
Multi-Attribute Queries: To Merge or Not to Merge?

Mohammad Rastegari
University of Maryland
mrastega@cs.umd.edu

Ali Diba
Sharif University of Technology

diba@ce.sharif.edu

Devi Parikh
Virginia Tech
parikh@vt.edu

Ali Farhadi
University of Washington

ali@cs.uw.edu

Abstract

Users often have very specific visual content in mind that
they are searching for. The most natural way to communi-
cate this content to an image search engine is to use key-
words that specify various properties or attributes of the
content. A naive way of dealing with such multi-attribute
queries is the following: train a classifier for each attribute
independently, and then combine their scores on images to
judge their fit to the query. We argue that this may not
be the most effective or efficient approach. Conjunctions
of attribute often correspond to very characteristic appear-
ances. It would thus be beneficial to train classifiers that
detect these conjunctions as a whole. But not all conjunc-
tions result in such tight appearance clusters. So given a
multi-attribute query, which conjunctions should we model?
An exhaustive evaluation of all possible conjunctions would
be time consuming. Hence we propose an optimization ap-
proach that identifies beneficial conjunctions without ex-
plicitly training the corresponding classifier. It reasons
about geometric quantities that capture notions similar to
intra- and inter-class variances. We exploit a discrimina-
tive binary space to compute these geometric quantities ef-
ficiently. Experimental results on two challenging datasets
of objects and birds show that our proposed approach can
improve performance significantly over several strong base-
lines, while being an order of magnitude faster than exhaus-
tively searching through all possible conjunctions.

1. Introduction
We often find ourselves searching for images with very

specific visual content. For instance, if we witness a
crime we might help law enforcement agents search through
mugshots of criminals to find the specific individual we saw.
Victims of disasters may search through hospital databases
to find missing loved ones. Graphic designers may search
for illustrations of specific styles. Bird watchers may search
for photographs of birds with a particular appearance to

�������

����
	
����

����

	
����

����

����

	
���

���

Figure 1. In a multi-attribute image search, some combinations of
attributes can be learned jointly, resulting in a better classifier. In
this paper, we propose a model to predict which combinations will
result in a better classifier without having to train a classifier for
all possible cases. For example, when looking for dog, furry, ear,
our method selects to train a furry-dog classifier and fuse it with
an ear classifier. We compare this selection with the default case
where one classifier is trained per attribute. Here we show top five
retrieved images.

identify its species. In such scenarios, the most natural way
for users to communicate their target visual content is to
describe it in terms of its attributes [3, 7] or visual proper-
ties. Given the specificity of the desired content, the user
typically needs to specify multiple attributes in order to ap-
propriately narrow the search results down.

A common way of dealing with such multi-attribute
queries is to train classifiers for each of the attributes in-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3308

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3308

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3310

dividually and combine their scores to identify images that
satisfy all specified attributes. If a user is interested in im-
ages of white furry dogs, one would run three classifiers
and combine them (white & furry & dog) to indirectly get
a white-furry-dog classifier. However this may not be the
most effective or most efficient solution. White furry dogs
may have a very characteristic easy-to-detect appearance,
and running just one white-furry-dog classifier trained to
directly detect only white furry dogs could result in more
accurate and faster results. But there may not be enough
white furry dog examples to train such a classifier. Or,
white furry dogs may look a lot like the rest of the dogs
leading to a harder classification problem and poorer perfor-
mance than combining three independent classifiers. Given
a multi-attribute query such as white furry dog, it is criti-
cal to determine which combinations of classifiers should
be trained to ensure effective and efficient retrieval results:
white-furry & dog, or white-furry-dog, or white & furry &
dog, etc. This is the problem we address in this paper.

An exhaustive solution to this problem would involve
training all possible combinations of the multiple attributes
involved (5 combination in the case of white furry dogs),
and evaluating their accuracy on a held out set of images to
determine the optimal combination. This would be compu-
tationally expensive especially as the number of attributes
in the query grows, and requires sufficient amount of vali-
dation data. In this paper we propose an optimization ap-
proach that given a multi-attribute query, efficiently iden-
tifies which components would be beneficial i.e. which at-
tributes should be merged, without having to enumerate and
train all possible combinations. We use the intuition that
geometric notions that capture the compactness (∼intra-
class variance) of the set of images that satisfy a combi-
nation (e.g. white-dog), and the margin of these images
from other distractor images (∼inter-class variance) pro-
vide good proxies for the likely effectiveness of a classi-
fier trained to recognize the combination. We show that
these geometric quantities can be evaluated efficiently in
a discriminative binary space. We evaluate our algorithm
on aPascal and Bird200 datasets and show that our method
can find combinations that are both more accurate and faster
than independent classifiers.

2. Related Work
We now describe the connections of our work to exist-

ing work on dealing with multi-attribute queries and visual
phrases. We also briefly mention other uses of binary spaces
in literature.

Multi-attribute queries: Attributes or semantic concepts
are often used for improved multimedia retrieval [17, 10,
9, 22, 1, 19, 14]. Fewer works have looked at the chal-
lenges that arise in multi-attribute queries in particular. Sid-
diquie et al. [16] model the natural correlation between at-
tributes to improve search results. For instance, if a face has
a mustache then it is likely to be a male face. Scheirer et

al. [15] recently proposed a novel calibration method to
more effectively combine scores of independent multiple at-
tribute classifiers. Our work is orthogonal to these efforts.
We are interested in identifying which attributes should be
merged to then train a classifier directly for the conjunction
for improved search results. Note that we identify benefi-
cial conjunctions for each given multi-attribute query, and
do not reason about global statistics of pre-trained attribute
classifiers.

Visual phrases: The attribute combinations we reason
about can be thought of as being analogous to the notion
of visual phrases introduced by Sadeghi et al. [12]. They
showed that some object combinations correspond to a very
characteristic appearance that makes detecting them as one
entity much easier. For instance, one can detect a person
riding a horse more accurately if modeled as one entity,
than detecting the person and horse independently and then
combining their responses. They used a pre-defined vo-
cabulary of visual phrases. Our work is distinct in that it
deals with attribute combinations rather than object compo-
sitions. More importantly, the goal of our work is to iden-
tify which combinations should be trained on a per query
basis. Li et al. [8] proposed an approach to identify which
groups of objects should be modeled together. They reason
about consistent spatial arrangements of objects in images.
This would be analogous to reasoning about ground truth
attribute co-occurrence patterns when dealing with multi-
attribute queries. In contrast, in our work we explicitly rea-
son about the variation in appearances of images under the
different attribute combinations. As a result, the combina-
tions we identify are grounded to the appearance features of
images, which significantly affect the accuracy of resultant
classifiers.

Binary spaces: There has been significant progress in re-
cent years in mapping images to binary spaces. One might
learn a mapping that preserves correlations between se-
mantic similarities and binary codes [13], or local simi-
larities [4, 20, 5]. Recently, discriminative binary codes
have shown promising results in mapping images to a bi-
nary space where linear classifiers can perform even bet-
ter than sophisticated models [11]. We use this mapping
to project images to a binary space where computing sim-
ple geometric measures like compactness or diameters of
a group of images and their margins from other images is
very efficient.

3. Our Model
Given a multi-attribute query, our goal is to figure out

which combinations of attributes would be better to use
without having to train classifiers for all possible combina-
tions. What makes a combination desirable? The most im-
portant criteria is the learnability of a combination. In other
words, we should learn a classifier for a combination of two
attributes if it results in a better classifier for the conjunc-
tion than combining scores of independent attribute classi-

330933093311

fiers post-training. For three attributes like white and furry
and dog1, a combination can include multiple components
like white and furry-dog. We argue that geometric reason-
ing in terms of the tightness and margin of each component
in a combination is a reasonable proxy for what would have
happened if we would have trained a classifier for each com-
ponent in the combination. Geometrically speaking, a good
combination should have components that occupy tight re-
gions of the feature space and have large margins. Figure 2
shows an illustration where purple instances are the ones
that have both blue and red attributes. What justifies learn-
ing a red-blue classifier instead of red and blue classifiers
independently is that purple instances occupy a tight area in
the feature space with big margins from other blue and red
instances. If it was not the case, then we could have learned
separate red and blue classifiers; they are more widely ap-
plicable and would not sacrifice training data. To efficiently
compute these geometric measurements we propose to map
the images from the original feature space into a binary
space where discriminative properties are preserved. In this
section we assume that such a mapping exists. Later in the
experiments we show that our formulation is not very sen-
sitive to the choice of the mapping as long as discriminative
properties are preserved/enhanced in the binary space. This
is not a restrictive condition as most existing binary map-
ping approaches in literature meet this criteria.

We estimate the learnability of a combination based on
the diameter of the components in the combination and
the margin within and across components. To setup no-
tations, let’s assume there are n attributes involved in a
given multi-attribute query, A = {a1, ..., an}. For ex-
ample, {white,furry,dog}. There are 2n different ways
to form components. For instance, {white}, {furry,dog},
{white,dog}, {furry}, etc. The set of all possible com-
ponents is the powerset of A, which we call S =
{S1, S2, ·, Sm},m = 2n. A combination is a subset of S
that covers A e.g. {{white,furry}, {dog}}, which we write
as {white-furry,dog} in shorthand. We define the learnabil-
ity of a combination C as

L(C) =
∑

c∈C
[

∑

c′∈C,c′ �=c

K(c, c′) +
∑

a∈c

K(c, c \ a)−D(c)]

where c indexes components in the combination C, a in-
dexes attributes in each component, D(c) is the diameter of
each component defined as maxx,y∈c d(x, y) where x and y
are images that belong to a component and d is the distance
between them. The diameter captures the range of visual
appearances of images within a component. The higher the
variety of appearances, the less learnable the corresponding
component. K(c, c′) is the margin between two components
c and c′ defined as minx∈c,y∈c′ d(x, y). This captures how
distant the images belonging a component are from images

1For generality of discussion, we treat all words involved in a query as
“attributes”

��

��

Figure 2. What makes merging two attributes desirable? When
instances that satisfy both attributes occupy a tight region in the
feature space and have enough margin to the instances that have
one of the attributes. This figure depicts a case where training a
merged red-blue classifier is beneficial. Because purple dots (in-
stances that have both red and blue attributes) have small diameter
(D) and enough margins (K) with the rest of blue and red dots.

of other components. The more distant they are, the easier it
is to learn a classifier for the component. Finally,K(c, c\a)
is the margin between images that satisfy all attributes of a
component, and those that satisfy all but one attribute. For
example the margin between purple and red in Figure 2. For
components that consist of only one attributes the within
component margins are zero.

We are interested in finding the optimal combination C∗
that obtains best learnability score and covers all members
of A without being inefficiently redundant . We can formu-
late this problem as the following integer program:

max
x

L(S � x)− λ|x|
ZTx ≥ 1

x ∈ {0, 1}m
(1)

where � is the set selection operator, Z is an m × n bi-
nary set system matrix indicating which attributes appear
in which component, λ is the trade off factor between the
number of components in a combination (efficiency) and the
learnability score, and x is the indicator vector that identi-
fies which components will make it to the final combination.

Set covering problem can be reduced to our problem.
The optimization 1 is harder than standard weighted set cov-
ering problem because our learnability function L defines
over all component in a combination. The corresponding
weighted set cover formulation requires the weighting func-
tion to be defined over each component independently. The
interdependencies between components in our learnability
function make this optimization NP-hard. However, our
learnability function doesn’t face an interdependency issue
in case of two attributes. This suggests defining a gain func-

331033103312

tion for pairs of attributes that takes into account the same
measurements (diameter and margins) as in our learnability
function:

G(ai, aj) = K(aiaj , ai) +K(aiaj , aj)−D(aiaj)
Given two attributes, positive values for the gain function

recommend merging the two attributes and negative values
encourage training separate classifiers for each attribute and
then merging their scores. The higher the gain function the
higher is the reward for merging two attributes. Our gain
function exposes an interesting property that helps prune
the search space drastically.

Lemma 1. If attributes ai and aj are merged because
G(ai, aj) ≥ 0 then for any other attribute ak, G(aiaj , ak) ≥
G(ai, ak) or G(aj , ak)
Proof. It’s simple to show that if A ⊂ B then D(A) ≤
D(B), and if C ⊂ D then K(A,C) ≥ K(B,D).
We can show that G(aiaj , ak) = K(aiajak, aiaj) +
K(aiajak, ak) − D(aiajak)+ > K(aiajak, aiaj) +
K(aiajak, ak)−D(aiak)+ > K(aiak, ai)+K(aiak, ak)−
D(aiak)+ = G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are
merged, we need not consider merging any other attribute
with either of these attributes individually. This suggests
the following recursive greedy solution to find the highest
scoring and covering combination.

Our greedy solution starts with computing the gain for
all pairs of attributes. It picks the pair with the highest gain.
If the highest gain is positive, then we merge those attributes
and add a new merged-attribute to our set of attributes and
remove the two independent ones. Meaning that if ai and aj
provide the biggest positive gain we add aiaj as a new at-
tribute to A and remove ai and aj from the set. The Lemma
above shows that it is safe to remove the independent at-
tribute from the set as no other attribute can join either of ai
or aj independently and result in higher scoring combina-
tion. The new A now has n−1 elements. We can recursively
repeat this procedure till we cover all attributes. If there is
no pair with positive gain, we move to triplets. This never
happened in our experiments.

Efficient Computation of Geometric Measurements:
Margins and diameters can be computed efficiently in a bi-
nary feature space; O(NK) where N is the number of im-
ages and k is the dimensionality of bit vectors. The core part
for computing both margin and diameter is to compute the
average of all pairwise distances. A naive algorithm would
be to go over all pairs and compute their distances and get
mean of them. But since we are using binary codes for each
dimension of the binary codes we can compute number of
zero bits and number of one bits. Then the sum of the dis-
tance of any given bit to all other bits can be computed in
O(constant). Algorithm 1 explains this algorithm more
formally.

Algorithm 1 Efficient Sum of Pairwise Hamming Distances

Input: B1 , B2 are a binary matrix of size N ×K.
Output: S: sum of hamming distances between all pairs of rows in B1

and B2.
1: for k = 1→ K do
2: Z(k) ← ∑

k B2(:, k) Comment: Counting Number of zeros in

kth dimension of B2
3: O(k)←∑

k ¬B2(:, k) Comment: Counting Number of ones in

kth dimension of B2
4: end for
5: for i = 1→ N do
6: for k = 1→ K do
7: if B1(i, j) = 0 then
8: P (i, j)← O(k)
9: else

10: P (i, j)← Z(k)
11: end if
12: end for
13: end for
14: S ←∑

P Comment: Sum of all elements in P

4. Experimental Results
We evaluate our method in several different settings. We

conduct experiments on two challenging datasets: the aPas-
clal [3] and the Caltech Bird200 dataset [18]. We compare
our method with four different baselines described later. We
also test our method with different binary code mapping
methods and show that our method is robust to the choice
of binary mapping. We also evaluate the impact of different
binary code sizes on the performance of our approach. In
addition to accuracy, we also compare the running time of
our method to that of baselines. We find that our low com-
plexity O(NK) gives us one order of magnitude speed up.
We also present qualitative results and analysis that reveal
the tendencies of different attributes to merge with other at-
tributes.

4.1. Datasets

aPASCAL [3]: This dataset contains the 20 PASCAL
object categories. On average each category has 317 im-
ages. Each image is labeled by 64 attributes that describe
different object properties such having a particular body
part, types of materials, etc. We experiment with the low-
level features provided by the author of [3] on the data set
website and also train/test splits provided with the dataset.
The features and attribute annotations are not labeled for
entire image. They are computed only for bounding box of
the objects.

Caltech-UCSD Bird200 [21] This data set is a challeng-
ing subordinate recognition dataset. It includes 200 differ-
ent species of North American birds with on average 300
images per category. Each image is annotated with 312 bird
attributes such as color and shapes of wings, beaks, etc. We
used the low-level features provided by [2] describing color,
shape and contours. Similar to aPascal, here, we don’t use
entire image, we ony use the area that the bounding box of
the image specifies for a bird in that image. We devide each

331133113313

category in half and took one haf as train set and the other
half as test set.

4.2. Baseline Methods

We compare our method with four different baseline ap-
proaches for selecting the combinations to be trained for a
given multi-attribute query: Default (DEF): As the name
suggestions, this approach uses the most natural strategy of
training classifiers for each of the attribute independently
and then combining the result scores. Random Selec-
tion (RND): This approach randomly selects a combina-
tion from all possible combinations and learns a classifier
for each component of that combination. Upper Bound
(UPD): Here we exhaustively train all possible combina-
tions, evaluate their performance on the test set, and select
the best one. The resultant performance corresponds to the
upper bound one can hope to achieve by picking the op-
timal combinations to train. Of course, our proposed ap-
proach avoids training all possible combinations, and se-
lects a good combination very efficiently. A comparison
to this upper bound informs us of the resultant loss in per-
formance by trading it off for efficiency. Best Attribute
First (BAF): Intuitively, if an attribute predictor is accurate
enough (in the limit, perfect), there is no benefit to merging
it with another attribute. This baseline is based on this in-
tuition. It determines which attributes to merge by looking
at their prediction accuracies on the test set. Attributes with
an accuracy higher than a threshold are left alone, while the
rest are merged. We search for a threshold that gives us
highest overall accuracy on all the queries.

4.3. Evaluation

Having identified the best combination (e.g. {white-
furry,dog}), we train a classifier for each of the components
{white,furry} and {dog} using (with C = 1). All train-
ing images that are both white and furry are positive ex-
amples to train a white-furry component classifier, and all
remaining images are negative examples. Given a test im-
age, we compute its score for each of the component clas-
sifiers. A naive way of combining these component classi-
fiers would be to threshold the scores and compute a logical-
AND. However in practice, the scores of the different clas-
sifiers are not calibrated. We use [6] to calibrate the scores,
which fits a weibull distribution to the scores of a classifier
to generate probability estimates. We later show the bene-
fits of this calibration. We threshold the calibrated proba-
bilities and compute the logical-AND to determine if a test
image is positive (relevant to the multi-attribute query) or
not. Varying the threshold gives us a precision-recall curve.
One might argue that by taking the product of the calibrated
scores and then thresholding that we may get better perfor-
mance. But in our experments it drops the performace re-
markably. In order to report results across multiple queries,
we average the recall across all queries for fixed precision
values to obtain an “average” precision-recall curve.

Figure 3. We evaluate our method on retrieving images in aPas-
cal test set using 3-attribute queries. We compare it with three
baselines and also the best possible upper bound. We use 512-
dimensional bit codes for this experiment. Each point in this plot
corresponds to average recalls over selected combinations on sev-
eral fixed precisions. The threshold for BAF is 0.7.

Comparison with Baselines: We generated 500 random
3-attribute queries that had atleast 100 corresponding im-
ages in the train and test splits. We also generated another
set of 500 3-attribute queries that had between 5 and 50 ex-
amples in the train and test splits. This allows us to evaluate
our approach on queries with sufficient as well as few ex-
amples. Figure 3 shows our results for the aPascal. We see
that our method outperforms all baselines, and is not signifi-
cantly worse than the upper-bound, especially at high recall.
For these experiments we used 512 bits codes extracted us-
ing Discriminative Binary Codes [11]. Figure 4 shows re-
sults using 4-attribute queries, with similar trends. Figure 5
shows our results on the Birds dataset with queries of length
3. Our method outperforms the baselines by large margin.
The effects of different parts in learnability function at 0.2
precision is as follow: Recall .15 .45 .61. K(c, c′): 102 170
213. K(c, c \ a): 23 56 79. D(c): 162 106 62. Increase
in the margin and decrease in the diameter results in better
recall.

Binary Code Length: We now investigate the effect
of different length of binary codes on the performance of
our method. Figure 6 shows results aPascal using the same
length 3 queries described earlier. Using fewer bits hurts
performance. Figure 7 shows similar trends on the Birds
dataset.

Sensitivity to Binary Mapping Methods: We now
evaluate our model using binary codes generated by differ-
ent methods. We chose two state-of-the-art binary mapping
methods DBC [11] and ITQ [5] and also classical LSH [4].
Table 1 compares the performance of our approach using
these three methods on the aPascal dataset. Here we use
mean of the average recalls over all fixed precisions (MAR)

331233123314

Figure 4. We evaluate our method on retrieving images in aPascal
test set using 4-attribute queries. Experimental setup is similar to
that of Figure 3. The threshold for BAF is 0.82 .

Figure 5. We evaluate our method on retrieving images in Bird test
set using 3-attribute queries. Experimental setup is similar to that
of Figure 3.

Figure 6. We investigate the effects of the dimensionality of binary
space on our performance on the aPascal dataset.

as a measure for comparison. We used 512 bits for all of the
methods. DBC perform slightly better because DBC pre-
serves categorical similarities between images. We trained
DBC on the whole train set of aPascal dataset. To make the
most of ITQ we used the attribute labels of the train set to
learn ITQ coupled with CCA. The binary codes produced

Figure 7. We investigate the effects of the dimensionality of binary
space on our performance on the Bird dataset.

Method MAR

Upper Bound 0.4007
DBC-512bits 0.3348
ITQ-CCA-512bits 0.3257
LSH-512bits 0.3071

Table 1. Comparison between different binary mapping methods
in terms of Mean Average Recall.

by ITQ-CCA are expected to preserve pairwise similarities.
For both cases we use their publicly available MATLAB
code. Our model is not sensitive to the choice of binary
mapping (compare DBC and ITQ) as long as discriminative
properties can be preserved.

Running Time Evaluation: Here we report the run time
of our approach. First, we only consider the average time
required to find the best combination for a given query. Ta-
ble 2 compares our method with UPD on 1000 queries of
length 3 on the aPascal dataset. Our method is one order
of magnitude faster than UPD which verifies that our al-
gorithm for computing the sum of pairwise distance in the
binary space is very fast and efficient. Second, we consider
the entire retrieval task which involves identifying the best
combination, learning the corresponding component classi-
fiers and finally evaluating them on test images. Table 3
compares our model with UPD and DEF. Interestingly, our
method is also faster than DEF. This is because in DEF we
always need to train n(n: query length) classifiers but in
our model on average we need to learn 1.4 classifiers. This
comparison assumes that no computations are being done
off line. One advantage of DEF over our method is that
training and testing in DEF can be done off line.

Calibration Effect: As discussed earlier, calibration is
very important when combining multiple component clas-
sifiers. Figure 8 empirically verifies this by comparing the
performance of UPD with and without calibration on the
aPascal data set. Without calibration the performance is al-
most 5% worse.

Qualitative Evaluation: Finally, we look at some qual-

331333133315

Method Time(Second)

Upper Bound 35.325
Ours 0.508

Table 2. Time for finding best combination: Trying all possible
combinations of attributes and picking the best one is very expen-
sive. This table compares the time needed to compute the upper
bound versus the time that our algorithm needs to decide which
combination to pick.

Method Time(Second)

Upper Bound 167.68
Default 42.56
Ours 22.34

Table 3. Average Retrieval Time : Comparisons between the entire
time needed to perform the default case, our method, and the upper
bound. This table assumes that no classifiers for the default case
are trained off line.

Figure 8. Calibration Effects

itative retrieval results comparing our approach to DEF and
UPD. Figure 10 presents top five images retrieved by differ-
ent methods for several multi-attribute queries.

We now look at which attributes tend to merge with other
attributes often, and which ones typically stay un-merged.
We created a wordle using wordle.net as seen in Figure 9.
The bigger the font size of a word, more likely is the corre-
sponding attribute to merge with other attributes.

5. Conclusion
We address the task of image search using multi-attribute

queries. We argue that given a query, the default strategy of
training independent classifiers for each attribute and com-
bining their scores to find images that satisfy the query may
not be the most effective or efficient strategy. The appear-
ances of images that simultaneously satisfy some combina-
tion of attributes may be significantly more consistent than a

Figure 9. Some attributes have the tendency to be merged and
some prefer to stay separated. The bigger the names in this figure
the higher the tendency of the attribute to merge. It is interesting to
see that attributes like occluded tend to merge frequently. This is
probably because of the fact that the appearance of attributes like
this varies a lot as they appear with other attributes. On the other
side, attributes like beak and furniture leg tend to be separated as
their appearance does not change in combinations.

group of images that all satisfy a single attribute. This moti-
vates the use of classifiers that directly detect combinations
of attributes. However, not all combinations result in con-
sistent appearances. In this paper we proposed a novel op-
timization approach that given a multi-attribute query effi-
ciently identifies which attributes should be merged without
exhaustively training classifiers for all possible combina-
tions. Results on two challenging datasets demonstrate the
superiority of our approach over strong baselines in terms
of performance and run time.

Acknowledgements: This work was partially supported
by MURI from the Office of Naval Research under the
Grant N00014-10-1-0934.

References
[1] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and

fisher vectors for efficient image retrieval. In CVPR, 2011. 2

[2] K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering
localized attributes for fine-grained recognition. In CVPR, 2012. 4

[3] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing Objects
by their Attributes. In CVPR, 2009. 1, 4

[4] Gionis, Indyk, and Motwani. Similarity search in high dimensions
via hashing. 1999. 2, 5

[5] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean ap-
proach to learning binary codes. CVPR ’11, 2011. 2, 5

[6] M. P. Kumar, B. Packer, and D. Koller. Self-Paced Learning for
Latent Variable Models. In NIPS, 2010. 5

[7] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect
unseen object classes by between-class attribute transfer. In CVPR,
2009. 1

[8] C. Li, D. Parikh, and T. Chen. Automatic discovery of groups of
objects for scene understanding. In CVPR, 2012. 2

331433143316

���

����

����

������
������

�������

������
������

�������

������
������

�������

��������

������
������

��

������
������

��������

���

����

����

������
����������

�� !"�

��
��� !"�
������
��� !"
�������

������
������������

����������

��� !"�

����������

������

�� !"�

�������

�������������

���

����

����

�����
���#�
�����

�����
���#�
�����

�����

�����
���#�
�����

�����
���#�
������

���#�

�����

����
���#�

����

���

����

����

��$�
����

�����
����

��$
����

�����
����

�����

��$�

�����

����

��$�

���

����

����

������
������
�������
�������

�!%���

������
������
�������
�������

�!%���

�!%���
������

���

����

����

���&��
'� !"��

������
���&��

���&��
� !"��'�

������
���&��

������

'� !"��

������

���&��

'� !"��

������
���������

���������

������������

Figure 10. Qualitative comparisons between our method, the default case and the upper bound. Green boxes correspond to merged
classifiers and red ones are for independent classifiers. It is interesting to see that when considered beak, wing and bird independently,
retrieved images are mixed between planes and birds. This is due to the labeling in aPascal that both birds and planes wing and beaks are
labeled with the same label. Once merged with bird the classifier can find the right images.

[9] M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kennedy,
A. Hauptmann, and J. Curtis. Large-scale concept ontology for mul-
timedia. IEEE Multimedia, 13(3), 2006. 2

[10] N. Rasiwasia, P. Moreno, and N. Vasconcelos. Bridging the gap:
Query by semantic example. Trans Multimedia, 9(5), Aug 2007. 2

[11] M. Rastegari, A. Farhadi, and D. A. Forsyth. Attribute discovery via
predictable discriminative binary codes. In ECCV (6), 2012. 2, 5

[12] M. A. Sadeghi and A. Farhadi. Recognition Using Visual Phrases. In
CVPR, 2011. 2

[13] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J. Approx.
Reasoning, 2009. 2

[14] B. Saleh, A. Farhadi, and A. Elgammal. Object-centeric anomaly
detection by atribute-based reasoning. In CVPR, 2013. 2

[15] W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-
attribute spaces: Calibration for attribute fusion and similarity
search. In The 25th IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2012. 2

[16] B. Siddiquie, R. S. Feris, and L. S. Davis. Image Ranking and Re-
trieval based on Multi-Attribute Queries. In CVPR, 2011. 2

[17] J. Smith, M. Naphade, and A. Natsev. Multimedia semantic indexing
using model vectors. In ICME, 2003. 2

[18] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma.
Towards a Practical Face Recognition System: Robust Alignment
and Illumination by Sparse Representation. IEEE PAMI, 2011. 4

[19] X. Wang, K. Liu, and X. Tang. Query-specific visual semantic spaces
for web image re-ranking. In CVPR, 2011. 2

[20] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral
hashing. In ECCV (5), 2012. 2

[21] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona. Caltech-UCSD Birds 200. Technical report, California
Institute of Technology, 2010. 4

[22] E. Zavesky and S.-F. Chang. Cuzero: Embracing the frontier of in-
teractive visual search for informed users. In ACM MIR, 2008. 2

331533153317

