
 
 

 

Abstract 
In order to avail the benefits of higher user 

convenience, hygiene, and improved accuracy, contactless 
3D fingerprint recognition techniques have recently been 
introduced.  One of the key limitations of these emerging 
3D fingerprint technologies to replace the conventional 
2D fingerprint system is their bulk and high cost, which 
mainly results from the use of multiple imaging cameras 
or structured lighting employed in these systems. This 
paper details the development of a contactless 3D 
fingerprint identification system that uses only single 
camera. We develop a new representation of 3D finger 
surface features using Finger Surface Codes and illustrate 
its effectiveness in matching 3D fingerprints. Conventional 
minutiae representation is extended in 3D space to 
accurately match the recovered 3D minutiae. Multiple 2D 
fingerprint images (with varying illumination profile) 
acquired to build 3D fingerprints can themselves be used 
recover 2D features for further improving 3D fingerprint 
identification and has been illustrated in this paper. The 
experimental results are shown on a database of 240 
client fingerprints and confirm the advantages of the 
single camera based 3D fingerprint identification. 

1. Introduction 
Automated identification of humans is an integral part 

of infrastructure needed for a wide range of commercial 
and law-enforcement applications [1], [9]. As compared to 
other extrinsic biometric features, the fingerprints are 
considered to be most invariant and employed worldwide 
by nearly all the law enforcement departments. Traditional 
fingerprint scans require placing and pressing of fingers 
against the hard surface, like glass or silicon, and often 
results in partial or degraded quality images. Such 
frequent degradation in fingerprint image quality is often 
attributed to skin deformations, moisture, reside of finger 
dirt, finger sweat, finger slips, and smear or due to sensor 
noise [3]. Contactless fingerprint systems can provide 
hygienic solutions to such problems and can cope-up with 
the residue of previous fingerprint impressions which can 
also be a potential security threat.   

Contactless fingerprint identification is essentially the 
acquisition of ridge-valley patterns without any physical 
contact between the finger and sensor surface [8], [13], 
[18]. The image quality from such contactless 2D 
fingerprint sensors [20] is often lower than that of most 

popular FTIR [1] sensors and its physical size is larger 
than that of solid-state sensors. Lack of popularity of such 
contactless 2D fingerprint systems can be attributed to 
their high cost and bulk as compared to the low-cost 
legacy touch-based fingerprint devices commonly 
available today. 

1.1. Contactless 3D Fingerprint Identification 
In order to avail the benefits of higher user convenience, 
hygiene, and improved accuracy, contactless 3D 
fingerprint recognition techniques have recently been 
introduced [2], [10], [20]-[22]. A contactless fingerprint 
identification system that uses multiple cameras to 
systematically acquire multiple views of the presented 
finger has been detailed in [2], [18]. One of the main 
obstacles of emerging 3D fingerprint technologies to 
replace the conventional 2D fingerprint system is their 
bulk and high cost, which mainly results from the nature 
of imaging technologies employed for the 3D fingerprint 
reconstruction. In [2], [18] five cameras are required while 
the system in [10] requires a specialized projector and a 
high-speed camera to implement 3D fingerprint scanning. 
Therefore there is strong motivation and need to develop 
low-cost solutions for 3D fingerprint identification.  

1.2. Our Work and Contributions 
This paper investigates and develops a low-cost solution to 
the problem of contactless 3D fingerprint identification 
using single camera. Our experimental results presented in 
this paper illustrate successful use of Lambertian 
reflectance based shape from shading technique for the 
problem of accurate 3D fingerprint identification. The 
experimental results are reported on 3D fingerprint 
database acquired from the 260 clients. We develop a 
Finger Surface Code representation of 3D fingerprint 
surface for efficient 3D fingerprint matching (section 3.1). 
Our experimental results also confirm the superiority of 
such representation over Surface Code representation 
proposed in [16]. We extend the 2D representation of 
widely employed 2D minutiae features in 3D space to 
include height and angle information. Our approach also 
exploits 2D fingerprint images acquired for 3D fingerprint 
reconstruction to simultaneously extract 2D minutiae and 
matches them during identification. Our experimental 
results illustrate significant improvement in performance 
using combination of such simultaneously acquired 3D 
and 2D fingerprint features.  
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2. Block Diagram and Finger Imaging 
The finger images are acquired using contactless imaging 
setup and the average/expected distance between the 
camera and the finger is ~10 cm.  A digital camera which  
can acquire 2592 × 1944 pixel images with 10 fps (costing 
less than 100 US$) is employed. We employ 7 
symmetrically distributed LED illuminators. Illumination 
sequence and the image acquisition is synchronized and 
controlled by a computer using a very low-cost imaging 
interface (developed by us). The position of LEDs on the 
acquired images is calibrated. Each of these images are 
downsampled (after edge detection, boundary scanning, 
down) to extract 500 × 350 pixels region of interest (ROI). 

Once the ROI images are extracted, 3D fingerprint 
surface is reconstructed using the shape from shading 
technique. Given 2D image E’(x, y), the shape from 
shading technique can be used to recover 3D fingerprint 
surface z (x, y), 

                   ���� �� � 	
���� ��                                (1) 
where 	 is the albedo, I0 is the incident radiance and (p, q) 
is the surface gradient defined as follows: 

  � ����� �����, � � ������ ������                       (2) 
The 3D fingerprint surface can be reconstructed by 
recovering the surface height information z = f (x, y). We 
approximate and consider finger surface as the Lambertian 
surface which is illuminated by multiple but calibrated 
light sources (LED’s) � � ���� ��� ����  whose radiance 
is���. Let � � ���� ��� �����be the unit surface normal 
vectors at some fingerprint surface point of interest. The 
observed intensity y, from the multiple 2D fingerprint 
images can be written as follows: 

                   � � ��                                                      (3) 
where � � ��!� �"� #��$��, � � ��!� �"� #��$��� %&'� �
	���� ��� ����. We assume that the light source directions 
are not co-planer so that the matrix L is non-singular. 
Equation (3) illustrates linear relationship between 3D 
fingerprint surface, observed pixel intensities from 2D 
fingerprint image and the unit surface normal vectors x. 
The unknown vector x can be estimated from the 
following equation [15]: 

                       � ���(�)!���                                     (4) 
The length of recovered vector x will represent the 
absolute reflectance (albedo) 	 as n is a unit vector. The 

recovered surface normals are then integrated to recover 
the 3D fingerprint surface z (x, y). The influence of 
specular reflection from the light source is minimized by 
eliminating the top 0.228% pixels (outliers) with the high 
intensity values in seven images acquired for the 3D 
fingerprint reconstruction.   

3. 3D Fingerprint Feature Extraction 
The 3D cloud point data reconstructed from the presented 
fingers is subjected to following (postprocessing) 
operations for the feature extraction.  
(a) Smoothing: The 3D fingerprint surface data is a range 

data representing the height value (z) on the 2D plane 
(x, y).  The principle curvature calculation is often 
sensitive to the noise. The smoothing process 
employed is two steps process; firstly we apply a 5 × 5 
median filter on the surface data to suppress the noise. 
The second step performs Laplacian smoothing [17].  
For an vertex P with its neighbors Qi, the operator 

                          *�+� � � !
, -..

, /0�10 2 +0                      (5) 
where wi is the invert distance between Qi and P as the 
weight. The new P is defined as; +34- � +567 8
9*�+567�, where � is the step size factor. The 3D 
surface is smoothed after 40 iterations with � = 0.5 and 
the neighbors are chosen in ±2 pixel in x-y directions 
from P. 

(b) Normal Estimation: The normal vector of the data 
point in the smoothed surface is calculated by the 
gradient of : � ���� ��. The normal vector is an 
upward normal with (-gx, -gy, 1), where gx and gy are 
the gradient along x and y directions. The normalized 
surface normal will be used for principle curvature 
estimation. 

(c) Principle Curvature: The principle curvature and the 
principle direction are computed using Cubic-Order 
Approximation Algorithm [14]-[15]. For a vertex P, 
the position of Qi is transformed to local coordinate 
that P is (0, 0, 0) and the axes become normal vector of 
P with two arbitrary orthonormal vectors in the tangent 
plane. Let (xi, yi, zi) be the position of the vertex and 
(ai, bi, ci ) be the normal vector of the vertex in the 
transformed coordinate. The Cubic-Order fitting 
approach tries to locate a surface that can fit the vertex 
and its neighbors such that, 
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The normal vector of the vertex in the approximated surface 
is written as: 
C��� �� � D����� ��� ����� ��� 2EF                                  (6) 
       ��������� �G� 8 <� 8 H>�" 8 @�� 8 A�"� <� 8 I� 8
���������������������@�" 8 JA�� 8 HB�"� 2E� 

Let k be the coefficient vector; K� � �G��<��I��>��@��A��B�L. 
We have three equations for each vertex in the data set: 
����M!" �0

"���0�0 ��!" �0
"���0?���0"�0���0�0"���0?N K � :0                (7) 

    ��0���0��O��H�0"��J�0�0���0"��O��K � 2 P.
Q.

                          (8) 

    �O���0���0��O���0"��J�0R0��H�0"��K � 2 S.
Q.

                          (9) 
By solving k with least-square fit on *K � T, where U is 
the 3n*7 matrix by the left hand side of the equations above 
and d is the vector on the right hand side of the equations 
above, we can construct following Weigarten curvature 
matrix of the surface: 
                             U ��MG <

< IN                                      (10) 
The eiganvalues of Weigarten matrix are the maximum and 
minimum principle curvature of the surface (kmax,  kmin), and 
their eigenvectors are the principal directions (tmax, tmin). 

3.1. Finger Surface Code Representation 
The shape index (SI) can be used to describe 3D surface 
using curvature information and computed as follows [12]: 

                         V
 � !
" 2 M!WN X%&

)! MYZ[\]YZ.^
YZ[\)YZ.^

N                            (11) 
When SI is close to 0.75, the shape of the surface is more 
likely to be the ridge shape. On 3D fingerprint surface, the 
SI’s are concentrated in numeric values representing 
fingerprint valley (0.25) and ridge (0.75) regions. The 
surface index is therefore likely to be largely distributed in 
this zone. Therefore our encoding scheme splits the 
fingerprint surface into five zones:  cup, rut, saddle, ridge, 
cap. The direction of the dominant principle curvature 
(max(|kmax|,|kmin|) is portioned into six directions. Rut and 
ridge zones are further divided since cup, saddle and cap’s 
|kmax| and |kmin| are close; therefore, tmax and tmin are not as 
accurate as those in rut and ridge zones. The resulting 
feature representation has 15 different values and therefore 
4-bits can store resulting binary code for each pixel. This 
binarized representation of 3D fingerprint surface is referred 
to as Finger Surface Code in this paper and is similar to 
FingerCode [11] or IrisCode in [25]. The matching score 
between two U × V Finger Surface Codes is computed using 
their normalized Hamming distance as follows:     
_?`abcdefbcg � !

hijik , , l�m�� ��� n�� ���k
op!

j
qp!     (12) 

where ⊗  denotes the Hamming distance between the two 
four bit Finger Surface Codes. The 3D fingerprint surface 
curvature matching using Finger Surface Code 
representation has shown to be quite effective (results in 
figure 2) and also more accurate than SurfaceCode 
representation developed for 3D palmprints in [16]. 

 
Figure 2: Comparative results to match 3D fingerprint surface 
curvature from 135 clients reconstructed 3D fingerprints. 

3.2. 3D Minutiae Representation and Matching 
The 2D fingerprint templates (x, y, �) typically include 
position of the minutiae (x, y) and the angle � representing 
the orientation of the minutiae in 2D space. This 
representation can be extended to include new (extended) 
features which can more accurately localize such minutiae 
in 3D space. The 3D feature z can represent the height of 
the vertex on the reconstructed 3D fingerprint surface at 
position (x, y) while the φ can represent the minutiae 
orientation in spherical coordinates with unit length 1. 
Such extended minutiae templates can more effectively 
localize the minutiae in 3D space and referred in this paper 
as 3D minutiae (x, y, z, �, φ). The 3D minutiae matching 
algorithms developed to robustly match 3D minutiae, say 
P and Q, from two 3D fingerprints are described in the 
following. Firstly a reference minutia, each from the 
template P  and template  Q,  is  selected  and  all the other 

Figure 3: Computing relative localization of two 3D minutiae 
features in 3D space from the (real) reconstructed 3D fingerprint. 
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minutiae are transformed to the spherical coordinates. 
Then the (two) reference minutiae are aligned with the x-
axes and z-axes. This alignment can ensure that the 
aligned reference minutiae (in both template P and Q) 
location can serve as the universal origin/reference (figure 
3-4) to measure other minutiae distances in the respective 
templates. If an aligned minutia is represented as mr = [xr, 
yr, zr, �r, φr] in template P, the relative representation of 
other 3D minutiae in template P†, say m (see figure 3-4 to 
visualize relative representation of two 3D minutiae), can 
be denoted as m = [r, As, A�, Ag, Aφ]; where r is the radial 
distance with reference minutiae, A�, is the azimuth angle 
and Aφ is the elevation angles respectively that localizes 
minutiae m in 3D plane, while As and Ag are the azimuth 
and the elevation angle that localizes the radial vector r 
(with respect to reference minutiae mr) in 3D space. Let 
Rz(�) and Ry(φ) be the rotation matrix along z and y 
direction in Cartesian coordinate, and sph(x, y, z) be the 
Cartesian to Spherical coordinate transformation with unit 
length one. The parameters for the relative representation 
(feature vector) of minutiae m are computed as follows: 

 
 
                                                                                       (13) 
 

Two 3D minutiae in the two fingerprint template P and Q 
can be considered be matched if the difference between 
their feature vectors (rst� uvst� uwst� uxst,�uyst) and 
(rzt� Gvzt� uwzt� uxzt ,�uyzt) is smaller than a given 
threshold or tolerance limit; 

 ���{r � |rst 2 rz}|, 
           

 
   If {r ~ ��c, {��~ ���� , {��~ ���� , {��~ ���� , and 
{��~ ���� , the  minutiae pair from templates P and Q can  

Figure 4: A reference minutiae from one 3D fingerprint template 
is transformed to origin and used compute relative distance with 
other minutiae in same/different 3D templates. 

 
† Also in template Q since the reference minutiae have been aligned to serve as   
  the universal reference/origin. 

be considered as matched. The matching score between 
two 3D minutiae template P and Q is computed as follows: 
                          V?`�t�bfteg � � $�

����
                            (15)                   

where m refers to the total number of 3D matched 
minutiae pairs and MP, MQ is the number of 3D minutiae 
in template P and Q respectively.  

3.3. Matching 2D fingerprints 
The 2D fingerprint images acquired to reconstruct 3D 
fingerprints, using shape from shading approach, can also 
be simultaneously matched and used for the performance 
improvement. Since these 2D images are acquired at-a-
distance, the contrast of the intensity between valley and 
ridge is low. These images require contrast improvement 
before subjecting them to Gabor filter based fingerprint 
enhancement algorithm [1]. We employed Homomorphic 
filtering [2] for such contrast improvement. 

     Among variety of 2D minutiae extraction algorithms 
in the literature, the NBIS’s MINDTCT function from 
NIST is available public domain [6] and employed in our 
work. The fingerprint template generated from the 
MINDTCT identifies the minutiae as [x, y, �, q], where q 
is the quality of the minutia. We used NIST’s bozorth3 [6] 
to generate matching score between the minutiae 
templates. The maximum score of all reference minutia 
pair is chosen from the final score of two templates 
(similar to as also used for generating scores using 3D 
minutiae in equation 15). Since seven images of the same 
finger, under different illuminations, are simultaneously 
acquired and these can be used for generating 2D 
fingerprint matching score for every client. We use the 
maximum of the matching scores generated from all such 
seven images of clients’ 2D fingerprints images 
(corresponding to each 3D fingerprint) to generate final 
2D matching fingerprint matching score. As shown from 
the results in figure 7, such strategy can exploit best of the 
available information to achieve superior performance.  

Figure 5: Comparative ROC using 3D fingerprint features from 
the  reconstructed 3D fingerprints. 
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Figure 7: The ROC using combination of 3D fingerprint 
features with simultaneously recovered 2D fingerprint features. 

4. Experimental Results 
The proposed approach for the 3D fingerprint 
identification was evaluated on 3D fingerprint database of 
1440 3D fingerprints, reconstructed using 10080 2D 
fingerprint images, from 240 clients (we refer the ‘client’ 
as the distinct finger even if it belongs to same person). In 
addition, we also acquired (3D fingerprint) images from 
20 clients which were employed to compute parameters 
during the training stage. We acquired six 3D fingerprints 
from each of the client. This database was acquired from 
February 2012 to June 2012 and the entire database from 
260 clients fingerprint images is being made available [5] 
for further research. In the best of our knowledge, so far 
there is no 3D fingerprint database available in the public 
domain. Therefore the 3D fingerprint matching strategy 
developed in section 3.1 and 3.2, which is rather 
generalized for cloud point data from 3D fingerprints, is 
only evaluated on the acquired 3D fingerprint database. 
     We explored performance from the 3D fingerprint 
images reconstructed using several least square solutions. 
Figure 5 illustrates a typical 3D fingerprint image 
reconstructed using Frankot and Chellappa algorithm [7]. 
It was observed that this method of reconstructing 3D 
fingerprints is most effective in generating accurate results 
when resulting 3D fingerprints are matched using surface 
curvature features (figure 5).  Our experimental results 
generated 3600 (240 × 15) genuine and 2064960 (240 × 6 
× 239 × 6) impostor matching scores from the six 3D 
fingerprint images reconstructed from each of the 240 
clients.  The Poisson solver [19] generates direct analytical 
results to the least square problem by solving a Poisson 
equation and has been shown to generate 3D fingerprint 
surface which has close resemblances to its natural shape. 
Our experiments for matching recovered 3D minutiae 
from the 3D fingerprints reconstructed using Poisson 
solver achieved superior performance than those from the 
3D fingerprints reconstructed using [7]. Figure 6 illustrates 
such comparative results for matching the recovered 3D  

minutiae from first 10 clients’ 3D fingerprints. Therefore 
this solution was preferred for matching 3D fingerprints 
using 3D minutiae in further/all experiments. 
     We also implemented 3D fingerprint matching 
approach described in [10] using the depth information. 
The receiver operating characteristics (ROC) using this 
approach is also shown in figure 5 for comparison. As can 
be observed from this ROC, the resulting performance 
(EER of 18.56%) is quite poor. Our database of 3D 
fingerprints (or 3D model of reconstructing the 3D 
information) illustrates larger distortion after flatting the 
images than those (flattening in reference [10]) from the 
structured lighting approach in [10]. Significant 
degradation in performance (figure 5) from the depth 
information matching can be attributed to such distortion 
in the flatting of the 3D fingerprint model. Our 3D 
fingerprint model does not reconstruct fingerprints as 
cylinder-like (because our reconstructed area/volume 
sometimes is partial or not cylinder-like), therefore the 
observed distortion is larger since the model in [10] 
assumes that the 3D fingerprints can be segmented into 
slices like from the cylindrical portions. The difference in 
the heights of the ridge and valley is also observed to be 
smaller on the edges of the reconstructed 3D fingerprints 
since our imaging setup uses the camera at the top/vertex 
(also such part of the valley is often occluded by ridges on 
the edges of 3D fingerprints).  
     We also employed the 2D minutiae quality [6], 
corresponding to the matched 3D minutiae during score 
generation in (15) and attempted to achieve performance 
improvement. However, as can be seen from the results in 
figure 5, such an approach was not successful. This can be 
possibly attributed to the fact that 2D minutiae quality 
may be not be a reliable indicator for 3D minutiae quality 
and an independent indicator needs [4] to be developed for 
3D minutiae quality in the further work. 
   The matching scores generated from 2D fingerprint 
images, acquired for the 3D fingerprint reconstruction, can 
be combined with the 3D fingerprint matching scores to 

Figure 6: Comparative matching accuracy from the 3D 
fingerprints reconstructed using different least square solutions. 
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achieve performance improvement. As detailed in section 
3.1 and 3.2, we explored 3D fingerprint matching using 
the 3D surface curvature information and the 3D minutiae 
(figure 5). We comparatively explored the score level 
combination of 3D surface curvature scores and 3D 
minutiae matching scores with those from simultaneously 
generated 2D fingerprint matching scores (section 3.3).  
     The experimental results from 240 client’s fingerprints 
using 3600 genuine and 2064960 impostor scores are 
shown in figure 7. The EER using 2D minutiae matching 
was 2.12%, which reduced to 1.73% when combined with 
3D curvature match scores and to 1.17% when combined 
with 3D minutiae match scores (nonlinear fusion [23]). It 
can be observed that the combination of 3D minutiae and 
2D minutiae matching scores can significantly improve 
the performance, as compared to those for the combination 
with 3D curvature matching scores. The experimental 
results thus illustrate merit in utilizing shape from shading 
images (2D minutiae) along with the recovered 3D 
minutiae, for improving the matching accuracy.   

5. Conclusions and Further Work 
This paper has developed a low-cost 3D fingerprint 
identification system using a single camera and presented 
promising results on the database of 1440 3D fingerprints 
acquired from 240 clients in this study. Comparative 
experimental results presented in this paper (figure 2, 5) 
illustrate their superiority over matching approaches 
presented in [10], [16].  
    Fingerprint minutiae features are widely considered to 
be most reliable and employed in most of the commercial 
and forensic fingerprint systems available today. Our 
efforts to further ascertain their distinctiveness by 
incorporating minutiae height z and their 3D orientation φ 
have shown most promising results while matching 3D 
fingerprints. Intra-class variations in 3D fingerprints are 
accounted by aligning every recovered 3D minutiae with 
respect to a reference (origin, figure 3-4), using a tolerance 
band and then using the best matching scores from (15). 

Despite promising results and success in developing a 
low-cost 3D fingerprint solution, one paper cannot address 
several open issues in this area which require further 
research efforts. The performance from 3D fingerprint 
minutiae matching is lower than those achieved from the 
2D minutiae in our experiments. There can be two 
plausible explanations for such discrepancy. Firstly, all the 
seven 2D fingerprint images are employed to generate 2D 
minutiae matching scores while only one reconstructed 3D 
fingerprint is used for generating 3D minutiae matching 
performance. Secondly, the reconstruction error in the 3D 
fingerprint surface reconstruction can degrade 3D 
minutiae matching performance. Further improvement in 
the reconstruction accuracy is expected to further improve 
the performance from the 3D minutiae matching and 
should be explored in the further extension of this work. 
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