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Abstract

Indoor functional objects exhibit large view and appear-
ance variations, thus are difficult to be recognized by the
traditional appearance-based classification paradigm. In
this paper, we present an algorithm to parse indoor images
based on two observations: i) The functionality is the most
essential property to define an indoor object, e.g. “a chair to
sit on”; ii) The geometry (3D shape) of an object is designed
to serve its function. We formulate the nature of the object
function into a stochastic grammar model. This model char-
acterizes a joint distribution over the function-geometry-
appearance (FGA) hierarchy. The hierarchical structure
includes a scene category, functional groups, functional ob-
jects, functional parts and 3D geometric shapes. We use a
simulated annealing MCMC algorithm to find the maximum
a posteriori (MAP) solution, i.e. a parse tree. We design
four data-driven steps to accelerate the search in the FGA
space: i) group the line segments into 3D primitive shapes,
ii) assign functional labels to these 3D primitive shapes, iii)
fill in missing objects/parts according to the functional la-
bels, and iv) synthesize 2D segmentation maps and verify
the current parse tree by the Metropolis-Hastings accep-
tance probability. The experimental results on several chal-
lenging indoor datasets demonstrate the proposed approach
not only significantly widens the scope of indoor scene pars-
ing algorithm from the segmentation and the 3D recovery to
the functional object recognition, but also yields improved
overall performance.

1. Introduction
In recent years, the object detection and labeling have

made remarkable progress in the field of computer vision.

However, the detection of indoor objects and segmentation

of indoor scenes are still challenging tasks. For example, in

the VOC2012 Challenge [5], the state-of-the-art algorithms

can only obtain an accuracy of 19.5% for the detection of

chairs and 22.6% for the segmentation of chairs. Other in-

door objects, like the sofa and the dining table, are among
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Figure 1. Recognizing objects by appearance (a) or by function-

ality (b). The functional objects are defined by the affordance –

how likely its 3D shape is able to afford a human action. The 3D

shapes are inferred from an input 2D image in Fig.2.

the categories with lowest accuracies out of the twenty ob-

ject categories.

As shown in Fig.1(a), it is hard to identify these object la-

bels based solely on the appearance of these image patches

(cropped from the image in Fig.2). The classic sliding-

window type of object detectors, which only observe a win-

dow of image like these, will be insufficient to distinguish

these image patches apart. From the other point of view in

Fig.1(b), despite the appearances, people can immediately

recognize objects to sit on (chair), to sleep on (bed) and to

store in (cabinet) based on their 3D shapes. For example,

a cuboid of 18 inch tall could be comfortable to sit on as a

chair. Moreover, the functional context is helpful to iden-

tify objects with similar shapes, such as the chair on the left

and the nightstand on the right. Although they are in simi-

lar shape, the nightstand is more likely to be placed beside

the bed. The bed and the nightstand offer a joint functional

group to serve the activity of sleeping. Based on the above

observations, we propose an algorithm to tackle the problem

of indoor scene parsing by modeling the object function, the

3D geometry and the local appearance (FGA).

There has been a recent surge in the detection of rect-

angular structures, typically modeled by planar surfaces
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or cuboids, in the indoor environment. (i) Hedau et al.
[12, 13], Wang et al. [21], Lee et al. [17, 16] and Satkin

et al. [19] adopted different approaches to model the geo-

metric layout of the background and/or foreground blocks

with the Structured SVM (or Latent SVM). (ii) Another

stream of algorithms including Han and Zhu [10], Zhao

and Zhu [26] and Del Pero et al. [4, 3] that built genera-

tive Bayesian models to capture the prior statistics in the

man-made scenes. (iii) Hu [15], Xiao et al. [24], Hejrati

and Ramanan [14], Xiang and Savarese [22], Pepik et al.
[18] designed several new variants of the deformable part-

based models [6] by using detectors of projected 3D parts.

(iv) Bar-Aviv et al. [1] and Grabner et al. [8] detected chairs

by the simulation of embodied agents in the 3D CAD data

and depth data respectively. Gupta et al. [9] recently pro-

posed to infer the human workable space by adapting the

human poses to the scene.

Overview of our approach: On top of a series of recent

studies of computing the 3D bounding boxes of indoor ob-

jects and the room layout [9, 12, 13, 21, 17, 16, 10, 26, 4, 3,

19], our model is developed based on the following observa-

tions of the function-geometry-appearance (FGA) hierarchy

as shown in Fig.2.

i) Function: An indoor scene is designed to serve a hand-

ful of human activities inside. The indoor objects (furniture)

in the scenes are designed to support human poses/actions,

e.g. bed to sleep on, chair to sit on etc.

In the functional space, we model the probabilistic

derivation of functional labels including scene categories

(bedroom), functional groups (sleeping area), functional

objects (bed and nightstand), and functional parts (the mat-

tress and the headboard of a bed).

ii) Geometry: The 3D size (dimension) can be sufficient

to evaluate how likely an object is able to afford a human

action, known as the affordance [7]. Fortunately, most of

the furniture has regular structures, i.e. a rectangular cabi-

net, therefore the detection of these objects is tractable by

inferring their geometric affordance. For objects like sofas

and beds, we use a more fine-grained geometric model with

compositional parts, i.e. a group of cuboids. For example,

the bed with a headboard better explains the image signal as

shown at the bottom of Fig.2.

In the geometric space, each 3D shape is directly linked

to a functional part in the functional space. The contex-

tual relations are also involved when multiple objects are

assigned to a same functional group, e.g. a bed and a night-

stand for sleeping. The distribution of the 3D geometry are

learned from a large set of 3D models as shown in Fig.3.

iii) Appearance: The appearance of the furniture vary ar-

bitrarily large due to the variation of material property, the

lighting condition, and the view point. In order to land our

model on the input image, we use a straight-line detection,

a surface orientation estimation and a coarse foreground de-
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Figure 2. A function-geometry-appearance (FGA) hierarchy. The

green arrows indicate the bottom-up steps, and the cyan arrows

represent the top-down steps in the inference stage.

tection as the local evidence to support the geometry model

above.

We design a four-step inference algorithm that enables

a MCMC chain to travel up and down through the FGA

hierarchy:

i). A bottom-up appearance-geometry (AG) step groups

noisy line segments in the A space into 3D primitive shapes,

i.e. cuboids and rectangles, in the G space;

ii). A bottom-up geometry-function (GF) step assigns

functional labels in the F space to detected 3D primitive

shapes, e.g. to sleep on;

iii). A top-down function-geometry (FG) step further

fills in the missing objects and the missing parts in the

G space according to the assigned functional labels, e.g.

a missing nightstand of a sleeping group, a missing head-

board of a bed;

iv). A top-down geometry-appearance (GA) step syn-

thesizes 2D segmentation maps in the A space, and makes

an accept/reject decision of a current proposal by the

Metropolis-Hastings acceptance probability.
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Figure 3. A collection of indoor functional objects from the Google 3D Warehouse

Figure 4. The distribution of the 3D sizes of the functional objects (in unit of inch).

2. A stochastic scene grammar in FGA space
We present a stochastic scene grammar model [26] to

compute a parse tree pt for an input image I on the FGA

hierarchy. The hierarchy includes following random vari-

ables in the FGA spaces as shown in Fig.2 :

• The functional space F contains the scene categories

Fs, the functional groups Fg, the functional objects

Fo, and the functional parts Fp. All the variables in

functional space take discrete labels;

• The geometric space G contains the 3D geometric

primitives Gp. Each Gp is parameterized by a con-

tinuous 6D variable (a 3D size and a 3D position in the

scene);

• The appearance space A contains a line segment map

Al, a foreground map Af , and a surface orientation

map Ao. All of them can be either computed from the

image Al(I), Af(I), Ao(I) or generated by the 3D

geometric model Al(G), Af(G), Ao(G).
The probabilistic distribution of our model is defined in

terms of the statistics over the derivation of our function-

geometry-appearance hierarchy. The parse tree is an in-

stance of the hierarchy pt ∈ {F ,G,A} as illustrated in

Fig.2, and it is an optimal solution of our model by max-

imum a posteriori probability,

P (pt|I) ∝ P (F)P (G|F)P (I|G). (1)

We specify a hierarchy of an indoor scene over the func-

tional space F , the geometric space G and the appearance

space A.

2.1. The function model P (F)
The function model characterizes the prior distribu-

tion of the functional labels. We model the distribution

by the probabilistic context free grammar (PCFG): G =
(N,T, S,R), where N = {Fs, Fg, Fo} are the non-

terminal nodes (circles in Fig.2), and T = {Fp} are the

functional parts as terminal nodes in F space (squares in

Fig.2), S is a start symbol and R = {r : α → β} is a set

of production rules. In our problem, we define following

production rules:

S→ Fs: S→ [bedroom] | [living room]

Fs→Fg: [bedroom]→ [sleeping][background] | · · ·
Fg→Fo: [sleeping]→ [bed] | [bed][night stand] | · · ·
Fo→Fp: [bed]→ [headboard][mattress] | [mattress]

The symbol “|” separates alternative explanations of the

grammar derivation. Each alternative explanation has a

311931193121



branching probility q(α → β) = P (β|α). Given a

functional parse containing the production rules α1 →
β1, · · · , αn → βn, the probability under the PCFG is de-

fined as,

P (F) =
n∏

i=1

q(αi → βi) (2)

The model is learned by simply counting the frequency of

each production rules as q(α → β) = #(α→β)
#(α) . In this

paper, we manually designed the grammar structure and

learned the parameters of the production rules based on the

labels of thousands of images in the SUN dataset [23] under

the “bedroom” and the “living room” categories.

2.2. The geometric model P (G|F)
In the geometric space, we model the distribution of

3D size (dimension) for each geometric primitive Gp given

its functional labels F , e.g. the size distribution of cuboid

shaped bed mattresses. The higher level functional labels

Fs, Fg, Fo introduce the contextual relations among these

primitives, e.g. the distance distribution between a bed and

a nightstand. Suppose we have k primitives in the scene

Gp = {vi : i = 1, · · · , k}, these geometric shapes form

a graph G = (V,E) in the G space, where each primitive

is a graph node vi ∈ V , and each contextual relation is a

graph edge e ∈ E. In this way, we derive a Markov Ran-

dom Fields (MRFs) model at the geometric level. The joint

probability is factorized over the graph cliques,

P (G|F) =
∏

vi∈Gp

ϕ
1
(vi|Fp)

∏
ei∈cl(Fo)

ϕ2(ei|Fo)
∏

ei∈cl(Fg)

ϕ3(ei|Fg)

∏
ei∈cl(S)

ϕ4(ei)

(3)

where the ei ∈ cl(X) denotes an edge whose two connect-

ing nodes belong to the children (or descendant) of the X .

These four kinds of cliques are introduced by the functional

parts Fp, the functional objects Fo, the functional groups

Fg and the general physical constraints respectively:

Object affordance ϕ1(vi|Fp) is an “unary term” which

models one to one correspondences between the geometric

primitives Gp and the functional parts Fp. The probability

measures how likely an object is able to afford the action

given its geometry. As shown in Fig.1, a cube around 1.5ft

tall is comfortable to sit on despite its appearance, and a ”ta-

ble” of 6ft tall loses its original function – to place objects

on while sitting in front of. We model the 3D sizes of the

functional parts by a mixture of Gaussians. The model char-

acterizes the Gaussian nature of the object sizes and allows

the alternatives of canonical sizes at the same time, such as

king size bed, full size bed etc. We estimate the model by

EM clustering, and we manually picked few typical primi-

tives as the initial mean of Gaussian, e.g. a coffee table, a

side table and a desk from the table category.

In order to learn a better affordance model, we collected

a dataset of functional indoor furniture, as shown in Fig.3.

The functional objects in the dataset are modeled with the

real-world measurement, therefore we can generalize our

model to the real images by learning from this dataset. We

found that the real-world 3D size of the objects has less vari-

ance than the projected 2D size. As we can see, these func-

tional categories are quite distinguishable solely based on

their sizes as shown in Fig.4. For example, the coffee ta-

bles and side tables are very short and usually lower than

the sofas, and the beds generally have large widths compar-

ing to the other objects. The object poses are aligned in the

dataset. We keep four copies of Gaussian model for four al-

ternative orientations along x, −x, y and −y axes to make

the model rotation invariant in the testing stage.

3D compositional models of functional object and
functional groups ϕ2

(ei|Fo), ϕ
3
(ei|Fg) are defined by

the distributions of the 3D relative relations among the parts

of an objects Fo or the objects of an functional group Fg.

We also use a high-dimensional Gaussian to model the rela-

tive relations. The Fig.5 shows some typical samples drawn

from our learned distribution. This term enables the top-

down prediction of the missing parts or missing objects as

we will discuss in Sect.3.

General physical constraints ϕ4(ei) avoid invalid ge-

ometric configurations that violate the physical laws: Two

objects can not penetrate each other; the objects must be

contained in the room. The model penalizes the pene-

trating area between foreground objects Λf and the ex-

ceeding area beyond the background room borders Λb as

1/z exp{−λ(Λf + Λb)}, where we take λ as a large num-

ber, and Λf = Λ(vi)
⋂
Λ(vj), Λb = Λ(vi)

⋂
Λ(bg).

2.3. The appearance model P (I|G)
We define the appearance model by applying the idea of

analysis-by-synthesis. In the functional space and the ge-

ometric space, we specify how the underlying causes gen-

erate a scene image. There is still a gap between the syn-

thesized scene and the observed image, because we can not

render a real image without knowing the accurate lighting

condition and material parameters. In order to fill this gap,

we make use of the discriminative approaches: a line seg-

ment detector [20], a foreground detector [12] and a sur-

face orientation detector [17] to produce a line map Al(I),
a foreground map Af(I) and a surface orientation map

Ao(I) respectively. By projecting detected 3D geomet-

ric primitives onto the image plane, we evaluate our model

by calculating the pixel-wise difference between the maps

from top-down projection and the maps from bottom-up de-
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Figure 5. Samples drawn from the distributions of 3D geometric models (a) the functional object “sofa” and (b) the functional group

“sleeping”.

tection as shown in Fig.2.

P (I|G) ∝ exp(λ[d(Al(G),Al(I))
+ d(Af(G),Af(I)) + d(Ao(G),Ao(I))]) (4)

These image features have been widely used in recent stud-

ies [9, 12, 13, 21, 17, 16, 10, 26, 4, 3, 19], hence we will

skip further discussion of details about them.

2.4. Put objects back to the 3D world

Another important component of our model is the recov-

ery of a real world 3D geometry from the parse tree (Fig.2).

It enables us to utilize the 3D geometric/contextual mea-

surement to identify the object affordance/functional groups

as discussed before.

Single view camera calibration: We cluster line seg-

ments to find three vanishing points whose corresponding

dimensions are orthogonal to each other [12]. The vanish-

ing points are then used to determine the intrinsic and ex-

trinsic calibration parameters [2, 11]. We assume that the

aspect ratio is 1 and there is no skew. Any pair of finite

vanishing points can be used to estimate the focal length.

If all the three vanishing points are visible and finite in the

same image, the optical center can be estimated as the ortho-

center of the triangle formed by the three vanishing points.

Otherwise, we set the optical center to the center of an im-

age. Once the focal length and optical center has been de-

termined, the camera rotational matrix can be estimated ac-

cordingly [11].

3D scene reconstruction. We now present how to back-

project a 2D structure to the 3D space and how to derive

the corresponding coordinates. Considering a 2D point p in

an image, there is a collection of 3D points that can be pro-

jected to the same 2D point p. This collection of 3D points

lays on a ray from the camera center C = (Cx,Cy,Cz)T

to the pixel p = (x, y, 1)T . The ray P (λ) is defined by

(X,Y, Z)T = C + λR−1K−1p, where λ is the positive

scaling factor that indicates the position of the 3D point on

the ray. Therefore, the 3D position of the pixel lies at the

intersection of the ray and a plane (the object surface). We

assume a camera is 4.5ft high. By knowing the distance and

the normal of the floor plane, we can recover the 3D posi-

tion for each pixel with the math discussed above. And any

other plane contacting with the floor can be inferred by its

contacting point with the floor. Then we can gradually re-

cover the whole scene by repeating the process from bottom

up. If there is any object too close to the camera without

showing its bottoms, we will put it 3 feet away from the

camera.

3. Top-down / bottom-up inference

We design a top-down/bottom-up algorithm to infer an

optimal parse tree. The compositional structure of the con-

tinuous geometric parameters introduces a large solution

space, which is infeasible to enumerate all the possible ex-

planations. Neither the sliding windows (top-down) nor

the binding (bottom-up) approaches can handle such an

enormous number of configurations independently. We de-

sign a four-step inference algorithm that enables a MCMC

chain to travel up and down through the FGA hierarchy:

A → G → F → G → A. In each iteration, the algorithm

proposes a new parse tree pt∗ based on the current one pt
according to the proposal probability.

I. A bottom-up appearance-geometry (AG) step de-

tects possible geometric primitives Gp as bottom-up pro-

posals, i.e. rectangles and cuboids, from the noisy local line
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segments. The rectangles are formed by filtering over the

combinations of two pairs of parallel lines or T junctions.

Similarly, the cuboids are formed by filtering over the com-

binations of two hinged rectangles. The proposal probabil-

ity for a new geometric primitive g∗ is defined as

Q1(g
∗|IΛ) = PA(IΛ|g∗)P (g∗)∫

g∈Gp
PA(IΛ|g)P (g)

(5)

where the PA(IΛ|g) is defined in a similar form of Eq.4

except that we only calculate the image likelihood within a

local patch IΛ. The P (g) characterizes the prior distribu-

tion, i.e. how likely the shape of g can be generated by the

model.

P (g) =

∫
F
P (F , g) =

∫
F
P (F)P (g|F) (6)

Since P (g|F) is defined by a Gaussian model,∫
F P (F)P (g|F) is a mixture of a large number of

Gaussians, and P (F) is a hyperprior of mixture coeffi-

cients. It is worth noting that this proposal probability

Q1 is independent of the current parse tree pt. Therefore

we can precompute the proposal probability for each

possible geometric proposal, which dramatically reduces

the computational cost of the chain search.

II. A bottom-up geometry-function (GF) step assigns

functional labels given the 3D shapes detected in the G

space. The proposal probability of switching an functional

label f∗ on the functional tree is defined as

Q2(f
∗|pa, cl) = P (cl|f∗)P (f∗|pa)∫

f
P (cl|f)P (f |pa) (7)

where the cl are the children of f∗, and pa is the parent

of f∗ on the current parse tree pt. In this way, the prob-

ability describes the compatibility of the functional label

f∗ with its parent pa and its children cl on the tree. With

the geometry primitives fixed on the bottom, this proposal

makes the chain jumping in the functional space to find a

better functional explanation for these primitives. With the

Markov property on the tree, Q2(f
∗|pa, cl) is equivalent to

the marginal probability P (f∗|pt).
III. A top-down function-geometry (FG) step fills in

the missing object in a functional group or the missing part

in a functional object. For example, once a bed is detected,

the algorithm will try to propose nightstands beside it by

drawing samples from the geometric prior and the contex-

tual relations. The problem of sampling with complex con-

straints was carefully studied by Yeh et al. [25]. Fig.5 shows

some typical samples. The proposal probability Q3(g
∗|F)

of a new geometric primitive g∗ is defined by Eq.3.

Here, we can see that Q1(I → G) proposes g∗ by the

bottom-up image detection, and Q3(F → G) proposes g∗

by the top-down functional prediction. They are two ap-

proximations of the marginal distribution P (g∗|pt).

On the other hand, the algorithm also proposes to delete a

geometric primitive with uniform probability. Both the add

or delete operation will trigger the step II of reassigning a

functional label.

IV. A top-down geometry-appearance (GA) step
projects the 3D geometric model to the 2D image plane with

respect to the relative depth order and camera parameters.

The projection is a deterministic step. It generates the im-

age feature maps used to calculate the overall likelihood in

Eq.4. And the image features are shown at the bottom of

Fig.2.

We evaluate the above proposals by the Metropolis-

Hastings acceptance probability,

α(pt→ pt∗) = min{1, Q(pt|pt∗, I)
Q(pt∗|pt, I) ·

P (pt∗|I)
P (pt|I) } (8)

so that the Markov chain search satisfies the detailed bal-

ance principle. A simulated annealing technology is also

used to find the maximum of complex posteriori distribu-

tion with multiple peaks while other approaches may trap

the algorithm at a less optimal peak.

4. Experiments
Our algorithm has been evaluated on the UIUC indoor

dataset [12], the UCB dataset [4], and the SUN dataset [23].

The UCB dataset contains 340 images and covers four cu-

bic objects (bed, cabinet, table and sofa) and three planar

objects (picture, window and door). The ground-truths are

provided with hand labeled segments for geometric primi-

tives. The UIUC indoor dataset contains 314 cluttered in-

door images and the ground-truth is two label maps of the

background layout with/without foreground objects. We

picked two categories in the SUN dataset: the bedroom with

2119 images and the living room with 2385 images. This

dataset contains thousands of object labels and was used to

train our functional model as discussed in Sect.2.1.

Quantitative evaluation: We first compared the confu-

sion matrix of functional object classification rates among

the successfully detected objects on the UCB dataset as

shown in Fig.6. A latest work by Del Pero et al. [3]

performed slightly better on the cabinet category, but our

method get better performance on the table and sofa cat-

egories. This is mainly attributed to our fine-grained part

model and functional groups model. It is worth noting that

our method reduced the confusion between the bed and the

sofa. Because we also introduced the hidden variables of

scene categories, which help to distinguish between the bed-

room and living room according to the objects inside.

In Table.1, we compared the precision and recall of func-

tional object detection with Del Pero’s work [3]. The result

shows our top-down process did not help the detection of

planner objects. But it largely improves the accuracy of cu-
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Figure 6. The confusion matrix of functional object classification

on the UCB dataset.

Table 1. The precision (and recall) of functional object detection

on the UCB dataset.

UCB dataset planar objects cubic objects

Del Pero 2012 [3] 27.7% (19.7%) 31.0% (20.1%)

Ours w/o top-down 28.1%(18.5%) 30.8% (24.3%)

Ours w/ top-down 28.1%(18.7%) 34.8% (29.7%)

Table 2. The pixel classification accuracy of background layout

segmentation on the UCB dataset and the UIUC dataset.

UCB dataset UIUC dataset

Hedau 2009 [12] - 78.8%

Wang 2010 [21] - 79.9%

Lee 2010 [16] - 83.8%

Del Pero 2011 [4] 76.0% 73.2%

Del Pero 2012 [3] 81.6% 83.7%

Our approach 82.8% 85.5%

bic object detection from 30.8% to 34.8% with the recall

from 24.3% to 29.7%.

In Table.2, we also test our algorithm on the UCB dataset

and the UIUC dataset together with five state-of-the-art al-

gorithms: Hedau 2009 [12], Wang 2010 [21], Lee 2010

[16], Del Pero 2011 [4] and Del Pero 2012 [3]. The results

show the pixel-level segmentation accuracy of proposed al-

gorithms not only significantly widens the scope of indoor

scene parsing algorithm from the segmentation and 3D re-

covery to the functional object recognition, but also yields

improved overall performance.

Qualitative evaluation: Some experimental results on

the UIUC and the SUN datasets are illustrated in Fig.7. The

green cuboids are cubic objects proposed by the bottom-up

AG step, and the cyan cuboids are the cubic objects pro-

posed by the top-down FG step. The blue rectangles are

the detected planar objects, and the red boxes are the back-

ground layouts. The functional labels are given to the right

of each image. Our method has detected most of the indoor

objects, and recovered their functional labels very well. The

top-down predictions are very useful to detect highly oc-

cluded nightstands as well as the headboards of the beds. As

shown in the last row, our method sometimes failed to detect

certain objects. The bottom left image fails to identify the

drawer in the left but a door. In the middle bottom image,

the algorithm failed to accurately locate the mattress for this

bed with a curtain. The last image is a kind of typical failure

example due to the unusual camera position. We assumed

the camera position is 4.5 feet high, while this camera po-

sition in this image is higher than our assumptions. As a

result, the algorithm detected a much larger bed instead.

5. Conclusion
This paper presents a stochastic grammar built on a

function-geometry-appearance (FGA) hierarchy. Our ap-

proach parses an indoor image by inferring the object func-

tion and the 3D geometry. The functionality defines an in-

door object by evaluating its “affordance”. The affordance

measures how much an object can support the correspond-

ing human action, e.g. a bed is able to support the action

of sleep. We found it is effective to recognize certain ob-

ject functions according to its 3D geometry regardless of

observing the actions.

The function helps to build an intrinsic bridge between

the man-made object and the human action, which can mo-

tivate other interesting studies in the future: functional ob-

jects/areas in a scene attract human’s needs and/or inten-

tions; other risky areas (like shape corners) apply repul-

sive force to human actions. As a result, a parsed scene

with functional labels defines a human action space, and it

also helps to predict people’s behavior by making use of

the function cues. On the other hand, given observed ac-

tion sequence, it is very obvious to accurately recognize the

functional objects associated with the rational actions.
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Figure 7. Parsing results include cubic objects (green cuboids are detected by bottom-up step, and cyan cuboids are detected by top-down

prediction), planar objects (blue rectangles), background layout (red box). The parse tree is shown to the right of each image.
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