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Abstract

In recent years, efficiency of large-scale object detec-
tion has arisen as an important topic due to the exponential
growth in the size of benchmark object detection datasets.
Most current object detection methods focus on improving
accuracy of large-scale object detection with efficiency be-
ing an afterthought. In this paper, we present the Efficient
Maximum Appearance Search (EMAS) model which is an
order of magnitude faster than the existing state-of-the-art
large-scale object detection approaches, while maintaining
comparable accuracy.

Our EMAS model consists of representing an image as
an ensemble of densely sampled feature points with the pro-
posed Pointwise Fisher Vector encoding method, so that the
learnt discriminative scoring function can be applied lo-
cally. Consequently, the object detection problem is trans-
formed into searching an image sub-area for maximum lo-
cal appearance probability, thereby making EMAS an order
of magnitude faster than the traditional detection methods.
In addition, the proposed model is also suitable for incor-
porating global context at a negligible extra computational
cost. EMAS can also incorporate fusion of multiple fea-
tures, which greatly improves its performance in detecting
multiple object categories. Our experiments show that the
proposed algorithm can perform detection of 1000 object
classes in less than one minute per image on the Image Net
ILSVRC2012 dataset and for 107 object classes in less than
5 seconds per image for the SUN09 dataset using a single
CPU.

1. Introduction
Large-scale object detection is an important vision prob-

lem concerned with detecting a large number of object cat-

egories and localizing them in a large number of images.

Tremendous amount of recent research [1, 2, 3, 4, 5, 16]

has focused on developing novel feature representations

and classification algorithms to boost accuracy of large-
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Figure 1: Upper part: the proposed EMASmodel. The local

feature xi is first mapped to a high dimensional sparse vec-
tor φ(xi) then the detection model can be applied locally
to get the local confidence map. The model inference is

achieved by an efficient maximum subarray search. Lower

part: the template-based detection with exhaustive convolu-

tion over scales and positions.

scale object detection. A common thread that ties most

of these state-of-the-art approaches together would be de-

tection models that are designed to discriminate object

shape from background on densely sampled sub-windows

of images. Among these approaches, the template-based

approaches, such as the popular Deformable Part Model

(DPM) [2], use linear models constructed from a number of

part templates of image gradient features. Since templates

are sensitive to sampling scale and the pose of objects, in-

ference of such models often entails exhaustively searching

for the best template configuration regarding pose, scale,

rotation, etc. Refinements to remedy this sampling problem

brings extra computational cost, e.g DPM needs search the

template configuration for best part combinations. Most ob-

ject detection systems based on the aforementioned meth-

ods work at several seconds to tens of seconds per object
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model per image [3, 4], and hence present significant barri-

ers towards building systems that operate on a large number

of images for a large number of object categories, i.e. to-

wards practical large-scale object detection.

In this paper, we propose an Efficient Maximum Ap-

pearance Search (EMAS) model which is an order of mag-

nitude faster as compared to the existing state-of-the-art

approaches while maintaining state-of-the-art accuracy for

large-scale object detection. Unlike the template-based ap-

proaches in which the learned model has to be applied to

each testing window exhaustively, the key insight of our ap-

proach, as illustrated in Fig. 1, is that we represent an image

as an ensemble of densely sampled feature points with the

proposed Pointwise Fisher Vector encoding. This enriched

local representation enables us to transform the object de-

tection problem into searching for an image sub-window

with maximum sum of object possibility, which can be per-

formed extremely efficiently. The advantage of low compu-

tation complexity enables us to explore the large scale ob-

ject detection problem with huge number of categories. We

also show in our experiments that our appearance-based ap-

proach shows better results than the traditional shape-based

approach when dealing with categories with large variance.

Our contributions are thus as follows:

• We propose an efficient maximum appearance search

model for large scale object detection. Our proposed

EMAS applies the model locally to each transformed

local points and the inference problem is transferred to

searching the sub-window with maximum sum. As far

as we know, this is the first model specifically designed

for object detection with large number of categories,

which makes it different from other works that focus

on improving DPM model for efficiency [4, 31, 29].

• We propose the Pointwise Fisher Vector coding as the
enriched local representation of our detection model.

Our representation is motivated by the recent suc-

cess of image classification work using Fisher Vec-

tor [10]. However, traditional Fisher Vector presen-

tation requires a pooling and normalization operation

in the image level, which makes it difficult to be used

by sliding window search. In this work, we propose to

maintain a local feature coding which benefits the dis-

criminative power of the local patches. The key insight

is that we extend Fisher Vector encoding to the point-

level, which makes EMAS extremely efficient by en-

abling rapid maximum sub-window search. Moreover,

this representation is able to construct a global form

for multi-class detection and thus has the potential to

search objects very efficiently in a large scale setting.

• We show state-of-the-art performance on two chal-

lenging datasets with large number of categories, i.e.

SUN09 [20] and ILSVRC2012 [28]. Experimental

evaluations show that the algorithm can perform de-

tection of 1000 object classes in less than one minute

per image on the Image Net ILSVRC2012 datasets and

107 object classes in about 5 seconds per image on the

SUN09 dataset using single CPUwith comparable per-

formance to state-of-the-art algorithms.

2. Related Works
2.1. General Object Detection
Shape-based object detection models rely on discrimi-

native shape templates using histograms of oriented gradi-

ents. Initially, Dalal and Triggs [1] used a single rigid tem-

plate to build a detection model for pedestrians. Thereafter,

the PASCAL VOC dataset [11] was released, comprising of

objects with more deformable shapes like animals and ve-

hicles. Hence, the single template model was extended to

part-based models [2] by Felzenswalb et al., with inspira-

tion from [26], to handle shape deformations. Although the

deep convolution network [24] shows promising result on

ImageNet, the part-based methods [12, 13, 23] are still the

best-performing ones on the VOC dataset.

Previous research [16, 5, 7, 8, 9] has also explored BoW

model detection. The MKL object detection [16] which

uses kernel-based models and spatial pyramid (SP) fea-

ture combination achieves promising results but the com-

putation cost is very high. Efficient Subwindow Search

(ESS) [5, 7, 8, 9] tries to speed up the VQ-based BoW

model using a branch and bound technique but often with

much poorer performance on standard datasets. The main

disadvantage of VQ is that it encodes the local feature as

one specific visual word index, thus no complex local dis-

criminative model can be build upon this.

The BoW-based model has the advantage of efficiency if

one linear model can be applied and the possible theoretical

computation cost is much less than the template-based ap-

proach. Suppose we use the same low level feature for both

models, e.g. HOG. For a template model withm× n cells,
we need to computem× n times convolution at each pixel
for each category test searching over the image. The search

complexity is O(mnP ) where P is the searching space

complexity for an image. For a BoW model, the cost is sep-

arated into two parts, i.e. the local feature coding step and

inference (dot-product ) over the linear model. The cost of

local feature coding step often increases with the codebook

size K which is independent for each categorie. For multi-

class object detection, the only cost addition is the inference

cost which depends on the sparseness E of the coding. The
sparseness is 1/K for hard Vector Quantization (VQ), and

is around 3% for Fisher Vector coding (FV) [10] in our ex-

periments. So, the inference complexity is O(EP ), which
is much less than the template-based approach (mn � E).
2.2. Feature Encoding
Recent feature encoding approaches, such as Sparse

Coding [14] and Locality-constrained Linear Cod-

ing(LLC) [15], introduce soft assignment for local feature
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Figure 2: Framework illustration of Efficient Maximum Appearance Search.

quantization thereby improving previous discrete quan-

tization methods and can been seen as an extension of

Vector Quantization. For the recognition problem, these

two coding methods benefit from large size codebooks as

demonstrated in a recent survey [17]. The large codebook

size and the introduction of soft assignment reduce the

quantization error at the expense of increased computa-

tional cost. Recently, aggregation coding, such as, the

Fisher Vector coding or the Super Vector coding, have

demonstrated increased discriminative power of local fea-

tures [17]. Fisher encoding [10] captures the average first

and second order differences between local features and the

centers of a Mixture of Gaussian Distributions learnt from

general datasets, while the Super vector encoding [18] only

focuses on the first order difference. Recently, G. Csurka

et.al [25] extended the Fisher Vector coding to the patch

level for the semantic segmentation task. As an extension

of the previous approach, we propose to further extend

the Fisher encoding to the point level. In other words, the

scoring function operates on the point level as opposed to

operating on the patch level as in [25].

2.3. Efficient Object Detection
In the past few years, various ways to reduce detec-

tion time have been explored in the literature. The cas-

cade part-based model [4] accelerates the part-based mod-

els [2] by learning stagewise thresholds to fast reject neg-

ative sampling windows. Other methods improve the ef-

ficiency of current DPM model [31, 29]. The jumping

windows method [3] generates sparse candidate windows

by back-projecting Bag-of-Word image classification scores

and assumes objects are more likely to be located by more

positive discriminative words. ESS with branch-and-bound

search [5] was proposed to reduce the cost in searching sub-

window by finding bounds of subwindow scores.

3. Model
The proposed Efficient Maximum Appearance Search

(EMAS) model proceeds through four stages to perform

large-scale object detection as shown in Fig. 2. During

the first stage, we extract multiple complementary features;

such as HOG, color moments, etc., for an image, these fea-

tures are then used to encode the image with a pointwise

feature representation during the second stage. In the third

stage, we obtain the object confidence maps using a com-

bination of appearance detection models and global context

models to look for specific objects within a global context.

Finally, the object confidence values are combined to find

the highly confident object locations for each object cate-

gory using maximum subarray search. In the following sub-

sections, we explain in more detail the unique points of our

approach, namely, the use of probabilistic prediction over

a point ensemble, and the representation, model learning

and model inference of the EMAS model. We also extend

our model into multi-class categories setting which enables

a multi-class object context. Our system can easily adopt

multiple feature fusing to boost the performance.

3.1. Probabilistic Prediction over Point Ensemble
Similar to Bag-of-Words like models, where the prob-

abilistic prediction is conducted over the word ensemble

contained by the inference body, the EMAS model also es-

timates the object probabilities using the point ensemble

contained within an image area. In particular, let P (X) =∏n
i=1 p(xi) where P (X) is the joint probability over a set

of points xi. The binary discriminative model is used for
the figure-ground detection for each object category, which

formulates the discriminative probabilities as:
P (X|l = 1)

P (X|l = −1)
=

n∏

i=1

p(xi|l = 1)

p(xi|l = −1)
, (1)

where l = 1 denotes the foreground condition and l = −1
denotes the background condition respectively. Using the

linear discriminative models, e.g. SVM, the logarithm bi-

nary discriminative probability can be expressed as:

log(
p(xi|l = 1)

p(xi|l = −1)
) = wTφ(xi), (2)

where w is the linear weighting vector and φ(x) denotes the
feature expression for a single image point x. Therefore,
Eqn. 1 can be formulated into the logarithm form as:

log(
P (X|l = 1)

P (X|l = −1)
) =

n∑

i=1

wTφ(xi), (3)

namely the log-likelihood of an image area to be an object

foreground depends on the sum of the pointwise inference

in this area.

3.2. Representation: Pointwise Fisher Vector
The performance of the EMAS model relies heavily on

the design of pointwise feature representation. In this work,
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we choose to extend the Fisher Vector (FV) feature cod-

ing method [10] to derive Pointwise Fisher Vector (PFV)

coding. Similar to Fisher Vector coding method, the PFV

coding uses a Gaussian mixture models (GMMs) Uλ(x) =∑K
k=1 πkuk(x) trained on local features of a large image

set using Maximum Likelihood (ML) estimation to describe

image content. The parameters of the trained GMMs are de-

noted as λ = {πk, μk,Σk, k = 1, · · · ,K}, where {π, μ,Σ}
are the prior probability, mean vector and diagonal covari-

ance matrix of Gaussian mixture respectively.

For a local feature xi extracted from an image, the soft

assignments of the descriptor xi to the kth Gaussian com-

ponents γik is computed by γik = πkuk(xi)∑K
k=1 πkuk(xi)

. The PFV

for xi is denoted as φ(xi) = {ui1, vi1, · · · , uiK , viK}while
uik and vik is defined as follows:

uik =
1√
πk

γik
xi − μk
σk

, vik =
1√
2πk

γik[
(xi − μk)

2

σ2k
− 1]. (4)

where σk is the square root of the diagonal values of Σk. To

summarize, we provide a brief analysis of the relationship

between FV and PFV coding:
1. PFV extends Fisher Vector Coding [10] to the local

feature point level. At each point, the local feature is

mapped to GMMs with K Gaussians. The gradient

vector with respect to the mean and standard deviation

parameters serves as an enriched representation for this

local feature. The pointwise representation can also be

flexibly merged back to the Fisher Vector global image

representation as aforementioned. Compared with VQ,

PFV could provide much rich local representation. For

VQ, each local feature is mapped to a codebook index

while in PFV, xi is mapped to each GMMs and the
gradient vectors enable the local model learning.

2. The pointwise representation φ(xi) is sparse since
each feature point only has few non-zero GMMs com-

ponent assignment values γik. It means that the model
only needs to be applied to these non-zero components

in the inference stage thereby making it very efficient.

A statistic from SUN09 shows that each local feature

is assigned, on average, to 3.5 GMMs components.

3.3. Model Learning
In the training procedure, we assume a series of train-

ing samples for one category with bounding boxes window

{y1, y2, ..., ynI} and corresponding labels {l1, l2, ..., lnI}.
A max-margin formulation is used to learn the linear dis-

criminative model w for each object figure-ground classi-

fication. In detail, we formulate the objective function as

following:

w = argmin
w,ξ

1

2
||w||2 + C

nI∑

m=1

ξm (5)

s.t. lmw
T (

1

Zm

∑

xi∈ym
φ(xi)) > 1 − ξm

ξm ≥ 0, ∀lm ∈ {1,−1},

where φ(xi) is the ith pointwise feature in the image area
y and we use the ground truth object area as the positive
training samples for l = 1 and use image areas which have
less than 0.4 overlap ratio to the ground truth object areas as
the negatve samples for l = −1. Normalization factor Zm
is applied to the sum of the pointwise features in order to

fit to the SVM optimization. Hard negative mining is done

for 3 rounds to enhance the discriminative capability of the
model.

3.4. Model Inference
The goal of the EMAS inference step is to find the image

area with maximum probability of containing the object,

ŷ = argmax
y

log(
P (X, y|l = 1)

P (X, y|l = −1)
) (6)

= argmax
y

∑

xi∈y
wTφ(xi)

= argmax
y

f(I, y, w)

where φ(xm) is the mth pointwise feature in the image
area y. We denote an appearance-based detection model
as w = {wu

1 , w
v
1 , · · · , wu

K , w
v
K} while wu

k , w
v
k correspond

to the weights for coding vector uik, vik respectively. The
model scoring function can be generated with the PFV rep-

resentations φ(xi) as follows,

f(I, y, w) =
∑

xi∈y

K∑

k=1

[(wu
k )
Tuik + (wv

k)
T vik], (7)

Namely, the scoring of an image area can be substituted by

computing score sum of the feature points within the area.

To apply model w on the whole image I and detect high-
scored areas, we first extract and encode dense and regularly

sampled PFVs– φ(xij), where {i ∈ [1, Ny], j ∈ [1, Nx]},
Nx andNy are the sampling point numbers in the width and

height direction and Nx × Ny = N is the total PFV num-

ber. Then by computing inner product to all PFVs with the

model w, we can produce a rectangle score mapMI , where

MI(i, j) = wTφ(xij). In this work, we only consider lo-
cating object in rectangle areas y = [t, b, l, r] denoted by
the top, bottom, left and right coordinate of the rectangle.

Consequently the object detection task is converted to the

following optimization problem regarding the scoring func-

tion f(I, y, w) in Equation 7. This optimization problem is
called 2D maximum subarray sum search:

ŷ = argmax
y∈Y

f(I, y, w) (8)

f(I, y, w) =
b∑

i=t

r∑

j=l

MI(i, j),

where Y is the rectangle window set within image I .
This problem has a number of efficient solutions [19, 9]

as compared to simple exhaustive search which has a com-

plexity of O(N2). We adopt the method in [19, 21], which
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decomposes the search in one dimension to construct ef-

ficient dynamic programming problems and has the com-

plexity of O(N1.5). In our experiment, the solution from
[19] takes about several milliseconds to search for one con-

fidence map, and the total subarray search for the 107 object

categories of SUN09 [20] dataset costs less than one second

on one images. Therefore, the computation cost in this sub-

array search is not a bottleneck of our proposed model.

3.5. Contextual Detection
In this work, we propose a natural way to embed global

contextual detection into our detection model. As demon-

strated in [2, 22], the object detection performance can be

greatly enhanced using the knowledge of global context in-

formation in a multi-class setting. The global context is

normally the probability values describing how likely the

image contains certain object categories, which can provide

a reference to the detection results. In our contextual de-

tection, we obtain such probability values from global im-

age classifications. We use the normalized Fisher Vector of

the whole image (which can be easily produced from the

PFVs) as features. Suppose, there are nc class in the train-
ing dataset, we define the context feature for image I as
φctx(I) = {c1, · · · , cnc}, where ci are the object existence
probability predicted by the ith global classifier. Then, the
contextual scoring function is defined as follows,

fctx(I, y, w) = wT
∑

xi∈y
φ(xi) + wT

ctxφctx(I), (9)

It is worth noting that the contextual detection has sev-

eral good properties: (1) Stability in the multi-class setting.

Normally each context component can depict one attribute

of the image, and the weight of the each attribute for detect-

ing certain object can be learned from the training samples.

Predictions using additional contextual information is more

stable and accurate in problems with large number of object

categories and clear object relations. (2) Highly efficient.

Defining the global context as the union of classifier out-

puts is the most efficient way for most recognition models

since it requires little additional computation [2, 22]. In our

work, the global context can be obtained immediately after

running the global image classification.

3.6. Multi-Feature Fusing and Spatial Layout
To effectively model the object appearance, multiple fea-

tures are often used due to their complementary nature, e.g.

HOG or SIFT focus for modeling the local shape, Color

Moment for modeling local color statistics, and LBP for

modeling the local texture pattern. In the EMAS model,

it is easy to fuse multiple features to boost the detection ac-

curacy as well as the effectiveness of the global classifica-

tion model. We perform independent coding for each kind

of local feature. During the training stage, multiple Fisher

Vectors are concatenated and fed into the classifier learning.

Table 1: Average running time(s) for 107 classes detection

on SUN09.
Total Fea Extract PSV Encoding

Model Inference
Conf MaxSearch Context Det

4.7 0.4 0.7 2.6 0.8 0.2

In the testing stage, multiple features are combined into one

confidence map which is then searched efficiently.

We also consider addition of spatial constraints, such as

Spatial Pyramid Matching (SPM), into our approach, which

will certainly improve the detection accuracy. SPM can

be easily added by applying more spatially-structured lo-

cal models and the maximum subarray search with more

complex optimization algorithm. However, at this stage, we

concentrate on how to improve the performance with low

added-on cost and SPM will bring additional computation

cost.

4. Efficiency Analysis
The whole detection process contains three steps, i.e.

local feature extraction, PFV encoding, model inference.

Here we would like to discuss the detailed efficiency analy-

sis of the last two steps.

PFV encoding includes two parts: soft assignment cal-

culation and the pointwise encoding. The soft assignment

has O(KND) complexity, where N is the number of fea-

ture points, K is the number of Gaussians in the GMMs

and D is the local feature dimension. The pointwise en-

coding takes O(E(γth)ND), where E(γth) represents the
average number of GMMs assignments with higher prob-

ability than threshold γth for each feature point. In our
experiments, we set γth = 0.01 and obtain E = 3.5 on
the training image set of SUN09 without losing the perfor-

mance. Hence the overall computation complexity for PFV

coding is near O(KND) which is equal to the prevalently
used Vector Quantization (VQ). For a single computation

PFV computes exponential values and products and hence

may take more time than square distance of VQ. However,

the number of GaussianseK in PFV is only about hundreds

which is much smaller than the codebook size in VQ (from

thousands to millions) with similar performance.

The computation in the model inference contains

three parts: pointwise confidence mapping, maximum

subwindow search and contextual detection. For nc
class, the complexity of pointwise confidence mapping is

O(ncE(γ)ND). It equals to nc times inner product of
the sparse PSV coding vector. And the maximum sub-

window search we adopt has the complexity of O(N1.5)
as aforementioned. Finally, compared to the other two

parts, the contextual detection cost is trivial since it is only

O(2ncKD) complexity.
To be more clear, we demonstrate an example computa-

tion cost for EMAS in a large scale detection task. The task

is performed on SUN09 [20] dataset which includes 107

classes. As shown in Tab. 1, the total cost for 107 classes

detection is about 4.7 seconds on a Xeon 2.67GHZ (single
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core mode). For one object detector, per category model in-

ference cost is around 0.03 seconds and 3.6 seconds totally

for 107 categories. Namely the additional cost for one more

detection model is only about 30ms. It proves that the pro-

posed EMAS has high scalability in the number of object

categories.

5. Experiments
5.1. Datasets and Metric
We evaluate our proposed EMAS model on two pop-

ular datasets, i.e. ImageNet ILSVRC 2012 [28] and

SUN09 [20]. ImageNet ILSVRC 2012 is a subset of Im-

ageNet containing 1000 categories and 1.2 million images.

In these 1.2 million images, more than 544K images are la-

beled with object bounding boxes. The validation and test

data for this competition consists of 150,000 photographs,

collected from flickr and other search engines, hand labeled

with the presence or absence of 1000 object categories. A

random subset of 50,000 of the images with labels is re-

leased as validation data included in the development kit

along with a list of the 1000 categories. Our main result is

conducted on this validation set since the organizer didn’t

release the test set annotation after the challenge. The pre-

vious experience from the challenge participant shows that

the result on validation set is very close to the result on test

set [6] since they follows same distribution (validation set

is a subset of whole test set.) The evaluation metric is top5

error rate defined by the ILSVRC organizer.

We also use the SUN 09 dataset introduced in [20] for

object detection evaluation of 107 object categories, which

contains 4,367 training images and 4,317 testing images.

SUN 09 [20] has been annotated using LabelMe[27]. The

author also annotated an additional set of 26,000 objects us-

ing Amazon Mechanical Turk to have enough training sam-

ples for the baseline detectors [2]. These detectors span

from regions (e.g., road, sky, buildings) to well defined

objects (e.g., car, sofa, refrigerator, sink, bowl, bed) and

highly deformable objects (e.g., river, towel, curtain). The

employed evaluation metric is Average Precision (AP) and

mean of AP (mAP).

5.2. Implementation Details
We first normalize the image by setting the longest edge

of the image to 500 pixels. Afterwards, we extract two kinds
of low-level features for all the experiments. The first one is

dense SIFT feature from VL-Feat [32] using multiple scales

setting (spatial bins are set as 4, 6, 8, 10) with 6 pixel step.

The second one is the local color comment (CM) proposed

in [10]. These two features have been shown to be com-

plementary to each other for the task of object classifica-

tion [10]. Each SIFT and CM feature is reduced to 60 di-
mensions for noise removal. The number of mixtures in the

GMMs model in PSV coding is set to 128 for SUN dataset

and 256 for ILSVRC dataset. We sample 500,000 descrip-

tors from the training images of ILSVRC and perform EM

100 101 102 103
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e 
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Figure 3: Inference cost comparison in a multi-class setting.

to obtain the GMMs. For all experiments, we only output

the maximum subwindow for one image per class at testing

stage, namely we use a precision-preferred detector. Multi-

ple detections can be obtained by iteratively performing the

EMAS on one image. All the experiments are conducted on

a Xeon Server with 32GB memory using single core mode.

For model learning, we fix the parameter C of SVM as 1
for all experiments. The hard training constraint is mined in

a manner similar to the model inference step described ear-

lier except that we restrict the number of output windows

to 30 for one image followed by a Non-Maximum Suppres-

sion step. The total training process usually takes about half

an hour for one class.

5.3. Efficiency Comparison
We compare the computational cost of EMAS with three

other object detection models in a multi-class setting: 1)

Multiple kernel learning for object detection (MKL) [16]

using three-stage linear and non-linear detection, 2) De-

formable Part Model [2], and 3) Cascade DPM [4].

Figure 3 shows the computation cost of the various ap-

proaches on the ILSVRC 2012 dataset with a varying num-

ber of object categories. EMAS, on an average, takes about

58.4 seconds to process an image, which consists of about

1.9 seconds for feature extraction and feature encoding, and

about 56.5 seconds for model inference for 1000 categories.

So, per object category cost, on an average, is 56ms. In

contrast, for both CasDPM and DPM, the feature pyramid

takes about 375ms. And it takes 500ms and 5s respectively

for model inference per category per image(may change for

different setting). Additionally, the cost for MKL reported

in [16] is 67 seconds per category for one image. There-

fore, we can infer that EMAS is at least one order of magni-

tude faster as compared to other approaches for large-scale

object detection. When number of categories is small, how-

ever, it can be observed that EMAS is not the fastest due to

the cost of feature encoding.

5.4. Performance Evaluation
5.4.1 Large Scale Object Detection on ILSVRC2012:
ILSVRC2012 is a large challenging dataset including 1000

object categories. We first perform the classification task

to obtain the object context. For each category, we train

a one-vs-all classifier using an implementation of stochastic

dual-form SVM solver [30]. The top 5 error ratio (errorcls)
using two features is 0.326 which is very close to the pub-
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Table 2: Object classification and detection results on

ILSVRC 2012.
XRCE/INRIA Oxford DPM Oxford Mix ISI CasDPM EMAS

GMMs size 256 1024 1024 256 256
Multi-Fea+SPM 2 fea 2 fea 2 fea 4 fea+SPM 2 fea
errorcls 0.334 0.269 0.269 0.261 0.326

errordet n.a. 0.529 0.500 0.536 0.554

accdet n.a. 0.644 0.684 0.628 0.662

lic result 0.334 from XRCE/INRIA in the challenge with

similar setting. The result using single dense SIFT feature

is 0.380. The complementary effect from CM improves the

overall performance. It is worth noting that our performance

can be further boosted with large GMM for FV. e.g. Oxford
gets 0.269 when sets the size as 1024 which is 4 times larger

than our implementation. We train our detection using the

same SVM solver. The initialization of the detection model

is trained using the object feature and a large amount of

negative images. 3 round of hard sample mining is utilized.

For detection, we compare our results with the challeng-

ing entries 1: (1) Oxford DPM is the result from DPM de-

tection over baseline classification scores. (2) Oxford Mix
used the detection result from DPM and retrain the fore-

ground model with complicated classification model which

also is the best result from Oxford. (3) ISI CasDPM is the

result using cascade object detection with deformable part

models, restricting the sizes of bounding boxes. We show

the comparison results on ILSVRC2012 dataset in Tab. 2.

Our detection result errordet reaches 0.554 top 5 error rate
which is comparable to the DPM and CasDPM while the

single feature result using SIFT only is 0.582. Moreover,

it is worth noting that the detection result of ILSVRC2012

heavily relies on the performance of classification. Usually,

detection will be performed to the top ranked image with

high classification confidence, i.e. a combination of two

steps: first classifier the right categories and then perform

the localization. Thus the error rate can be approximately

interpreted as errordet = 1− (1−errorcls)∗accdet where
the accdet shows the real detection accuracy for each detec-
tion model. We show the accdet in Tab. 2. It can be seen
that our localization ability of our detection model is also

comparable to the state-of-the-art model.

5.4.2 Multi-Label Object Detection on SUN09:
SUN09 is a very challenging datasets with rich contextual

information. The concerned object categories span from

regions (e.g., road, sky, buildings) to well defined objects

(e.g., car, sofa, sink, bowl, bed) and highly deformable ob-

jects (e.g., river, towel, curtain). We first trained the global

object classification model. Each class is trained indepen-

dently using linear SVM. The mAP of the classifiers is

about 29.6% for 107 classes on SUN09 dataset. The clas-

sification scores on the training set is obtained by 10-fold

cross validation. We perform the proposed EMAS detec-

1www.image-net.org/challenges/LSVRC/2012/
results.html

Table 3: Object detection result on Sun09(AP %).

plane bed bkcase building closet field floor grass mountain river
DPM[2] 35.1 26.3 2.3 14.4 1.1 19.8 31.3 11.0 17.2 2.9
EMAS 12.7 34.1 14.8 14.3 12.8 18.9 38.1 12.3 25.6 12.4

road sea shelves showcase sky sofa toilet tree wall water mAP

DPM[2] 33.2 28.7 2.6 0.0 55.3 11.5 22.0 10.9 14.7 1.5 17.1

EMAS 34.9 35.0 13.6 11.9 61.9 12.7 11.7 12.4 21.9 15.1 21.4

tion model on the 107 classes and compare with the DPM.

We use the results of DPM on SUN09 released by the author

of [20] which is 7.06% mAP for 107 objects. Further [20]

refines this baseline result by modeling the co-occurrence

and relative spatial relation of objects with a tree graphical

model and obtain the improvement to 8.37%mAP. Our base

detector without contextual training obtains 7.26% mAP

which is slightly better than the result of DPM and we ob-

tain 8.44% mAP with our contextual detection. Our outper-

formed categories are also on the highly deformable objects.

In Section. 5.4.3, we will provide a more comprehensive

analysis on this feature of the EMAS model.

5.4.3 Object Detection with Large Appearance Vari-
ance

Our appearance-based model is appealing for object detec-

tion with large variation of appearance. Here, we show 20

classes amorphous object detection result from SUN09 and

compare with the DPM [2] in Tab. 3. These classes range

from 1) regions (e.g. sky, building, road, river) and 2) ob-

jects with large shape variation (e.g. bed, sofa, shelves,

aeroplane). The EMAS achieves better results. There are

some interesting features of EMAS revealed by some ex-

ample detection shown in Fig. 4. The model is purely

appearance-based, i.e with no shape constraint, thus the

algorithm is good at handling truncated/occluded objects

(Fig. 4a, 1st row, such as part of cars and bicycles), rare

view objects (Fig. 4, 2nd row, such strange view of cats,

sofa, motorbikes) and detecting region objects (Fig. 4, 3rd

and 4th row, such as sky, buildings, trees, floor). But it

also causes the problem that it can not distinguish one ob-

ject from a cluster of objects (e.g. a cluster of horses, cars,

cows, shown in Fig. 4a, 5th row).

We show some sample detection results from

ILSVRC2012 in Fig. 4b, the large number of cate-

gories creates large diversity in the object categories. It is

interesting to see that the proposed detector can detect the

object in the 1000 categories pool. We plot more results in

the supplementary files.

6. Conclusion
In this paper, we designed an efficient large-scale object

detection approach by extending Fischer Vector encoding

to the point-level. This enabled us to transform the ob-

ject detection problem into a problem of searching for a

sub-window with the maximum sum leading to an order of

magnitude of speed-up over the state-of-the-art approaches

while maintaining comparable accuracy on the major large-

scale object detection benchmarks. It is our belief that

this significant speed-up makes large-scale object detection
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(a) Sample results from SUN09 (b) Sample results from ILSVRC2012

Figure 4: Sample results. Best viewed in the enlarged color pdf file.

practical. Moreover, the proposed approach could further

integrate global object contextual information into the de-

tection model with little extra computational cost, which

may make it very effective for object detection under dif-

ficult conditions, such as occluded objects. In future work,

we plan to explore the possibility of incorporating the spa-

tial layout information, such as SPM, in an efficient manner.
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