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Abstract

Cascade-style approaches to implementing ensemble
classifiers can deliver significant speed-ups at test time.
While highly effective, they remain challenging to tune and
their overall performance depends on the availability of
large validation sets to estimate rejection thresholds. These
characteristics are often prohibitive and thus limit their ap-
plicability.

We introduce an alternative approach to speeding-up
classifier evaluation which overcomes these limitations. It
involves maintaining a probability estimate of the class la-
bel at each intermediary response and stopping when the
corresponding uncertainty becomes small enough. As a re-
sult, the evaluation terminates early based on the sequence
of responses observed. Furthermore, it does so indepen-
dently of the type of ensemble classifier used or the way it
was trained. We show through extensive experimentation
that our method provides 2 to 10 fold speed-ups, over exist-
ing state-of-the-art methods, at almost no loss in accuracy
on a number of object classification tasks.

1. Introduction
Ensemble classifiers, such as Tree-based Random

Forests (RF) [5], Boosted Stumps (BS) [9] and Boosted

Trees (BT) [6] have proven effective at solving tasks such

as object detection [26, 10, 2], image retrieval in large

datasets [27, 30] and object categorization [3, 14, 21, 18].

Typically, using an ensemble classifier requires evaluat-

ing the many individual classifiers they are made of. Due to

the ever growing amount of data that must be predicted, and

in spite of their efficient prediction procedure, the resulting

computational requirements can remain prohibitive, espe-

cially for applications with limited computational power.

Speeding up object classifiers is a well researched prob-

lem and it is well known that at its heart lies a trade-off

between accuracy and speed [26, 23, 4, 29, 8]. Perhaps

the most famous demonstration of this trade-off is found in

the seminal face detection paper [26], where a “hard” cas-

cade of classifiers was used to filter out and reject non-faces

while only mildly decreasing the overall classifier accuracy.

Since then, a number of new ways to improve this trade-

off have been proposed, mainly along the lines of rejecting

non-object candidates quickly. For example, a relaxation of

the hard cascade to a soft one was introduced to more effec-

tively reject non-target candidates and to alleviate many of

the difficulties encountered when training hard cascades [4].

Similarly, some have used rejection criteria based on Walds’

Sequential Probability Ratio Test [23] or using more empir-

ical observations [29].

While these methods have been successful, they require

either strong independence assumptions on the output of the

weak learners to guarantee optimality [23], or precise esti-

mation of a set of rejection thresholds, whose values are

computed from samples of a sufficiently large validation
set [4, 29]. In the first case, performance suffers when the

assumptions are violated, which is often. In the second, the

methods are at a disadvantage when training and validation

data are expensive or difficult to acquire.

In this paper we propose a method that classifies can-

didates quickly on the basis of a sequence of results, or

stages, computed during prediction. We introduce a generic

Bayesian framework that keeps track of the uncertainty of

a candidate’s class label as prediction proceeds and stops

when it falls below a chosen level. Unlike previous methods

that need multiple stage-specific thresholds, the class label

uncertainty in our method only requires a single threshold,

common to all stages, to specify when the uncertainty is

small enough. We show experimentally that our method

provides significant gains in speed or accuracy, and often

both, over state-of-the-art early stopping methods on a num-

ber of object classification tasks when using different en-

semble classifiers.

The remainder of this paper is organized as follows: In

Sec. 2 we briefly survey the related literature. Sec. 3 intro-
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duces our general framework and method, while in Sec. 4,

we demonstrate the performance of our approach on differ-

ent tasks.

2. Related Work
There has been much interest in speeding up classifiers

based on context. For the purpose of finding objects in im-

ages, some successful methods have exploited image-based

features that are either global, local or additive within com-

plex optimization schemes to prune large areas of the search

space and speed up detection [17, 24]. More recently, Mul-

tiple Instance Learning [29, 28, 8] has also been used to

this end, by simultaneously evaluating multiple candidates

based on their local neighborhoods. This has been shown to

be particularly appropriate when a single positive sample is

surrounded by many negative ones, as is the case of faces in

typical scenes.

While effective, these methods are not intended for cases

that require independent classification of each instance.

Among methods designed for this purpose and that attempt

to reject negatives early, one of the earliest and most influen-

tial works is the hard cascade of classifiers proposed in [26]

for face detection. In that work, rejection thresholds on a

set of distinct classifiers were used to conservatively filter

out non-faces during classification. Since then, a number of

strategies have been proposed to optimize how cascades are

built [15, 16, 20].

Perhaps most relevant to this work is that of [4], where

the hard cascade was replaced by a single soft cascade clas-

sifier with stage-wise rejection thresholds that were com-

puted using a cascade calibration procedure (CCAL). More

specifically, thresholds on the sum of stage scores were

found by adjusting a performance vector such that each

stage of the soft cascade rejected at most a fixed propor-

tion of positive targets from a validation set. While effec-

tive, this approach requires the user to adjust a performance

vector and target error rate. Furthermore, the final classifier

accuracy is closely linked to the quantity and variability of

positive samples in the validation set used to calibrate the

cascade. Along the same lines, a simple Direct Backward

Pruning algorithm (DBP) was introduced in [29] which sets

rejection thresholds on the sum of stage scores. This was

achieved by taking the threshold at each stage to be the min-

imum sum of stage scores observed over a validation set or

subset. While effectively removing the need for the per-

formance vector of [4], this strategy can still only perform

well for validation subsets large enough so that thresholds

generalize to the test set.

A different approach to setting rejection thresholds is

that of [23], where stage-wise thresholds are based on

the Sequential Probability Ratio Test (SPRT). This test is

shown to be optimal when individual observations at each

stage are i.i.d. However, in practice, the ratio test used re-

lies on the sum of stage scores, hence strongly correlating

observations and thus violating a number of assumptions.

In short, all the above-mentioned approaches to early ter-

mination of a classifier evaluation critically depend either

on large validation sets or on several strong assumptions on

the behavior of weak classifiers. Our approach avoids these

requirements by tracking the uncertainty of the candidate

class in a Bayesian way.

3. Method
As in cascade approaches [26, 23, 4, 29], given an en-

semble classifier that sequentially evaluates stages, our goal

is to reduce the computational burden by using as few re-

sources as possible on easy-to-classify cases. We differ

from earlier approaches in that we track the class label in

a Bayesian way by modeling the individual stage compu-

tations, and dynamically infer when additional classifica-

tion stages are necessary at run-time. In some sense, our

method normalizes each stage individually and accumulates

their normalized evidence. The resulting procedure is able

to cope with non-reliable stages by properly quantifying the

evidence they provide, instead of using their shear scores as

an indicator.

In the remainder of this section, we begin by specify-

ing our notations and using them to describe in a unified

manner the CCAL, DBP and SPRT algorithms discussed

in Section 2. We then introduce our own Entropy Driven

Evaluation (EDE) approach to making early decisions and

the algorithm that implements it.

3.1. Notation

For a given sample, let x ∈ R
D be its feature vector and

Y ∈ {−1, 1} its label. We take F : RD → {−1, 1} to be

an ensemble classifier of the form

F (x) = sign

(
K∑

k=1

gk(x)

)
, (1)

where

gk : RD → R, (2)

is a stage score at stage index k. In BS classifiers [9, 13],

a stage is defined as gk(x) = αkhk(x) where hk is a weak

learner and αk its weight. Similarly, in BT and RF clas-

sifiers [5], gk is a decision tree. In the remainder of this

paper, we will assume that F has been trained using a ded-

icated training set and that {gk}Kk=1 are known and fixed.

Let Gk(x) = (g1(x), . . . , gk(x)) and

fk(x) =
k∑

m=1

gm(x), (3)

be the sum of the first k stage scores. Fig. 1 depicts

this sum for a few examples from a validation set V =
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Table 1. Summary of Notation

x ∈ R
D Sample feature vector

Y ∈ {−1, 1} Sample class label

V Validation set

N Number of validation samples

φ Stopping criterion

k∗x Stopping stage for sample x
gk(x) Stage score k
Gk(x) k first stage scores

fk(x) Sum of k first stage scores

F (x) Ensemble classifier

εk kth posterior probability of positive class

δ Block offset

γ Entropy threshold

ε∗ Probability threshold

{(xn, yn)}Nn=1. In this figure, each curve shows the sum

of stage scores of a BS face classifier for an example face

(green) or non-face (red). Note that we consider the valida-

tion set to be disjoint from the classifier training set.

3.2. Framework

For a given test sample x, we want to evaluate as few

stages as possible for a classifier of the form given in

Eq. (1). Let the number of stages to evaluate be

k∗x = argmin
k=1,...,K

{φ (g1(x), . . . , gk(x)) ≥ 0} , (4)

where the φ function is a stopping criterion. As discussed

in Sec. 2, what differentiates earlier approaches is the way φ
is defined. In fact, in both [4] and [29], the stopping criteria

are of the form

φ (g1(x), . . . , gk(x)) = fk(x)− θk, (5)

where the θk ∈ R, k = 1, . . . ,K are thresholds estimated

from the validation set V .

The DBP algorithm [29] selects each threshold by com-

puting

θk = min
{n:yn=1,fK(xn)>τ}

fk(xn), (6)

where τ is a user specified threshold on the final sum

fK(x).
In the CCAL algorithm of [4], the thresholds are taken

to be θk = maxr∈R r such that∑
n

pred(fk(xn) ≤ r)yn ≤ pk|P |, (7)

where |P | is the total number of positive examples in the

validation set, pk is a user specified proportion and pred is a

function that returns one if fk(xn) ≤ r and zero otherwise.
Similarly, the SPRT stopping criterion in [23], is of the

form

φ (g1(x), . . . , gk(x)) = max{fk(x)− θk, θk − fk(x)}, (8)
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Figure 1. Example of the sum of stage scores produced by a face

classifier as function of the stage index. Each green and red line

corresponds to a face and non-face sample from a validation set.

The jittery black line shows a typical set of rejection thresholds

produced by the CCAL procedure. Examples with sum of scores

that fall below the black line at any stage k are rejected early.

where (θk, θk) are upper and lower thresholds estimated

using the SPRT. However, in practice θk is always set to

be larger than fk(x), reducing Eq. (8) to the same form as

Eq. (5).

Clearly, the performances of these stopping criteria are

strongly dependent on the quality and representativity of the

validation set used, as their threshold values are explicitly

selected from examples.

3.3. Entropy Driven Evaluation

We define the stopping criterion φ in a significantly dif-

ferent way. First we consider that the sample to evaluate

is randomly selected, and hence we model the class la-

bel Y as a discrete random variable with probability dis-

tribution P (Y ), i.e. a Bernouilli random variable. After

each stage, we observe the value, gk(x), which we also

treat as a random variable and for which we can evaluate

P (gk(x)|Y = 1) and P (gk(x)|Y = −1). In addition,

we assume that gk(x) is conditionally independent from

gj(x), j < k given the class label, which leads to

P (Gk(x)|Y = y) =
k∏

m=1

P (gm(x)|Y = y). (9)

Unlike [23] which also assumes conditional independence

given the class label, this is our only assumption on the be-

havior of the stage scores. Given this, we take our stopping

criteria to be

φ (g1(x), . . . , gk(x)) = γ −H(Y |Gk(x)), (10)
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Figure 2. Example of EDE process. (top) Sum of stage scores,

fk(x) for a positive sample x0 (green) and negative samples x1

and x2 (red), as function of the stage index k. (bottom) Evolu-

tion of posterior distribution as a function of the index k for each

sample. The dotted line depicts a chosen entropy threshold γ, con-

verted to its corresponding probability thresholds ε∗ and 1− ε∗.

where H(Y |Gk(x)) is the conditional entropy of Y when

Gk(x) has been observed [7] and γ ∈ (0, 1) is a user spec-

ified threshold. In this context, the conditional entropy pro-

vides a measure of uncertainty on the class label, and hence

we look for k∗x such that it reduces the uncertainty below a

specified level γ.

We now show how to compute this conditional entropy.

First, note that for any value of k, we can compute the pos-

terior distribution of Y after evaluating k stages. To do this,

we observe that

P (Y |Gk(x)) =
1

Z
P (gk(x)|Y,Gk−1(x))P (Y |Gk−1(x))

=
1

Z
P (gk(x)|Y )P (Y |Gk−1(x)), (11)

where we have used Eq. (9) to derive Eq. (11). This recur-

sive form of the posterior is convenient as it allows for an

easy update rule for sequential observations. As such, if we

let εk = P (Y = 1|Gk(x)) then, for any stage k

εk+1 =
1

Z
P (gk+1(x)|Y = 1)εk, (12)

where

Z = εkP (gk+1(x)|Y = 1) + (1− εk)P (gk+1(x)|Y = −1).
As in [23], we can estimate the conditional likelihoods,

P (gk(x)|Y = 1) and P (gk(x)|Y = −1) using the valida-

tion set. To do this, we represent each distribution using a

histogram and use a Parzen window technique with a Gaus-

sian kernel to smooth the estimation. We choose our kernel

width to be: hos = 1.44σn−1/5 where n is the number

of examples used to estimate the density and σ is the sam-

ple standard deviation. Using such a kernel width has been

shown to be fairly stable for density estimation with rela-

tively few samples [23, 22].

Hence, the conditional entropy becomes

H(Y |Gk(x)) = H(εk) (13)

= −εk log2(εk)− (1− εk) log2(1− εk).

Note, that since the entropy H(εk) ∈ (0, 1) is a concave

and symmetric function (i.e. H(ε) = H(1 − ε), ε > 1/2),

we may use a threshold on the probability εk instead of

on the entropy. This can be achieved by solving: γ =
−ε log(ε) − (1 − ε) log(1 − ε) for ε ∈ (0, 1), which pro-

vides two probability thresholds: ε∗ and 1 − ε∗. In fact,

using the probability threshold is more efficient than using

the entropy threshold as the former only requires checking

an inequality between two scalars, while the latter also re-

quires computing Eq. (13).

To highlight the difference between our approach with

the methods described in Sec. 3.2, consider the following

example. As depicted in Fig. 2, let two samples, x1 and x2

have sum of scores fk∗
(x1) = fk∗

(x2), where k∗ = 5 is

the first stage where rejection takes place for both x1 and x2,

when using a method from Sec. 3.2. In this case, both x1

and x2 are rejected since rejection solely depends on fk∗
(·).

In EDE however, early stopping depends on the posterior

distribution, which depends on the sequence Gk(x) and not

fk(·). That is, early stopping of our method depends on the

progression of values at each stage, and not on the sum of

stage scores. As such, x1 could be rejected earlier than x2.

Furthermore, our method normalizes each stage indi-

vidually, and estimates the reliability of individual stages.

To build some intuition about this fact, consider an ex-

treme example where a given stage computes a random

response that is completely unrelated to x. Such a stage

would strongly impact previous methods in a negative way,

as it would force the threshold at that stage to be unreli-

able. EDE on the other hand, would effectively ignore the

stage from the overall estimation, as it would weigh the in-

formation at this stage very poorly, since P (gk(x)|Y = 1)
and P (gk(x)|Y = −1) would be similar.
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3.4. Block Evaluation

While in [23, 4, 29] the stopping criteria are evaluated

at each stage of the prediction procedure, this may not be

necessary in some cases. For this reason, we propose to

evaluate the stopping criterion at specific intervals of stages.

Let δ ∈ {1, . . . ,K − 1} be a block offset, then we can

update the posterior distribution and evaluate the stopping

criterion at every δ stages. In this case, the posterior can be

written as

εk+δ =
1

Z
P (gk′(x)|Y = 1)εk, (14)

where gk′(x) =
∑k+δ

m=k+1 gm(x) and note that when δ = 1,
Eq. (12) is recovered.

As will be shown in our experiments, this block eval-

uation of the stopping criterion is not only beneficial as it

reduces the need to update the posterior at each stage, but

also makes EDE less sensitive to noise contained in each

stage observation. While this may make evaluation slower

(i.e. more stages are evaluated), this typically improves ac-

curacy.

3.5. Algorithm

Our run-time algorithm is summarized by Alg 1. The

user provides a test example x with a prior on the label, ε1,

as well as the conditional distributions P (gk′(x)|Y = y),
the stopping threshold γ and the block offset δ.

Algorithm 1 Entropy Driven Evaluation (EDE)

Require: x, ε1, γ, δ, {P (gk′(·)|Y = y)}K/δ
k=1

1: k ← 1
2: while k ≤ K and H(εk) > γ do
3: Compute: gk′(x) =

∑k+δ
m=k+1 gm(x)

4: εk+δ = 1
ZP (gk′(x)|Y = 1)εk

5: k ← k + δ
6: end while
7: return y = sign(εk − 0.5)

In general, the only difference between our algorithm

and the evaluation of a typical ensemble classifier is the

update of the posterior distribution (line 4). This involves

executing two lookups to compute the likelihoods, three

multiplications, one division, addition and subtraction. For

most ensemble classifiers, the cost of line 4 is therefore far

smaller than that of evaluating a particular stage.

4. Experiments
We now demonstrate the efficiency of our proposed

EDE stopping criterion for three different tasks: face de-

tection, image classification and structure recognition1.

1Code available on author website: http://cvlabwww.epfl.
ch/˜sznitman/

As noted in [23, 29], comparing published results of

competing early stopping methods is difficult because they

are produced by pipelines that depend on training data, spe-

cific features being used, approach to non-maximal sup-

pression, and parameter settings among many other things.

Therefore, to compare our early stopping approach against

others as fairly as possible, we reimplemented the CCAL,

DBP and SPRT stopping criteria and evaluate each ap-

proach using the same classifier and validation set for each

task mentioned above.

In each of the following experiments, we estimated the

parameters of EDE by cross-validation on the validation

set. That is, to determine γ ∈ (0, 0.1), ε1 ∈ (0, 0.5) and

δ ∈ {1, ...,K−1}, we performed a brute-force search of the

parameter space, and selected the parameters that required

the smallest number of stage evaluations, and for which at

most 1% of the classification accuracy was incorrect when

compared to non-early-stopping prediction. For each triple,

this process was repeated 5 times over the validation set and

the best triple was selected.

In general, we are interested in observing how a method

performs in terms of the number of stage evaluations and

prediction accuracy. To compare performances between

methods, we will therefore specify and tune user parame-

ters to achieve either similar prediction accuracy or evaluate

a similar number of stages. By doing so, we may observe

if one method performs better on one performance criteria

while the other is fixed.

4.1. Face Detection

We begin by evaluating each approach on a face detec-

tion task. Here, we used 4000 positive and 5 million nega-

tive examples to train a BS classifier with 500 weak learn-

ers, as described in [2]. The validation set was comprised

of 4000 positives and 6000 negatives. This set was used to

compute both the CCAL, DBP and SPRT rejection thresh-

olds and the conditional probabilities P (gk(x)|Y = y) of

Section 3.3 that EDE requires.

For this experiment, we adjusted the number of stage

evaluations, or stumps, required by each early stopping

method to be approximately the same. We then compared

the accuracy performance of the four stopping criteria on

the MIT+CMU dataset [19], which consists of 130 images

containing a total of 507 labelled faces. To this end, we

used a detector window size of 30 × 30 pixels, a sliding

window of 1 pixel, a scaling factor of 1.25, and the same

non-maximum suppression parameters in all cases.

In Fig. 3, we report the accuracy and the distribution of

stage evaluations required by each method. Note that our

EDE method uses on average slightly under 10 stages, to

achieve near equal accuracy levels to traditional BS with

non-early stopping. For approximately the same average

number of stump evaluations, CCAL, DBP and SPRT per-
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Figure 3. (top) Face detection ROC curves for each early stopping

method evaluated and for non-early stopping on the MIT+CMU

face dataset. Each stopping criterion was re-implemented and

evaluated using the same Boosted Stumps (BS) classifier, train-

ing set and validation set. (bottom) Distribution of the number of

stage evaluations of test sample for each method. In this case, each

stage consists in the evaluation of a single stump.

form significantly worse than EDE.

4.2. Caltech Dataset

We also validated our approach on the Caltech-256 ob-

ject classification dataset [12], and chose the task of binary

classification of the form “object versus clutter” for differ-

ent object categories. Since a validation set is required to

estimate the rejection thresholds, we only evaluate object

categories for which enough positive samples are available

to form large enough training and validation sets. In this

case airplanes, motor-bikes, and easy faces.

We trained BS, BT, and RF classifiers for each task us-

ing a publicly available feature set [11]2, which consists of

several types of features such as SIFT, PHOG and Linear

Binary Patterns.

In each case, we used 250 positive and 250 negative ex-

2Caltech-256 features available at:

http://www.idiap.ch/%7Ettommasi/source code CVPR10.htm

Classifier & Object Category
Stopping Criteria Motorcycle Airplane Faces

Boosted

Stumps

None 500 (.993) 500 (.964) 500 (1)

EDE 47 (.992) 77 (.960) 31 (.999)
CCAL 232 (.981) 220 (.946) 110 (.992)

DBP 232 (.977) 223 (.938) 117 (.992)

SPRT 257 (.988) 281 (.959) 132 (.997)

Boosted

Trees

None 500 (.993) 500 (.960) 500 (1)

EDE 48 (.991) 100 (.957) 32 (.998)
CCAL 239 (.983) 215 (.935) 116 (.989)

DBP 237 (.978) 219 (.931) 120 (.990)

SPRT 253 (.979) 274 (.949) 143 (.997)

Random

Forest

None 500 (.990) 500 (.962) 500 (1)

EDE 52 (.988) 85 (.952) 32 (1)
CCAL 292 (.986) 259 (.933) 136 (.992)

DBP 282 (.982) 249 (.926) 142 (.992)

SPRT 316 (.986) 329 (.941) 157(.997)

Table 2. Average number of stage evaluations and best F-score

(in brackets) on object classification tasks for three Caltech-256

categories either without an early stopping criterion or with one of

the four discussed in this paper. Our EDE criterion, in bold, not

only provides the least number of stage evaluations but also the

best F-score when compared to other early stopping methods.

amples for training and validation, and used the remaining

examples for testing. In addition, for each classification

task and classifier, we also performed 10 independent train-

ing rounds, where we randomly chose 150 positive and 150

negative samples, and used the remaining 200 samples for

validation. The BS, BT and RF classifiers were constructed

using 500 stumps and trees, respectively.

For each classifier and stopping criterion pair, we report

in Table 2 both the average number of stage evaluations re-

quired and the best F-score (in brackets) for each classi-

fication task. The F-score [1] is computed as Fscore =
2 PrRe
Pr+Re , where Pr and Re are the precision and recall lev-

els for a given classifier threshold. The best F-score is cho-

sen over all classifier threshold values and gives a general

notion of classification performance.

In all evaluated cases, the EDE stopping criterion out-

performs the other three methods on both speed and accu-

racy. Furthermore by tolerating a small reduction in accu-

racy when compared to non-early stopping, EDE allows for

up to 15 fold speed increases.

To illustrate the effect of different parameter settings for

our method, as well as for others, Fig. 4 depicts the best

F-scores of each early stopping method as a function of the

average number of evaluations when using a BT classifier

on the Airplane classification task. Here, we have evaluated

each approach with different parameters. That is for EDE,

each blue circle represents the best F-score and number of

327332733275
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Figure 4. Best F-score as function of number of stage evaluations

required for a Boosted Tree (BT) classifier with different stopping

criteria for Caltech-256 Airplane classification. Each method uses

the same classifier and validation set and each point shows the

average performance for a stopping method when used with a spe-

cific set of parameters. For EDE, in blue, we show the effect of

selecting different values of γ and δ.

stages evaluated when using a specific value of γ and δ.

Similarly, each point for the other methods represents their

performances using different values for their respective pa-

rameters.

4.3. Path Classification

Lastly, we evaluate our method on a biomedical clas-

sification task. In [25], the authors proposed an approach

to classifying tubular paths, such as the one depicted in

Fig. 5(top), as truly corresponding to linear structures or

not. These paths are obtained by selecting pairs of 3D points

that appear to be on the centerlines of linear structures and

connecting them to form paths. Consequently, certain paths

generated by this process belong to linear structures while

others do not. To assess which is which, their algorithm

computes a feature vector based on gradient histograms for

each path and classifies it as a path or not.

We constructed our training and validation set by com-

puting the gradient histogram features described in [25] for

5000 positive and 5000 negative randomly selected samples

from two different volumes3. Similarly, a 30’000 path test

set was generated.

From the training and validation set, half the samples

were randomly selected to train a BS classifier with 500

stumps and the other half to learn the early stopping cri-

teria. We repeated this 10 times and evaluated the resulting

classifiers and corresponding stopping criteria on the test

set. Fig. 5(bottom) depicts our results. In general, EDE de-

livers virtually the same accuracy as the non-early-stopping

approach in a fifth of the time, and is more than twice as fast

3Volumes are available at: http://cvlab.epfl.ch/data/delin/
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Figure 5. (top) Classification of positive (green) and negative (red)

tubular linear structures. (bottom) Best F-score as a function of the

number of stage evaluations required for a Boosted Stump (BS)

classifier on the above classification task. Each point shows the

average performance for a stopping method when used with dif-

ferent sets of parameters values.

as CCAL, DBP, and SPRT.

Finally, in Fig. 6 we demonstrate that EDE performs

well even for small validation sets, whereas other ap-

proaches require much larger ones. To this end, we trained

a BS classifiers with 500 stumps and re-learned the thresh-

olds and probability distributions using ever smaller vali-

dation sets. Even by the time the number of positives in

the validation set has dropped from 2500 to 200, the perfor-

mance of EDE is barely affected, while that of the others

have degraded substantially.

5. Conclusion

This paper addressed the problem of speeding up the pre-

diction of binary classification when using ensemble classi-

fiers. Our proposed solution uses Bayesian inference to es-

tablish and track the probability of a samples class label as

stage evaluations are computed. Our early stopping criteria

is to terminate the prediction process when the uncertainty

of the class label, measured by its Shannon entropy, falls

below a chosen level. We showed through extensive exper-

imentation on several classification tasks that our approach

provides significant accuracy and speed improvements over

state-of-the-art early stopping methods. In our future work,

we plan to investigate the feasibility of using our approach

in the context of SVM classifiers and the many kernels they

may make use of.
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Figure 6. Size of the validation set. (top) Best F-score and (bottom)

number of stage evaluations as a function of the number of posi-

tives used in the validation set on a logarithmic scale. EDE quickly

reaches its peak performance whereas the other approaches require

far more to do so.
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