2. Neighbor Detection

A certain person might not have enough distinctive at-

tributes to separate him from others in the group. Therefore,

we wish to be able to refer to this person by referring to peo-

ple around him. However, deciding who is standing next to

whom is not a trivial task. We use the work of Gallagher et

al. [8], to identify specific rows of people in a group photo.

We use this information to define faces who have a com-

mon edge in a row as neighbors. This gives us the “to the

left of” and “to the right of” relationships. Since in [8] faces

can be labeled as in the same row even though they are far

apart, we add an additional constraint which normalizes the

distance between every two faces in a row by the size of

the face, and removes edges where the normalized size is

greater than some threshold t. This prevents distant people

from being considered neighbors.

3. Algorithm
As stated in Sec. 1 the goal of a referring expression gen-

erator is to find a short description that refers to a single ob-

ject in the scene. In our scenario of uncertain classifiers, our

goal is to produce a description that will allow a guesser a

high probability of successfully guessing the identity of the

target face. Calculating this probability relies on a guesser

model which we provide in Sec. 3.1. The guesser model

defines the strategy used by the listener to guess which face

in the image is the one being described.

We then describe how to calculate the probability that

the guesser will, in fact, guess the target face given any de-

scription within the space of our attributes by considering

the uncertainty of the attribute classifiers. First, we explain

this calculation when the description has a single attribute

(Sec. 3.2). Then, we explain the extension to the case when

the description contains multiple attributes (Sec. 3.3). In
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Variable Name Variable Description

n Number of people

f ∈ {1, 2, . . . , n} Person to be described

A Set of binary attributes

a∗ = [a∗
1, a∗

2, . . . a∗
q ]

a∗
k ∈ A

The attributes chosen by the al-

gorithm for description

v∗ = [v∗
1 , v∗

2 , . . . , v∗
q ]

v∗
k ∈ {0, 1}

Values chosen by the algorithm

for the attributes in a∗
pk = [pk1, pk2, . . . , pkn]
k = 1 . . . q
pki ∈ [0, 1]

Probability of attribute k as cal-

culated by classifier for each per-

son

xk = [xk1, xk2, . . . , xkn]
k = 1 . . . q
xki ∈ {0, 1}

Values of attribute k of a∗ as

seen by the guesser

f̃ ∈ {1, 2, . . . , n} Guesser’s guess

Pf̃ = P (f̃ = f |a∗,v∗) The probability of the guesser

guessing correctly

t =
Pn

i=1 (xki == v∗
k) Number of faces with correct at-

tribute value

Table 1. Variable definitions

both cases, we show that this calculation is polynomial in

both the number of faces in the image, and the number of

attributes in the description.

Finally, we introduce an algorithm for producing at-

tribute descriptions that meet our goals: having as few at-

tributes as possible, while selecting enough so that that

probability of a guesser selecting the the target person will

be higher than some threshold (3.4).

3.1. Guesser’s Model

We first define a model that the guesser follows to guess

the identity of the target person, given an attribute descrip-

tion. All variables are defined in Table 1. Given that he has

received a set of attribute-value pairs (a∗,v∗), he guesses

the target face f̃ according to the following rules:

• If only one person matches all attribute-value pairs guess

that person.

• If more than one person matches all attribute-value pairs

guess randomly among them.

• If no person matches any attribute-value pairs guess ran-

domly among all people.

• If no person matches all attribute-value pairs, choose ran-

domly among the people who have the most matches.

Given this model, the describer’s goal is to maximize

Pf̃ = P (f̃ = f |a∗,v∗), the probability that the guesser

correctly identifies the target, given the description. Fol-

lowing Grice’s Maxim of Quantity we also wish to create a

short description. Therefore, we choose to explore descrip-

tions that minimize the number of attributes |a∗| such that

Pf̃ > c, where c is some confidence level.

To show how Pf̃ is calculated we first present the single

attribute case, and then extend to multiple attributes.

3.2. Single Attribute

Consider the case where a “smile detector” is applied to

an image containing three faces, and we refer to face 1 as

Smiling 0.8 0.4 0.2 

xk Face 1 Face 2 Face 3 Prob. of happening Prob. of guessing 
correct 

Prob. of happening and 
of guessing correct�

[1,1,1] 0.8*0.4*0.2 0.333 0.021 

[1,0,0] 0.8*0.6*0.8 1 0.384 

[0,0,0] 0.2*0.6*0.8 0.333 0.032 

Classifier’s Probabilities 

0.021 + 0.384 + 0.032 + … + 0      =     0.613 Probability of guessing correct: 

Figure 3. An illustration calculating the probability of guessing

correctly using one attribute (“The person is smiling”) for an im-

age with three people. The true identity of the target person

(marked with a red rectangle) is known to the algorithm as well

as the attribute confidence for each face. Each face is actually

smiling or not (the true state is unknown to the algorithm), rep-

resented with the blind over each mouth. To find the probability

of the guesser’s success, each of the eight possible configurations

of smiling faces is considered. We introduce a polynomial-time

algorithm for computing this probability.

“the smiling face” (Figure 3). What is the probability that

a guesser will be correct? To compute this, we must con-

sider the fact that our smile detector is never certain, but

instead, reports confidences of observing a smile on each

face. The confidence associated with each score represents

the probability that each face actually has a smile or not.

The actual joint distribution of smiling faces in the image

has eight possibilities over the three faces (23). For each of

these eight possible arrangements, the probability that the

guessing strategy leads to a correct guess can be computed.

Naı̈vely, by applying total probability, the overall probabil-

ity of guesser success is the sum of the probability that each

of these eight smile cases occur, times the probability of

guesser success in each case.

We now formalize our algorithm. Here, for simplicity of

notation, the description is comprised of positive attributes

(e.g., “the smiling face”), but we also consider negative at-

tributes (e.g., “the face that is not smiling”) by taking the

compliment of the attribute probability scores for each face.

The probability of each possible xk occurring is:

P (xk) =
n∏

i=1

(xkipki + (1− xki)(1− pki)) (1)

For each xk and attribute-value pair (a∗
k, v∗k) we compute

the probability of the guesser guessing correctly using the

guesser model:

P (f̃ = f |xk, a∗
k, v∗k) =

⎧⎪⎨
⎪⎩

1
n if t = 0
0 if xkf = 0 & t > 0
1
t otherwise

(2)

Therefore, we calculate the total probability of a correct

guess given a single attribute by summing over all (2n) con-

figurations of the attribute over the faces in the image as:
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Pf̃ =
∑
xk

P (f̃ = f |xk, a∗
k, v∗k)P (xk) (3)

In Eq. 3, we sum over all possible xk which is exponen-

tial in the number of faces n and computationally expensive.

Since the images in our dataset contain many faces, it is in-

tractable. However, we notice that Pf̃ depends only on the

number of faces t that satisfy the attribute, given that the

target face does. We can rewrite Eq. 3 as:

Pf̃ =
1
n

P (t = 0) + 0 +
∑

xk|xkf =1

1
t
P (xk) (4)

Where each of the three terms in the sum refer to the

three terms in Eq. 2 respectively. Finally, we notice that

t is actually a Poisson-Binomial random variable whose

PMF (probability mass function) can be computed in time

polynomial with the number of faces. A Poisson-Binomial

distribution is the distribution of the sum of independent

Bernoulli trials where the parameter p can vary for each trial

(as opposed to the Binomial distribution). We can calculate

the PMF efficiently by convolving the Bernouli PMF’s [7].

In our case, the parameters of the random variable are pk .

We can therefore rewrite Eq. 4 as:

Pf̃ =
1
n

P (t = 0) + 0 + pkf

n∑
t=1

1
t
P (t|xkf = 1) (5)

Since inside the summation we only care about cases in

which xkf = 1 we set the Poisson-Binomial parameter for

face f to 1 and then compute the PMF of t. Eq. 5 provides

a way to calculate the value of Eq. 3 exactly while avoiding

the summation over all possible xk. We can now compute

Pf̃ , the probability that the guesser will succeed, in time

ploynomial with the number of faces.

Using Eq. 5 we can find, from a pool of available at-

tributes, the single best attribute to describe the target face

(the a∗
k, v∗k that maximizes Pf̃ ). Extending this strategy to

multi-attribute descriptions is not trivial. One greedy algo-

rithm for producing a multi-attribute description is to or-

der all available attributes by Pf̃ , and choose the top m.

However, this could yield redundant attributes. For exam-

ple, imagine a group photo with two people who both have

glasses and are senior, one of whom is our target. The

attribute-value pairs has glasses and is senior may be the

top two with the greatest Pf̃ . However, mentioning both

attributes is useless, because they do not contain new infor-

mation. What is actually needed is a method of evaluating

the guesser success rate with a multi-attribute description.

3.3. Multiple Attributes

We introduce a new random variable yi, the number of

attributes of face i which correctly match the description

(a∗,v∗).

Face 1 Face 2 Face 3 Face 4 

Hat 0.90 0.20 0.80 0.10 

Beard 0.60 0.60 0.80 0.90 

White 0.30 0.40 0.90 0.50 

Face 1 Face 2 Face 3 Face 4 

0 Att. 0.03 0.19 0.00 0.05 

1 Att. 0.31 0.46 0.07 0.45 

2 Att. 0.50 0.30 0.35 0.45 

3 Att. 0.16 0.05 0.58 0.05 

Figure 4. An example of transforming the table of pki into the 4

PMF’s of yi (one per column). In Eq. 8, j iterates through the

different rows and normalizes accordingly.

yi =
q∑

j=1

xji == v∗j (6)

In this work we consider all attributes to be independent.

Therefore, yi is also a Poisson-Binomial random variable

whose parameters are pji

∣∣ j = {1, 2 . . . q} (as shown in

Figure 4). We expand the definition of t from our single

attribute example. Whereas previously it signified the num-

ber of faces with the correct value for a single attribute, tj
now signifies the number of faces with exactly j matching

attributes.

tj =
n∑

i=1

yi == j (7)

Using these random variables we efficiently calculate the

guesser’s success given multiple attributes. The basic idea

is to look at the case when the target face has j correct at-

tributes and no other face has more than j attributes correct

(if any other face does the probability of guessing correctly

is zero), and then perform Eq. 5 using tj where our new p
values are the jth row of Figure 4 normalized by the sum

of rows 0 − j. Summing over all values of j gives us the

following equation:

Pf̃ =
q∑

j=1

n∑
tj=1

(
1
ti

p(tj |yf = j, yi ≤ j ∀i)

× p(yf = j|yi ≤ j ∀i)p(yi ≤ j ∀i)
) (8)

3.4. Guesser-Based Attribute Selection

We perform attribute selection in a similar fashion to the

Greedy Heuristic Method. The algorithm’s pseudo code is

shown in Algorithm 1. This is a greedy method in which

in each step we select the best attribute-value pair to add to

our current solution, which gives us the highest combined

probability of guessing correctly given our selection from

the previous step (evaluated with Eq. 8).

As mentioned in Sec. 2.2 we can use neighboring people

when the target person does not have enough distinguishing

attributes. We do this by setting an upper limit on the num-

ber of attributes used. If the algorithm fails to reach desired

confidence , we re-run the algorithm using the neighbor’s

attributes as well. It should be emphasized that when using

a neighbor we examine both sets of attributes jointly (that
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is, our attribute set is doubled). This allows us to create de-

scriptions such as “The person with the glasses to left of the

person with the beard”.

Algorithm 1: Attribute selection algorithm

Data: c, A, f
Result: a∗, v∗
a∗ ← ∅;1
curr conf ← 0;2
while (curr conf < c) do3

for each Ai /∈ a∗ do4
tmp A← a∗ ∪Ai;5
for each tmp v do6

calculate p = P (f̃ = f |tmp A, tmp v);7
if p > curr conf then8

curr conf ← p;9
curr best← (tmp A, tmp v)10

end11
end12

end13
(a∗, v∗)← curr best14

end15

Once we have a set of attributes we construct a sentence.

Since the main focus of this paper is on the selection method

we create a simple template model to build the sentences.

4. Experiments and Results

We perform two main experiments using Amazon Me-

chanical Turk (AMT). First we perform an evaluation of our

algorithm by comparing it to a few baselines (Sec. 4.1). We

also compare our algorithm’s descriptions to ones we col-

lect on AMT from human describers (Sec. 4.2).

4.1. Computer Baselines

To evaluate our algorithm we run experiments on AMT.

Workers view an image with all detected faces marked with

a square and a textual description, and ask them to select

who is being referred to. The selection is done by clicking

on a face. Each worker performs a random set of ten image-

description pairs with one guess each. We encourage the

workers to guess correctly by offering a monetary bonus to

the top guessers.

We compare the guessing accuracy for descriptions cre-

ated using the following methods:

1. Confident: Compose the description from the n most

confident attributes. This baseline completely ignores

other faces in the image.

2. Top used: After running the algorithm on the dataset,

we select the n top used attributes throughout the

whole set. The top 5 attributes are: gender, teeth visi-

ble, eyeglasses, fully visible forehead and black hair.

3. Full greedy: We rank the attributes using the value of

Eq. 5, skipping the method introduced in Sec. 3.3, and

use the top n to compose the description.

4. GBM: Guesser Based Model. Our full algorithm with-

out neighbors.

5. GBM neighbors: Our algorithm with neighbors.

We create 2000 descriptions for 400 faces (1 for each

method). These faces were randomly selected from all de-

tections, and manually verified to be true detections. We

have 3 separate AMT workers guess each, for a total of

6000 guesses. We set our confidence level c to 0.9 and the

maximum number of attributes to 5. For faces which do not

reach confidence level c, we use the description with the

highest score with at most 5 attributes. For the rest of the

algorithms, n is the number of attributes selected by GBM.

We use images from the Images Of Groups Dataset [9]

that contain at least 8 people. The face detector detects 87%

of the correct faces with 89% accuracy for an average of

11.4 faces per image (random guessing would achieve an

average of 0.099). Results are presented in Figure 5. We

also show description examples in Figure 6.

Examining the results, it is interesting that using the most

confident attributes actually performs the worst, even worse

than simply describing a constant set of attributes as in

Top used (P=0.0022). This shows that an attribute classifier

score, by itself, is not enough information to construct an

effective description for our task. Figure 5c hints at the rea-

son for this. The attributes the classifier tends to be certain

about are ones which are not useful for our task since they

tend to be true for many people. For example, the eyes open
attribute (8 in Figure 5c) is used in around 80% of the confi-

dent descriptions. However, this is usually not useful since

most people have their eyes open. This fact is strengthened

by the low usage of this attribute by the other methods.

The need to select attributes in a manner that takes into

account the other faces in the image is clear from the im-

proved performance when using our selection algorithms.

Our Full greedy approach reaches an accuracy of 56%.

The additional 4% achieved when using GBM (P=0.0131)

shows the improvement gained using the methods described

in Sec. 3.3, which prevent mentioning redundant attributes

(See Figure 7a for an example).

The fact that using neighbors lowered the accuracy sur-

prised us since we were expecting an increase in accuracy.

However, when examining the results carefully we observed

some common errors which we believe led to this. First,

since we only verified that the target face is not a false pos-

itive, there are no guarantees for the neighbors. Therefore,

when a person is next to a false detection he may be referred

to as standing to the left of that person which will obviously

confuse the guesser. In addition, some people were con-

fused by the reference and ended up choosing the neighbor
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Figure 5. Our results from the computer baseline experiment (Sec. 4.1). (a) Guessing accuracies for the five methods introduced in Sec.

4.1. 1. confident 2. top used 3. Full greedy 4. GBM 5. GBM neighbors. (b) Accuracy results of GBM as we increase the minimum

threshold, by looking at descriptions whose confidence level as calculated in Eq. 8 are higher than it. (c) The percentage of descriptions

(methods 1-4) an attribute was used in for a select set of attributes. The attributes are: (1) Gender (2) White (3) Black hair (4) Eyeglasses

(5) Smiling (6) Chubby (7) Fully visible forehead (8) Eyes open (9) Teeth not visible (10) Beard

Pick a person who is a male and 
has black hair and has a receding 
hairline and is wearing a neck tie 

and is white 

calculated 
accuracy: 0.52  

Actual accuracy: 
1/3 

Pick a person who has black hair 
and does not have eye glasses and 
whose mouth is closed and whose 

teeth are not visible 

calculated 
accuracy: 0.90 

Actual accuracy: 
3/3 

Pick a person who is wearing a 
hat 

calculated 
accuracy: 0.93 

Actual accuracy: 
1/5 

Pick a person who has a beard 

calculated 
accuracy: 0.97  

Actual accuracy: 
3/6 

l l t d A t ll l t d A t l

and is white

l l t d A t l

teeth are not visible 

l l t d A t ly:
a

y: 
a

y:� � � � 
misclassified target attribute  misclassified distractor attribute  

Figure 6. Examples of our GBM algorithm along with the calculated confidence and the actual accuracy received from AMT. The left

two are examples where our algorithm correctly estimates the confidence (approximately). The right two examples are failure cases: A

misclassified target attribute (no hat on target) and a misclassified distractor attribute (additional bearded person in the image).

used as reference instead of the target person. Finally, it ap-

pears that some people confused left and right. That said,

we do observe clear cases in which using neighbors led to

better results (See Figure 7b for an example).

It is also interesting to investigate how guesser accu-

racy changes as we change the confidence threshold (Fig-

ure 5b). Since many of the faces in our algorithm did not

reach the necessary confidence, the average confidence of

the descriptions is 0.6484 which gives us 60% correct hu-

man guesses. However, Figure 5b shows that as we in-

crease the minimum confidence, and look only at the de-

scriptions which are above it we can achieve much higher

human guessing accuracy. This validates the meaningful-

ness of our confidence score. In addition, this shows another

strength of using GBM since the Full greedy approach does

not present a simple way of calculating this confidence.

4.2. Human Describers

We also compare our results using computer descriptions

with that of a human describer. In an additional AMT job,

workers select attribute-value pairs that best refer to the tar-

get person. We reduce the number of attributes to 20 (to

simplify the task), and present three radio buttons for each

attribute: not needed, yes, no. This is exactly analogous to

the computer algorithm and therefore the results are easily

comparable. Workers select the fewest attributes that sep-

arate the target person from the rest of the group (just as

our algorithm does). To encourage workers, we promise a

bonus to those whose descriptions give the best guessing

probability. We collected 1000 descriptions from 100 sepa-

rate workers.

Once we have collected all the descriptions given by the

workers we create a new guessing task as described in Sec.

4.1. We compare the descriptions created by humans to de-

scriptions created by GBM using the same 20 attributes as

given to the user. For this comparison we only use descrip-

tions whose confidence is above 0.7. The descriptions cre-

ated from the human selection are presented to the guesser

in the exact the same format as the computer’s. The guesser

is never informed of the source of the descriptions (human

or computer).

Accuracies from the human and computer descriptions

are 76% and 77% respectively. This result validates our

model, matching human performance when it attains high

confidence of guesser success.

Other interesting observations include that humans tend

to use gender much more often than any other attribute

(about 70% of the descriptions included gender), while this
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(3) 
Pick a person who is a senior and has gray 
hair and has bangs and whose forehead is not 
fully visible and whose teeth are visible 

(4) 
Pick a person who is a male and is in their 
youth and does not have blond hair and is 
not bald and does not have a mustache 

(4) 
Pick a person who is not a child and is a 
senior and has bangs and does not have eye 
glasses and whose teeth are visible 

(5) Pick a person. The person is on the right 
(your right) of a person who has eye glasses 

Method 

Method 

Method 

Method 

(a) (b) 

Figure 7. Examples of our algorithms output using the methods described in Sec. 4.1. (a) Since algorithm (3) calculates the probability one

attribute at a time, all of the attributes it describes could be true for both seniors. However, once narrowed down to the seniors it is enough

to say: “does not have glasses” as done by algorithm (4). (b) In this photo finding attributes which refer strictly to the target person without

using neighbors (4) is hard. But by using the person with the glasses as a landmark, we can quickly refer to the correct person.

is not true for the computer algorithm. Even in situations

where gender is not necessarily needed, humans still tend

to mention it. In addition, humans tend to choose more pos-

itive attributes rather than negative ones. In fact, of the 19

attributes (excluding gender since there is no negative for

this attribute) 18 were mentioned more often positive than

negative. In contrast, for 6 of the 19 attributes, our algo-

rithm mentions the negative attributes more often.

5. Conclusion
We have introduced a new approach for solving the novel

task of producing a referring expression for a person in an

image. We compute a confidence score for each descrip-

tion, based on a novel, efficient method for calculating the

score. Finally, we demonstrate the effectiveness of our at-

tribute selection algorithm, comparable even to constrained

human-made descriptions.

We believe there are many exciting future directions for

this work. First, more can be learned from our human de-

scribers and guessers. Our guesser model still does not

completely mimic a human because it does not consider fac-

tors such as saliency or relative attributes. By examining

the human descriptions and guesses, we may learn a better

model for the human guesser and redesign our algorithm for

referring expression generation.

In addition, this work can be extended to consider back-

and-forth conversations between humans and computers.

That is, if the referring expression isn’t clear, what ques-

tions can the guesser ask to clarify her understanding? This

might involve answering a user’s clarifying question, or pro-

viding feedback to a user who guessed incorrectly.

Finally, we believe our framework is an important com-

ponent for any image description algorithm, though chal-

lenges remain dealing with integrate more general image

descriptions (e.g., not just referring expressions).

Acknowledgments Work supported in part by NSF

DMS-0808864.

References
[1] A. Berg, T. Berg, H. Daume, J. Dodge, A. Goyal, X. Han, A. Mensch,

M. Mitchell, A. Sood, K. Stratos, et al. Understanding and predicting

importance in images. In CVPR, 2012.

[2] O. Burdakov, O. Sysoev, A. Grimvall, and M. Hussian. An o (n 2)

algorithm for isotonic regression. Large-Scale Nonlinear Optimiza-
tion, pages 25–33, 2006.

[3] R. Dale. Cooking up referring expressions. In ACL. Association for

Computational Linguistics, 1989.

[4] R. Dale and E. Reiter. Computational interpretations of the gricean

maxims in the generation of referring expressions. Cognitive Sci-
ence, 19(2):233–263, 1995.

[5] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects

by their attributes. In CVPR, 2009.

[6] A. Farhadi, S. M. M. Hejrati, M. A. Sadeghi, P. Young,

C. Rashtchian, J. Hockenmaier, and D. A. Forsyth. Every picture

tells a story: Generating sentences from images. In ECCV, 2010.

[7] M. Fernandez and S. Williams. Closed-form expression for the

poisson-binomial probability density function. Aerospace and Elec-
tronic Systems, IEEE Transactions on, 46(2):803 –817, 2010.

[8] A. Gallagher and T. Chen. Finding rows of people in group images.

In ICME, 2009.

[9] A. Gallagher and T. Chen. Understanding images of groups of peo-

ple. In Proc. CVPR, 2009.

[10] P. Grice. Logic and conversation. Syntax and Semantics, 3:43–58,

1975.

[11] A. Gupta, Y. Verma, and C. Jawahar. Choosing linguistics over vision

to describe images. In AAAI, 2012.

[12] H. Horacek. Generating referential descriptions under conditions of

uncertainty. In ENLG, 2005.

[13] A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image

search with relative attribute feedback. In CVPR, 2012.

[14] E. Krahmer, S. Erk, and A. Verleg. Graph-based generation of refer-

ring expressions. Computational Linguistics, 29(1):53–72, 2003.

[15] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and

T. L. Berg. Baby talk: Understanding and generating simple image

descriptions. In CVPR, 2011.

[16] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Describable

visual attributes for face verification and image search. In PAMI, Oct

2011.

[17] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect

unseen object classes by between-class attribute transfer. In CVPR,

2009.

[18] C. Mellish, D. Scott, L. Cahill, D. Paiva, R. Evans, and M. Reape. A

reference architecture for natural language generation systems. Nat-
ural Language Engineering, 12(01):1–34, 2006.

[19] V. Ordonez, G. Kulkarni, and T. Berg. Im2text: Describing images

using 1 million captioned photographs. In NIPS, 2011.

[20] A. Parkash and D. Parikh. Attributes for classifier feedback. In

ECCV, 2012.

[21] A. Sadovnik, Y. Chiu, N. Snavely, S. Edelman, and T. Chen. Image

description with a goal: Building efficient discriminating expressions

for images. In CVPR, 2012.

[22] W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-

attribute spaces: Calibration for attribute fusion and similarity

search. In CVPR, 2012.

[23] B. Zadrozny and C. Elkan. Transforming classifier scores into accu-

rate multiclass probability estimates. In ACM SIGKDD, 2002.

309430943096


