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Abstract

In this paper we present an inference procedure for the
semantic segmentation of images. Different from many CRF
approaches that rely on dependencies modeled with unary
and pairwise pixel or superpixel potentials, our method is
entirely based on estimates of the overlap between each of
a set of mid-level object segmentation proposals and the
objects present in the image. We define continuous latent
variables on superpixels obtained by multiple intersections
of segments, then output the optimal segments from the in-
ferred superpixel statistics. The algorithm is capable of
recombine and refine initial mid-level proposals, as well
as handle multiple interacting objects, even from the same
class, all in a consistent joint inference framework by maxi-
mizing the composite likelihood of the underlying statistical
model using an EM algorithm. In the PASCAL VOC seg-
mentation challenge, the proposed approach obtains high
accuracy and successfully handles images of complex ob-
ject interactions.

1. Introduction

The goal of semantic segmentation is to detect objects
from different categories and identify their spatial layout
simultaneously. Each pixel in the image must be classi-
fied as a foreground object of a certain category, or be as-
signed as background. This task is of great practical im-
portance, because determining object boundaries is crucial
for scene understanding and robot vision. However, the
level of detail required makes inference extremely chal-
lenging and has stimulated interesting research in recent
years [1, 8, 9, 11, 12, 13, 15, 19, 21].

An approach that we have pursued with some success
was based on ‘sliding segments’, starting from an unsu-
pervised generation of many possibly conflicting mid-level
figure-ground object segmentation proposals with large spa-
tial support, obtained based on cuts in graphs defined on
edge and color potentials. The segments are then passed
to classifiers or regressors that determine to which category
they belong. Full image interpretations are then assembled

sequentially from individual segments.

The existence of predictions for many mutually
overlapping segments poses a new inference challenge
for pixel labeling. Standard inference approaches in
a high-order (hierarchical) CRF model [14, 15] can
model both pixel/superpixel and segment-level layers with
pixel/superpixel nodes and segment nodes interconnected
based on overlap and compositionality. However, the inter-
actions in these models are complex and involve different
types of pairwise potentials (between pixels, between pix-
els and segments and between segments) which limits the
range of potential functions for which tractable approximate
inference is feasible. A recently proposed variation using
latent topics, the Pottics model [5], sidesteps the need for
high-order cliques but still requires approximate inference.

Other approaches search for configurations of non-
overlapping segment hypotheses [9, 13] by using non-
maxima suppression and maximum clique random field
models [11]. They can be tractable since the decision space
that has to be searched is limited to the initial segments
(normally < 200 in practice). However, these are likely
to encounter difficulties when multiple objects touch or in-
teract with each other. Examples are: people riding bicycles
or horses, interacting with other people, sitting on sofas or
chairs, etc. In such cases, segments often occlude and cut
through each other and the initial mid-level proposals may
not be entirely accurate. In such situations, a high-precision
approach should be able to refine the initial hypotheses.

Non-probabilistic methods have also been developed to
produce an average [10, 19] or weighted average [4, 17] of
the predicted scores on each pixel/superpixel, then output
the highest scoring labels. Arbelaez et al. learn to classify
superpixels using class predictions from all enclosing seg-
ments as input features [1]. This strategy would typically
allow for the refinement of a semantic segmentation in a
heuristic manner, by e.g. thresholding pixel or superpixel
scores.

In this paper, we propose a model that allows for the
refinement and recombination of initial bottom-up propos-
als using a principled statistical inference method, while
avoiding some of the intractability with random field struc-
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Figure 1. (Best viewed in color). The need for an efficient in-
ference procedure given multiple object segmentation proposals.
Identifying the correct object layout from the overlapping segment
predictions is a nontrivial task. Simply performing non-maximum
suppression would discard all the person segments, which have
lower scores because they all overlap the first bike segment.

tures. A main deviation from CRF approaches is that in-
stead of directly modeling the conditional label distribu-
tions, we model the one-dimensional error distributions of
many predicted region statistics. By combining thousands
of pixels that span a large segment into one segment statis-
tic, we transfer conflicting high-order terms into a number
of one-dimensional distributions, hence avoiding difficult
maximum a posteriori inference in models with cyclic de-
pendencies. Models of error distributions are commonly
seen in the context of regression, the simplest being the
Gaussian error used in least squares. In our case, the error
distribution is modeled as a mixture with two components,
based on intuitions obtained through exploratory data anal-
ysis. The first component corresponds to false positive de-
tections while the second one is a Gaussian truncated to the
domain of the statistic.

Our main idea is to model the segments as computable
composites of statistics on superpixels that do not spatially
overlap. By computable, we mean there exists a mathemat-
ical formula that can output segment statistics given values
of the superpixel statistics. Based on such a link, we can op-
timize the superpixel statistics by maximizing the compos-
ite likelihood (or posterior) of the predicted segment statis-
tics in the modeled error distribution. Intuitively, the con-
figuration of superpixels that can explain most of predicted
segment statistics will emerge as the maximum likelihood
solution, as shown in fig. 2. The generative graphical model
is presented in fig. 3 and encodes the dependency of the
ground truth statistic on the segments and the superpixel
statistics, as well as the dependency of the observations on
predicted segment statistics and a noise source.

Our methodology consists of a training phase and an in-
ference phase. In the training phase, regressors are esti-
mated to predict segment statistics. This can be done by
standard routines such as SVR or least-squares, and is not
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Predicted Overlap: 48%
Config_1: 50%

Config_2: 100%

Predicted Overlap: 27%
Config_1: 50%
Config_2: 72%

Configuration 1 is more likely to be right!

Predicted Overlap: 4%
Config_1: 0%

Config_2: 25%

Predicted Overlap: 3%
Config_1: 0%

Config_2: 40%

Figure 2. (Best viewed in color) The goal of our inference can be
intuitively thought as finding the superpixel configuration which
best explains most of the predicted segment statistics, here spatial
overlap (with the chair object). This formulation allows discov-
ering objects that are cut into disconnected components, such as
the chair. Instead of find such a superpixel configuration using a
search algorithm, we formulate it as a continuous maximum com-
posite likelihood problem with a convex relaxation, where a near-
optimal solution can be found via mathematical optimization.
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Figure 3. The conceptual graphical model. Superpixel statistics
are generated from the ground truth objects. Segment statistics are
generated from superpixel statistics and the segments. The obser-
vations are predicted segment statistics on each category. They
are the maximal segment statistic for all ground truth objects in
the same category, perturbed with noise ε. During inference, we
first solve for the superpixel statistics θ, then output full object
segmentations given θ.

covered here. Given a test image, the inference phase has
three main stages:
• Use the trained regressors to predict segment statistics.

• Maximize the composite likelihood to estimate super-
pixel statistics.

• Output an optimal full-image semantic segmentation
given the estimated superpixel-level statistics.

The first stage is straightforward thus we will be mainly
discussing the second and the third ones. Since this is a new
methodology, many innovations are presented in the paper
to facilitate its execution in the difficult semantic segmenta-
tion problem:

• To ensure the computable composite assumption, our
superpixels are obtained by multiple intersections from
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the mid-level segment hypotheses, so that each super-
pixel either totally belongs to a segment or is com-
pletely outside it.

• We generalize the composite likelihood methodology
to handle statistic estimates instead of probabilistic es-
timates.

• We introduce a prior on the number of objects. A
maximum-a-posteriori (MAP) step is used to infer the
optimal number of objects within each category.

• An EM algorithm is used to maximize the likelihood
based on the mixture error model. The E-step assigns
mixture weights and the M-step maximizes the com-
posite likelihood. In the M-step, we propose a good
convex relaxation which is used to warm-start the so-
lution.

• For the last stage, we exploit the structure in the super-
pixel statistics in order to propose an efficient, optimal
search algorithm to find the best pixel labeling given
the estimated superpixel statistics.

2. Composite Likelihood and Its Generaliza-
tion to Statistical Estimates

Throughout the paper we denote p(x) the probability of
random variable x, I the indicator function. N (x;μ, σ2) the
density function of the normal distribution with mean μ and
variance σ2, Ber(α) a Bernoulli distribution with parame-
ter α, Exp(x;λ) the density of an exponential distribution
with parameter λ, and δ(x) the Dirac function. When x is
a vector, x ≥ 0 means that all dimensions of x are larger
or equal to 0. For a set A, let |A| denote its cardinality. A
segment is considered a set whose cardinality is the number
of pixels inside it.

A maximum composite likelihood (MCL) approach [18,
20] drops the independence assumptions typical in maxi-
mum likelihood. For us, this is important, in order to be able
to leverage overlapping higher-order observations (on seg-
ments) that are strongly inter-dependent. We adopt a ver-
sion in [6] with some simplifications, and refer the reader to
[6] and our associated technical report [16] for details.

Definition 1 Suppose we have a dataset D =
{X(1), . . . , X(n)}, where each X(i) is a m-dimensional
vector. Consider a finite sequence of variable subset
pairs (called m-pairs) (A1, B1), . . . , (Ak, Bk), where
Aj , Bj ⊂ {1, . . . ,m}, ∀j ∈ 1, . . . , k with A �= ∅ = A ∩B.
Given vector β ≥ 0, the composite likelihood object is

cl(θ) =
n∑

i=1

k∑
j=1

βj log pθ(X
(i)
Aj
|X

(i)
Bj

). (1)

When β has stochastic components, this is called stochas-
tic composite likelihood (SCL)[6]. MCL is the approach

to solve for θ by maximizing the composite likelihood (1).
The MCL/SCL approach is statistically consistent given an
identifiability assumption, but is intractable in most cases,
however, because of the need to model a high-dimensional
distribution pθ(XAj

|XBj
). We propose to extend the MCL

framework to distributions on statistical estimates. This
makes us work with 1-dimensional distributions which are
much easier to model and estimate.

Definition 2 With the same conditions as in Definition 1
for D,X(i), Aj , Bj and β, let us further assume that
f(X(i), Aj , Bj) is an observed statistic from X(i), Aj and
Bj . We define the maximum composite f -likelihood prob-
lem as

max
θ

n∑
i=1

k∑
j=1

βj log pθ(f(X
(i), Aj , Bj)). (2)

This new MCL problem recovers the model parameters θ

from the composite f -likelihood log pθ(f(X
(i), Aj , Bj))

for all the random variables on multiple different subsets. It
seeks to find a parameter vector θ that best explains all the
observed statistics from X(i) and the two given subsets Aj

and Bj . The distribution pθ(f(X
(i), Aj , Bj)) is modeled

as a 1-dimensional distribution. A relevant example is a lin-
ear subset regression model with Gaussian errors. Suppose
X(i) is an image, Aj is a subset of its pixels (a segment)
and Bj is a background segment non-overlapping with Aj .
Then a fixed-length feature vector Zij can be extracted from
these segments and the distribution of fij can be modeled
as pθ(fij) = N (θ�Zij , σ

2), with θ the regression weights.
Given observed values of fij for many different X(i), Aj

and Bj , the MCL problem in this case becomes a weighted
least squares regression of solving for θ. As shown in our
associated technical report[16], the asymptotic consistency
proof still partially holds, even when different fij are inter-
dependent. Intuitively, as the number of observations goes
to infinity, the true model parameters θ should give the best
performance for each individual segment, hence converge
to the optimal solution of the MCL problem (2), given a
suitably chosen β vector.

3. Maximizing the Composite Likelihood for
Semantic Segmentation

In this section we present the main parametric model of
the proposed CSI (Composite Statistical Inference) method
that uses the modified MCL to infer semantic segmenta-
tions. We will first present the probabilistic model (sec.
3.2), followed by the EM algorithm to estimate parameters
(sec. 3.3). We must convert the per-category scores to per-
object scores in order to properly maximize the likelihood.
To do so, we need to estimate the number of objects in each
category and assign the score of each segment belonging to
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a particular object. We postpone the relevant discussion to
sec. 3.4 because it uses the same probabilistic model and
EM formulation introduced in sec. 3.2 and 3.3. A discus-
sion on how to output final segmentations given the super-
pixel statistics estimated from MCL is deferred to sec. 4.

3.1. Semantic Segmentation from Figure-Ground

In our problem setting, I represents the image, as a lat-
tice of pixels. An object segmentation proposal (or sim-
ply segment) Ai ⊂ I is a subset of I . Suppose m seg-
ments A1, A2, . . . , Am; c object categories C1, C2, . . . , Cc;
r ground truth objects F1, . . . , Fr are present in the im-
age I and each one belongs in a particular category, de-
noted as Fk ∈ Cj . Each pixel p in the image should ei-
ther belong to a single object or to the background, i.e.∑r

k=1 I(p ∈ Fk) ≤ 1. For each segment Ai, its class-
specific overlap with a category Ck is defined by

V
0
ik = V (Ck, Ai) = max

Fj∈Ck

|Fj ∩Ai|

|Fj ∪Ai|
. (3)

The true overlap V 0
ik can be estimated by training one re-

gressor for each categoryCk(for details on possible training
methods one can consult e.g. [17, 4, 1]). Since this paper
deals with inference, which is only required during testing,
we assume that regressors are already obtained based on a
separate training set and denote their estimates in the test
image I as V̂ 0

ik .
Given segments A1, A2, . . . , Am, we find multiple in-

tersections by dividing the image I into superpixels
S1, S2, . . . , Sn, so that ∀i, j, Si∩Sj = ∅, ∀k,Ak = ∪iSk(i)

(every segment Ak is the union of some superpixels), and
the number of superpixels is minimal. In practice we con-
sider only segments that have non-negligible predicted over-
lap (over a loose threshold) with at least one category.
Therefore, in many cases, the superpixels have finer granu-
larity inside objects of interest (fig. 5) and coarser granular-
ity on the background.

3.2. The Probabilistic Model

We use θkj to model the percentage of pixels within a
superpixel Sk that belongs to object Fj . Then, the overlap
between a segment Ai and Fj can be computed as

Vij =
|Fj ∩Ai|

|Fj ∪Ai|
=

∑
Sk∈Ai

θkj |Sk|∑
Sk∈Ai

|Sk|+
∑

Sk /∈Ai
θkj |Sk|

(4)

Importantly, Vij is computable from θ only since each |Sk|
is a constant. The idea is that if one parameterizes the
ground truth object with θ, then its overlap with each seg-
ment can be computed (fig. 2). Now, given the observed
overlaps V̂ 0

ij , one can optimize θ by maximizing the com-

posite likelihood of V̂ 0
ij , given the overlap Vij(θ) computed

from θ:

max
θ

m∑
i=1

c∑
k=1

max
Fj∈Ck

log p(V̂ 0
ik|Vij(θ)) (5)

where the inside max operation represents the fact that V̂ 0
ik

is an estimate of maxFj∈Ck
Vij(θ), instead of any Vij(θ). If

we know the number of objects in each category and their
rough locations, this can be solved by assigning each V̂ 0

ik to
one of the objects in Ck , so that likelihood is maximized.
In order to simplify the presentation of the graphical model,
we assume for now that this assignment has been resolved,
so that each V̂ij has been properly assigned from a corre-
sponding V̂ 0

ik , if Fj ∈ Ck. The MCL problem becomes:

max
θ

m∑
i=1

r∑
j=1

βijp(V̂ij |Vij(θ)) (6)

where θ is an n × r matrix, βij = 1 if segment Ai has
been assigned to object Fj and 0 otherwise. Note that an
assignment is performed within each category, hence a seg-
ment can be assigned to many objects, but at most 1 per
category. The resolution of the assignment problem within
each category will be described in Sec. 3.3.

We assume that the estimated overlap V̂ik is generated
from the true overlap Vik plus noise. In order to determine
the form of p(V̂ |V ), we resort to histograms. Fig. 6 shows
histograms on V |V̂ , for the data collected from PASCAL
VOC training set. The distribution of V |V̂ can easily be
interpreted as a combination of two components: a bump
at V = 0, which apparently corresponds to false positive
detections, and a centered distribution with V �= 0. As V̂

increases, the chance of misclassification is reduced.
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Figure 4. The graphical model used. We separate objects within
each category (Sec. 3.4) so that the categorical predictions are
mapped to each object. Also, θ and V generate a Bernoulli ran-
dom variable z, which determines whether the predicted overlap
would be a false positive.

Motivated by these observations, we introduce an ad-
ditional Bernoulli random variable zij for each predicted
score V̂ij (fig. 4). The outcome of zij informs whether the
prediction V̂ij is a false positive. We make three conditional
distribution assumptions:

Vij |V̂ij , zij ∼

{
Exp(λ), zij = 0

N (V̂ij , σ
2), zij = 1

(7)

zij |V̂ij ∼ Ber(α(V̂ij))

zij = 1|V̂ij , Vij , θ ∼ Pr(zij = 1|Vij , V̂ij)f(Vij , θ−j)

where θ−j = [θ1, θ2, . . . , θj−1, θj+1, . . . , θr] represents all
the θ columns without the j-th. These assumptions are in
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line with our observations: if zij = 0, the prediction is
a false positive and the true overlap Vij should be 0. We
take an exponential distribution as an approximation, due to
smoothness and tractability. If zij = 1, then Vij should be
centered around the predicted overlap1. Besides, the false
positive probability p(zij = 0|V̂ij) controlled by α(V̂ij) is
smaller if V̂ij is larger. The third assumption is a ‘mutual
exclusion’ prior. We observe that in categories that are hard
to distinguish, e.g. cat and dog, horse and cow, a seg-
ment often has significant predicted overlaps on multiple
categories, but only one of them is correct (see our tech-
nical report [16] for an example). In such cases, when we
have evidence from θ−j that an object in another category
might exist, the probability of zij = 1 is diminished by a
factor (details in [16]). The 1-dimensional function α(V̂ij)
is obtained by computing the histogram on the false positive
rate over a validation set and fitting a smooth function to it.

Figure 5. (Best viewed in color) Refined superpixels obtained by
multiple intersection from original mid-level segments. Each dif-
ferent color represents a different superpixel (black identifies the
largest one). Note that the partitions are, automatically, finer-
grained, on the objects of interest.
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Figure 6. Histograms of true overlap given predicted overlap
across the VOC validation set. One can easily identify two com-
ponents: a probability mass at 0 and a centered distribution to the
right. The 0 mass corresponds to misclassifications, where the ob-
ject does not belong to the category, but the regressor erroneously
outputs nonzero predicted overlaps. Also note that with higher
predicted overlap V̂ , there is less chance for V = 0.

If the prediction is biased such that E(V |V̂ ) �= E(V̂ ),
we could correct the (systematic) bias in this step by using

1Here N should be viewed as a truncated Gaussian on the range [0, 1],
but since the log-likelihood between truncated and normal Gaussians dif-
fers only by a constant, we abuse the notation N here.

a function g(V̂ij) instead of V̂ij in the assumption. The bias-
correction function could be fitted in the same way as α, by
taking a histogram on the validation data and smoothing it.
Because both α and g are 1-dimensional functions, the risk
of overfitting is drastically reduced when the validation set
becomes large (e.g. with cross-validation).

3.3. EM Estimation

To maximize the likelihood with latent variable zij , we
adopt a conventional expectation maximization (EM) ap-
proach. In the E-step, we will average over choices of
zij , and then in the M-step maximize the expected log-
likelihood. Formally, we would like to optimize the com-
posite likelihood with latent variables Z = [zij ]:

max
θ,Z

m∑
i=1

r∑
j=1

βij log p(V̂ij |Vij(θ), zij) (8)

In the E-step, E(zij) is computed from existing estimates
using Bayes’ formula (see [16]):

E(zij) = p(zij = 1|V̂ , V, θ) = f(Vij , θ−j)p(zij = 1|V̂ij , Vij)
(9)

This turns out to be similar to a standard mixture model
update rule, with an additional factor f(Vij , θ−j) reflecting
the change of belief on Vij and V̂ij , given current estimates
of θ for other categories.

In the M-step we maximize the log-likelihood based on
the following optimization (detailed derivations in [16]):

min
θ

∑
i,j βij

(
E(zij)

2σ2 (V̂ij − Vij(θ))
2 + (1− E(zij))λVij(θ)

)
s.t. 0 ≤ θkj ≤ 1, k = 1, . . . , n, j = 1, . . . , C;∑C

j=1 θkj ≤ 1, k = 1, . . . , n (10)

Substituting (4) into (10) results in the full optimization.
Since θkj models percentages, it has a range of [0, 1], repre-
sented in the first constraint. The second constraint comes
from the assumption that each pixel can belong to only 1
object. In practice, we also employ a regularization term

λ2

∑n

k=1 |Sk|
(∑c

j=1 θ
2
kj

)
where λ2 is a parameter. This

regularizer can be viewed as a smoothness term that pro-
motes a more uniform selection of θ. It tends to preserve the
shape of segments in the superpixel potentials and proved
important for practical performance.

Interestingly, the optimization has a convex relaxation.
The expanded form of both (10) and its convex relaxation
are given in our associated report[16]. In the M-step of
each EM iteration we first solve the convex relaxation, then
use the solution to warm start the optimization (10). A
projected quasi-Newton method from minConf2 is used
to solve both optimization problems.

2http://www.di.ens.fr/ mschmidt/Software/minConf.html
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3.4. Locating Multiple Objects within Each Cate-
gory

To locate multiple objects in one category and in order
to separate the estimates to each object, we adopt the above
EM estimation with a hypothesis-testing framework to find
the number of objects in each category, in a MAP setting.
Namely, we solve (2) for each category Ck independently,
with an additional geometric prior on the number of objects
rk: p(rk = j) = (1 − q)jq, where q > 0 is a parameter.
For each of rk = 1, 2, 3, etc., the following posterior is
computed:

Lrk = max
θ,Z

m∑
i=1

max
j∈1,...,r

log p(V̂ 0
ik|Vij(θ), zij)+rk(1− q) (11)

by maximizing over θ and Z . The posteriors Lrk are
computed iteratively. First L1 is computed by setting all
E(zi1) = αik and running the M-step (10) only. Then,
suppose Lrk is computed with the optimized parameters as
θrk , Zrk , Lrk+1 is inductively computed by adding one ob-
ject with an initialization of:

E(zi,rk+1) = 1−
maxj∈{1,...,rk} p(V̂

0
ik|Vij(θr))

p(V̂ 0
ik|V = V̂ 0

ik)
(12)

and running the EM steps (10) and (9) until convergence.
In (12), the denominator represents the maximum likeli-
hood from any configuration, and the nominator represents
the likelihood of the best explanation of V̂ 0

ik by any of the
current j objects. The logic behind (12) is that, if V̂ 0

ik has
already been explained perfectly, adding an object cannot
improve the likelihood thus E(zi,rk+1) is initialized to 0. If
none of the objects has been able to explain V̂ 0

ik so far, then
a new object is likely present, thus E(zi,rk+1) is initialized
to 1.

At any point, if Lrk+1 < Lrk , the computation is
stopped and rk is decided to be the number of objects. Then,
each segment is assigned to the object Fj that maximizes
E(zi,j) in the final Zrk . The joint inference on all cate-
gories is subsequently performed, by treating each object as
a different category with separately assigned predictions.

3.5. The Full Procedure

The full inference procedure involves two steps:

• Determining the number of objects within each cate-
gory by the within-class object separation routine in
Sec. 3.4.

• Performing joint inference by iterating (9) and (10)
across all categories and objects.

Notice that we choose to perform the within-class object
separation routine before the joint inference, because within
each category the enumeration of object counts is tractable.
If one enumerates in the joint inference phase, then hy-
potheses like “1 object in c1, 2 objects in c2” need to be

1 Bicycle 2 Bicycles 1 Person 2 Persons
Bicycle 1 Bicycle 1 Bicycle 2 Person 1 Person 1 Person 2

Figure 7. Different θ computed for 1 bicycle/2 bicycles, and 1 per-
son/2 persons hypotheses for the same set of predicted segment
overlaps. The second bike represents spurious predictions from
noise, whereas separating two people indeed improves the solu-
tion.

Bike 1 Bike 2 Person 1 Person 2

Figure 8. Joint optimization on 4 objects. One can see that po-
tentials for Bicycle 2 have been suppressed due to similar spatial
layout and lower scores to Person 2.

tested and could lead to exponential blowup when there
are many categories. Whereas, even if the within-class ob-
ject separation can make mistakes, the erroneous object hy-
potheses can still be suppressed during the joint inference.

In fig. 7 we show the result of running the within-class
object separation routine on the segments in fig. 1. One
can see that in both the bicycle and the person categories,
two objects are generated instead of one. Although both
categories improve the likelihood by predicting 2 objects,
the second bicycle object is erroneous whereas the second
person object is correct. After detecting two objects for each
category and running joint inference with these 4 objects,
the algorithm is able to correct that mistake, as shown in
fig. 8.

4. Optimal Full Image Labeling

Given the inferred real-valued parameters θ (e.g. fig. 8),
we still need to produce a consistent segment for each ob-
ject. A graph-cut algorithm can be used on a potential map
like fig. 8, but because θ has different magnitudes in differ-
ent images, a uniform cut parameter choice across a dataset
is unlikely to be successful. We propose an algorithm to
produce optimal segments that maximizes the overlap with
ground truth, without the need to re-segment. First, note
that the overlap formula (4) can also be written as:

V (Fj , A) =

∑
Sk∈A

θkj |Sk|∑n
k=1 θkj |Sk|+

∑
Sk∈A

(1− θkj)|Sk|
(13)

where in the denominator we first count all the ground truth
pixels in Fj by

∑n
k=1 θkj |Sk|, then sum all the pixels inside

segment Ai that do not belong to Fj . This reformulation
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Bicycle: 0.457 Person: 0.243 Bicycle: 0.071 Person: 0.222

Original Image Class Output Instance Output

Bicycle

Person

Figure 9. Final masks and final output of the algorithm. Bike 2
is filtered out because of very low score. Not all superpixels with
non-zero potentials are in the final mask, because adding some
more would be suboptimal according to the procedure in Sec. 4. It
is interesting to see that the first person has his right leg correctly
cut through by the bicycle, a solution that was not available in any
of the initial object segmentation proposals.

leads to a simple approach to grow A optimally. Suppose
we have A with V (Fj , A) = V0, then V can be increased
if and only if we add a superpixel to A with θkj

1−θkj
> V ,

because a+c
b+d

> a
b

iff c
d
> a

b
. Therefore, when the image

contains only an object in a single category, the optimal seg-
ment can be found by starting from A = ∅ and V = 0. We
then sort θkj

1−θkj
corresponding to all superpixels in descend-

ing order, and keep adding superpixels from the top of the
list until V ≥ θkj

1−θkj
for all remaining superpixels.

In case the optimal segments in multiple categories con-
flict on some superpixels, one can run a branch-and-bound
search on all the conflicting superpixels to maximize the
sum of overlaps on each object. For each conflicting super-
pixel Sk, a quality function is defined by

Qkj = max
A

V (Fj , A)− max
A,Sk /∈A

V (Fj , A) (14)

where we perform the search in a best-first manner, with
the superpixelSk for objectFj picked first if the pair has the
best quality Qkj . At each branch, an upper bound is com-
puted by maxA,Sk⊂A V (Fj , A) and a lower bound is com-
puted by maxA,Sk∩A=∅ V (Fj , A), where max can choose
from all the superpixels that have not been assigned at the
branch. These bounds prune the search space effectively.

The search can be performed very fast because: 1) Since
θ from all categories are optimized jointly, one superpixel
is likely to be assigned to a single category and only a lim-
ited number of superpixels will be simultaneously present
in the optimal segment of many categories; 2) The bounds
obtained with the above procedure are usually quite tight.
In many cases, a greedy approach using the quality func-
tion achieves the optimal solution. Fig. 9 shows the search
results for the 4 objects in fig. 8 as well as the final output.

5. Experiments

The experiments are conducted on the PASCAL VOC
Segmentation dataset [7], a widely used benchmark for se-
mantic segmentation. This dataset defines 20 object cat-
egories and provides around 3, 000 training images with
pixelwise ground truth annotations. This set, named
trainval, was further divided into half in the train
and half in the val set. In addition, around 9, 000 images
annotated with bounding box information can be used for
training. The final benchmark of performance is a held out
test set, for which the ground truth is not available and
evaluation can only be done by submitting results to an on-
line evaluation server. Performance is evaluated as the aver-
age pixel precision, computed on all the pixels of each class
and then averaged over the 20 classes plus background. We
tune the parameters λ, λ2 and δ and the α function on the
val set using the regressor output trained on train and
the additional images with bounding box annotations. Then,
evaluation is performed on the test set with the tuned pa-
rameters and fitted functions. The overlap predictions V̂

used in our system are obtained by combining the regres-
sors from [17] and [2], with linear weights learned on the
trainval set. The parameters λ, λ2 and δ are tuned on
the val set.

On the VOC test set, we compare the proposed CSI
approach against other methods on the 2012 challenge us-
ing the same set of category prediction scores, which in-
cludes SVRSEGM [3] and JSL [11]. The JSL entry to VOC
2012 is different from the paper [11] in that it also employed
pixel-level averaging to improve performance. It can be
seen from Table 1 that the method performs slightly bet-
ter than the others, especially for object categories involved
in interactions such as Bike, Chair, Person and Sofa.
It does less well in the animal categories where interactions
are less likely to happen. The 47.5% overall result for CSI
is the best reported on comp5 of the VOC 2012 challenge
so far [7].

We show some images on the VOC test set in fig. 10. It
can be seen that CSI handles object interactions very well
in many cases. More images and comparisons are given in
our technical report[16].

6. Conclusion

This paper proposes a composite statistical inference
approach to semantic segmentation. The composite
likelihood methodology is generalized to model one-
dimensional error distributions of statistical estimates.
Based on this generalization, superpixel-level inference is
performed based on a set of mutually overlapping object
segmentation proposals and their predicted overlaps with
object categories. The generative process underlying
overlap prediction is modeled using a graphical model
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Figure 10. Example of semantic segmentations. The first row shows results using the post-processing algorithm of [17], the second row
shows results of the proposed CSI algorithm. Areas of the image labeled as background are depicted with their original appearance. The
first four images show cases where our algorithm is more accurate, mainly involving relatively complex scenes with multiple interacting
objects. The last image, on the right, shows a typical failure case: segments covering part of one of the horses are strongly confused and
assigned to ‘cow’. The algorithm of [17] typically oversmooths the predictions, which is advantageous in some cases, like in this image.

Table 1. VOC 2012 test results

Method M
ea
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ir
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B
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B
ir
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ot
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C
at

C
h
ai
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C
ow

D
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H
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M
ot
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e

P
er
so
n

P
ot
te
d

P
la
n
t

S
h
ee
p

S
of
a

T
ra
in

T
V
/M

on
it
or

SVRSEGM 46.8 84.9 63.8 22.1 50.5 38.9 44.8 61.3 63.3 48.8 9.8 57.2 35.6 43.0 51.1 58.8 53.7 29.7 49.8 30.3 47.0 38.0

JSL 47.0 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6

CSI 47.5 85.2 64.0 32.2 45.9 34.7 46.3 59.5 61.6 49.4 14.8 47.9 31.2 42.5 51.3 58.8 54.6 34.9 54.6 34.7 50.6 42.2

and an EM algorithm is proposed to solve the maximum
composite likelihood inference in two steps: the number
of objects in each category is first determined, then a joint
optimization is performed for all objects across categories.
Once superpixel-level parameters have been estimated,
the optimal pixel-level segmentation can be computed
efficiently by best-first search. Experiments demonstrate
the effectiveness of the approach, especially in scenes with
multiple objects and interactions.
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