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Abstract

We address the problem of person identification in TV
series. We propose a unified learning framework for multi-
class classification which incorporates labeled and unla-
beled data, and constraints between pairs of features in the
training. We apply the framework to train multinomial lo-
gistic regression classifiers for multi-class face recognition.
The method is completely automatic, as the labeled data
is obtained by tagging speaking faces using subtitles and
fan transcripts of the videos. We demonstrate our approach
on six episodes each of two diverse TV series and achieve
state-of-the-art performance.

1. Introduction

Automatic identification of characters in TV series and

movies is both an important and challenging problem. Per-

son identities are an important source of information in

many higher level multimedia analysis tasks, such as se-

mantic indexing and retrieval, interaction analysis and video

summarization. Recently, multimedia content providers

have started to offer information on cast and characters for

TV series and movies during playback1,2,3, presumably via

a combination of face tracking, automatic identification and

crowd sourcing.

In this paper, we approach the problem of naming char-

acters in TV series as a transductive learning problem with

constraints. Our goal is to automatically identify all charac-

ters by training discriminative multi-class classifiers from

(i) weakly-supervised track labels, (ii) additional unlabeled

data and (iii) automatically generated constraints between

tracks. In contrast to other approaches, we integrate all

three sources of information (i–iii) into a common learning

framework. This allows us to better capture the underly-

ing distribution of the data, resulting in a classifier which

1Hulu Face Match: http://www.hulu.com/labs/tagging
2Amazon/IMDB X-Ray for movies: http://www.imdb.com/x-ray/
3Actor info cards for Google Play Movies & TV
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Figure 1: Overview of our approach for character naming.

subsequently increases recognition performance.

We assume that we have the entire data available at train-

ing time, i.e., we do not need to identify unseen data. For

example, the identification can be performed offline before-

hand if the goal is to display additional information on char-

acters during the playback of a TV episode.

Our contributions in this work are the following: 1. We

propose a multi-class learning framework that takes into ac-

count (weakly-)supervised data, unsupervised data and con-

straints in a joint formulation (Sec. 2). 2. We apply the pro-

posed learning framework to the task of character naming

in TV series (Sec. 3) and achieve state-of-the-art results.

3. We provide an extensive data set, consisting of more than

9200 face tracks from a total of 12 episodes over two TV

series, together with weakly-supervised labels obtained by

matching transcripts and subtitles, to further the research in

the field of automatic person identification/character nam-

ing and related areas (Sec. 4).
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1.1. Related work

Automatic naming of characters in TV series has re-

ceived increasing attention in the last years. While most

work is focused on naming face tracks [5, 10, 13, 14], the

problem has recently been extended to person tracks both to

increase coverage and performance [15]. To avoid manual

labeling of faces for training person models, Everingham et
al. [5] proposed an automatic method to weakly label some

track identities by detecting speakers, and aligning subtitles

and transcripts to obtain identities. This has been adapted

and further refined by others [2, 10, 14]. We use a similar

method in this work to automatically obtain labels for those

tracks which can be detected as speaking. Since speaker

detection is a difficult problem by itself, these labels are

typically noisy and incomplete (i.e., usually only about 20-

30% of the tracks can be assigned a name). In order to

increase the coverage of the weak labeling, one can treat

the names from transcripts as ambiguous labels, i.e., assign

multiple possible names to a face track when the speaking

face cannot be reliably detected (e.g., [3, 10]). Different

loss functions have been proposed to learn from such am-

biguous labels [3, 10]. Köstinger et al. [10] further take into

account unlabeled data with a cross entropy loss between

the expected prior distribution of identities and the model.

Cinbis et al. [1] make use of must-link and cannot-link

constraints in order to learn a face- and cast-specific metric

in order to improve face clustering and identification. How-

ever, they rely on supervised labeling of clusters in order

to perform the actual identification. In [15], we integrate

uniqueness constraints in a second global optimization step.

In a different scenario, Yan et al. [16] identify persons in

a camera network and integrate must-link and cannot-link

constraints in an empirical loss in their learning framework.

More generally, many approaches for semi-supervised

learning have been proposed (e.g., [7]). However, must-link

and cannot-link constraints are usually only considered for

semi-supervised clustering problems, i.e., there are no class

labels associated with the data, and the clustering is only

guided by the constraints (e.g., [12]).

In this work, we bring together learning from weakly

labeled data, unlabeled data and constraints in a common

framework.

2. Semi-supervised learning with constraints

Let Xl = {(xi, yi)}Ni=1 denote training data xi with as-

sociated labels yi ∈ Y . The problem of character nam-

ing is inherently a multi-class problem, thus |Y| = K and,

without loss of generality, we assume Y = {1, . . . ,K}.
We further have additional unlabeled data Xu = {xi}Mi=1

and positive and negative constraints between data points

C = {(xi1,xi2, ci)}Li=1, where ci ∈ {−1,+1}, denotes a

negative and positive constraint, respectively.

We are interested in learning a classifier, which maps a

data point to one of the K classes

Fθ(x) : X → Y , (1)

where θ denotes the parameter set of the classifier. A com-

mon way to learn θ is to define a loss function over the train-

ing data, and then obtain the best θ by minimizing the loss:

θ∗ = argmin
θ
L(y|Xl; θ) . (2)

Different choices of F yield different classifiers, and the

definition of L determines the way in which the parameters

of the classifiers θ are learned. In this paper, we propose

a combined loss function that takes into account (i) labeled

data Xl, (ii) unlabeled data Xu and (iii) constraints C:

L(X ; θ) = L(yl, yc;Xl,Xu, C, θ) (3)

= Ll(yl;Xl, θ) + Lu(Xu, θ) + Lc(yc; C, θ) . (4)

We will now first introduce our model for F , and then

describe the different parts of the loss function in more de-

tail. The influence of different parts of the loss function on

a toy example are visualized in Fig. 2.

2.1. Model

Multinomial logistic regression [8] (MLR) belongs to the

family of log-linear models and is a classical choice for

multi-class classification. One of the advantages of MLR

is that it directly models probabilities of a data point be-

longing to class k with

P (y = k|x; θ) = eθ
T
k x∑

z e
θT
z x

(5)

and therefore, P (y = k|x; θ) ∈ [0, 1] and
∑

k P (y =
k|x; θ) = 1. The model is defined by parameter vectors

θk, one for each class. We denote θ = [θ1, · · · , θK ] for the

full parameter set. To classify a sample x under this model,

we compute the most likely class as

Fθ(x) = argmax
k

P (y = k|x; θ) . (6)

Kernelization Multinomial logistic regression can be ex-

tended to non-linear decision boundaries by replacing θTk x
by a function f(x), which, according to the representer the-

orem [9], has the form

f(x) =
n∑

i=1

θkiK(x,xi) , (7)

where K(·, ·) is a positive definite reproducing kernel.
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Figure 2: Visualization of the effect of the different parts of the loss function on a toy example. The denoted error is the joint error on

labeled and unlabeled data. (a) Learning from labeled data (colored data points +/�/�) only. (b) Additionally taking unlabeled data (black

×) into account fits the decision boundaries better to the underlying distribution. (c) With (neg.) constraints the error on the unlabeled

data reduces to 0. (d) Even without labels, it is possible to still find meaningful structure in the data using the entropy and constraint loss,

however, the assignment to the classes turns out to be wrong. (e) Visualization of the entropy loss.

2.2. Supervised loss

For the sake of notational brevity, let use denote

P k
θ (x) = P (y = k|x; θ) in the following.

In order to learn the parameters θ of F from labeled

training samples Xl, we use the standard negative log-

likelihood as loss

Ll(yl;Xl, θ) = − 1

N

N∑
i=1

K∑
k=1

1[yi=k] ln(P
k
θ (xi)) + λ||θ||2

(8)

and 1[·] the indicator function. In order to prevent overfit-

ting, we add a regularization term λ||θ||2 whose influence

is controlled by λ.

For MLR, this loss is convex and can be efficiently min-

imized with standard gradient descent techniques. The gra-

dient of Eq. 8 with respect to θ is

∂

∂θk
Ll = 2λθ − 1

N

N∑
i=1

xi ·
(
1[yi=k]− P k

θ (xi)
)

. (9)

2.3. Entropy loss for unlabeled data

While the unlabeled data Xu does not carry information

about its class membership, it can be informative about the

distribution of data points in regions without labels. Instead

of placing decision boundaries as far as possible between

labeled samples, we desire that the decision boundaries also

respect the distribution of unlabeled data. That is, the class

boundaries should preferably lie in low-density regions (see

the toy example in Fig. 2 for a visual explanation).

A common way to achieve this is to include an en-

tropy term into the loss function in order to encourage uni-

formly distributed class membership across the unlabeled

data [10, 17]. Instead, we use the entropy function as a

penalty on having the decision boundaries close to unla-

beled data points (see Fig. 2 (e))

h(xi) = −
∑
k

P k
θ (xi) ln(P

k
θ (xi)) . (10)

For the loss, we sum over all unlabeled data points

Lu(Xu; θ) =
μ

M

M∑
i=1

h(xi) (11)

= − μ

M

M∑
i=1

∑
k

P k
θ (xi) ln(P

k
θ (xi)) ,

where μ controls the relative influence of the loss. For MLR
this leads to the following gradient:

∂

∂θk
Lu = − μ

M

M∑
i=1

[
xiP

k
θ (xi) ·

K∑
c=1

(
1[k = c]− P c

θ (xi)
)(

1 + ln(P k
θ (xi))

)]
. (12)

2.4. Constraints

Finally, we include pair-wise constraints between train-

ing samples xi1 and xi2. The constraint (xi1,xi2, ci) spec-

ifies whether xi1 and xi2 belong to the same class (ci = 1)

or not (ci = −1). Such constraints arise for example

from temporal relations between face tracks, i.e., two tracks

which temporally overlap cannot belong to the same person,

and can be automatically generated without manual effort.

Note that, in general, we know the class memberships of

neither xi1 nor xi2.

Intuitively, for a negative constraint the product of the

likelihood of features xi1 and xi2 belonging to different

360236023604



classes

P (yi1 �= yi2) =

K∑
k=1

K∑
l=1
l �=k

P k
θ (xi1)P

l
θ(xi2)

= 1−
K∑

k=1

P k
θ (xi1)P

k
θ (xi2) (13)

should be high. We therefore use the negative log-

likelihood of the features belonging to different classes as

loss

Lc(ci; C, θ) = − γ

L

L∑
i=1

ln(P (yi1 �= yi2))

= − γ

L
ln

(
1−

K∑
k=1

P k
θ (xi1)P

k
θ (xi2)

)
.

(14)

Again, we need the derivative of the loss for efficient mini-
mization. The derivative with respect to θk is

∂

∂θk
Lc =

γ

L

L∑
i=1

[(
xi1 + xi2

)
P k
θ (xi1)P

k
θ (xi2)−

(
xi1P

k
θ (xi1) + xi2P

k
θ (xi2)

)P (yi1 = yi2)

P (yi1 �= yi2)

]
. (15)

3. Automatic character naming
We apply the proposed learning framework to the task of

character naming in videos. We consider only face tracks

for identification similar to [5, 10, 14], in contrast to our

previous work [15] which builds on person tracks. How-

ever, since [15] relies on identities from face recognition as

input, we can directly improve those results by providing

improved facial identities. We will present some results on

this aspect in the evaluation in Sec. 4.2.

3.1. Pre-processing

Face Tracking For tracking faces, we employ a detector-

based face tracker based on the Modified Census Trans-

form [6]. Our tracker is able to track faces over a wide

range of pose angles (including profile faces and in-plane

rotations of up to 45 degrees), which results in a large num-

ber of tracks in non-frontal poses.

Speaking-Face Detection Keeping in mind the large

amount of multimedia data, we are especially interested in

an identification scheme, that does not require manual su-

pervision. Following [5, 10, 14], we align subtitles with

transcripts from the web in order to combine the timing

component of subtitles with the identities from the tran-

scripts. Using the 9-point facial feature model from [5],

we estimate the locations of eyes, nose and mouth in each

face track. Based on the estimated mouth position, we de-

termine for each face track whether the person is speaking

or not: we follow [5, 14] and compute for each frame the

minimum nearest neighbor distance of the (gray scale, his-

togram equalized) mouth region to the previous frame. By

thresholding the distances, we determine whether a person

is speaking or not.

Feature Extraction We employ a local-appearance-

based method for feature extraction [4]. First, the face is

aligned (warped and cropped) to a size of 48 × 64 pix-

els. The normalized face is split into 8 × 8 blocks, and the

Discrete Cosine Transform (DCT) is computed over each

block. For each block, we ignore the 0th value (average

brightness) and retain the next five coefficients, thus obtain

a 240 dimensional feature vector for each frame in the track.

3.2. Training

Given the face tracks, speaking information and subtitles

associated with names, we obtain three different types of

data from the given videos.

Weakly-labeled data When a subtitle (associated with

a name from the transcripts) coincides with a “speaking”

face track, we label that track with the given identity

and take the corresponding features as supervised samples

Xl = {(xi, yi)}, where yi corresponds to the identity of

the speaker label. Given that both facial feature detection

and speaking-face detection are noisy, we do not expect per-

fectly clean labels from this method. Tbl. 1 shows the pre-

cision and recall (in terms of all tracks) of our speaker de-

tection method for all episodes. “#speaking tracks” denotes

the number of tracks which were determined as speaking,

which is usually less than 30% of the tracks (not all char-

acters speak at the same time). On average, we associate a

name to about 22% of the tracks with a precision of 87%,

which is similar to the reported performances of [5, 10, 14].

While in [10] the problem of noisy labels is explicitly tar-

geted, the regularization of the parameter vector θ (Eq. 8)

penalizes overly complex decision boundaries and prevents

overfitting on noisy labels.

Unlabeled data With only 22% of the face tracks labeled

by the previous method, we are left with around 78% of

the data that has no labels associated with it. We take all

features of the unlabeled tracks as Xu.

Constraints We can automatically deduce constraints be-

tween data points from face tracks. Negative constraints are

formed when two tracks overlap temporally, based on the

assumption that the same person cannot appear twice at the

same time. This is similar to the uniqueness constraint as

used in the model by [15], however, we already employ it

at training time. This poses a problem if there actually are

two tracks of the same (or very similar looking) person at

360336033605



BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

# characters 6 5 7 8 6 6 12 13 14 15 15 18

# face tracks 622 565 613 581 558 820 764 963 1081 835 786 1084

# unknown tracks 8 2 87 41 82 195 11 126 10 38 94 63

# speaking tracks 206 153 170 163 120 174 178 244 214 227 211 216

spk precision 83.98 91.5 92.35 88.96 90.83 82.76 87.08 85.25 82.24 87.67 89.57 89.35

spk recall 27.81 24.78 25.61 24.96 19.53 17.56 20.29 21.6 16.28 23.83 24.05 17.8

Table 1: Statistics across all videos in the data set showing the number of characters, face tracks and speaker assignment performance.

the same time. Our evaluation data is especially insidious

in that sense since there are two Xanders in episode 5-03

of Buffy (BF-3) (played by identical twins), which actually

often appear together in the same shot.

3.3. Training

We first collect training data from all available episodes,

and train one joint multi-class classifier from supervised

data, unsupervised data and constraints by minimization of

the joint loss function (Eq. 4) via L-BFGS [11].

Taking into account all available training data from mul-

tiple episodes at the same time is unfortunately computa-

tionally infeasible, especially for the kernelized version of

the multinomial logistic regression. We therefore reduce

the data by subsampling, effectively removing features that

were temporally nearby and therefore presumably visually

similar. For the kernel computation we further randomly se-

lect prototypes instead of working with the full kernel ma-

trix. This technically turns the originally transductive learn-

ing problem (with all data available at training time) into

a semi-supervised learning problem, albeit solely for com-

putational reasons. Scaling the learning so that all avail-

able training data can be actually used remains for future

research.

3.4. Identification

For determining the identity yt of a face track t with fea-

tures {x(t)
i }|t|i=1 we apply the learned classifier framewise

according to Eq. 6 and compute a class score for the track

having identity k as

pt(k) =
1

|t|
|t|∑
i=1

P (y= k|x(t)
i ) =

1

|t|
|t|∑
i=1

eθ
T
k x

(t)
i∑

z e
θT
z x

(t)
i

.

(16)

The track is assigned the identity of the most likely class

over all frames

yt = argmax
k

pt(k) . (17)

Although the outputs of the classifier are in the range [0, 1]
and could be interpreted as probabilities, we take the sum

instead of the product over all frames, which we found to

be more robust to outliers in practice.

Assignment to “unknown” Usually some unknowns

have small speaking roles, and therefore we can automat-

ically collect some training samples for them. We model

unknown characters as one joint class in the model, i.e.,

training data from all unknowns are used as positives for

this class. Thus, no special handling for the unknown class

is required: a new track is assigned the “unknown” identity,

when it is the most likely class according to Eq. 17.

4. Evaluation
4.1. Data set and experimental setup

Our data set4 consists of 12 full episodes from two

TV series. We select episodes 1–6 from season 1 of The
Big Bang Theory (BBT-1 to BBT-6) (as used in [15]), and

episodes 1–6 from season 5 of Buffy the Vampire Slayer
(BF-1 to BF-6) (as used in [5, 10, 14]). The two series are

quite different in their filming style, and therefore also pose

different challenges. The Big Bang Theory is a sitcom (∼20

minutes per episode) with a main cast of 5-8 people and

mostly takes place indoors. It includes many full-view shots

which contain multiple people at a time, however the faces

are rather small (the average face size is around 75px). On

the other hand, Buffy has an average length of ∼40 minutes

per episode, with a main cast size around 12, while in spe-

cific episodes there are up to 18 important characters. Many

shots are set outside and at night, resulting in a large range

of different lighting conditions. However, it also contains a

sizable number of face close-up shots (the average face size

is around 116px).

For an overview on the data set see Table 1. Buffy

episodes contain on average less than double the amount of

face tracks compared to BBT due to the above mentioned

higher number of close-up shots in Buffy. Speaking-face

detection and naming performs equally well on both series,

with on average around 22% recall (of all face tracks) and

around 87% precision.

Table 2 shows the number of face tracks for each iden-

tity accumulated over the six episodes of BBT. The preci-

sion and recall of the speaking-face naming from subtitles

and transcripts reveal that there is a large variation in avail-

able training data across the main cast of Leonard, Sheldon,
Penny, Howard and Raj.

4Available at http://cvhci.anthropomatik.kit.edu/projects/mma

360436043606



#FaceTr #Speak Spk-Prec Spk-Rec

Leonard 1070 281 91.46 24.02

Sheldon 945 323 90.09 30.79

Penny 512 178 87.08 30.27

Howard 299 78 85.90 22.41

Raj 279 43 69.77 10.75

Mary 95 39 100.00 41.05

Leslie 84 9 88.89 9.52

Kurt 32 8 87.50 21.88

Gabelhauser 16 3 100.00 18.75

Doug 8 0 – –

Summer 4 0 – –

Table 2: The cast list of BBT, the face tracks across all episodes,

and the performance of tagging speaking face tracks automatically.

Guest appearances usually play an important role in the

story of an episode, and identifying them correctly is im-

portant for applications such as video summarization and

multimedia understanding. Thus, we intend to identify all

people whose name is mentioned on screen at least once,

and label the ground truth accordingly. For example, in

BBT there are four minor named characters with less than

35 tracks. In BF-3 there is a double of the main character

“Xander” (played by his twin brother), and we label him as

such “Xander2”, since the role he plays and the distinction

between the two is important to the story of the episode. All

remaining characters (e.g., somebody in the background,

extras) are labeled as “unknown”.

Performance metric We evaluate our approach in terms

of identification accuracy in an open-set id context. We re-

quire all characters to be identified correctly, even when the

automatic speaker assignment does not provide any train-

ing data for them. Unknowns should be identified as “un-

known”. Both assigning a name to an “unknown”, and as-

signing “unknown” to a named character is counted as an

error.

4.2. Experiments

We perform a series of experiments in order to compare

our approach with other approaches and present results in

multiple steps of improvement. Table 3 shows the main

recognition results and we will refer back to it in the fol-

lowing.

Baseline results In order to establish a baseline, and also

compare with previous approaches, we use the automat-

ically generated weak face labels data to train different

supervised-only classifiers.

As the simplest method, we perform Nearest Neighbor

(NN) classification comparable to [5]. It achieves an accu-

racy of 64.2% on BBT and 56.5% on Buffy.

Further, we train Logistic Regression (LR) and Support

Vector Machine (SVM) classifiers in a one-vs-all scheme.
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Figure 3: Confusion matrix over all 6 episodes of BBT for

MLR + Lu + Lc. For Doug and Summer, the automatic labeling

did not find any tracks for training (c.f . Tbl. 2).

For both, we use a polynomial kernel of degree 2, cor-

responding to the setting in [15]. LR and SVM perform

roughly on par. Note that in [15], where also SVMs are

used, face labels were manually supplied, whereas we ob-

tain them automatically from the transcripts. When using

our SVM results as input to [15] (“SVM+MRF” in Table 3),

we obtain a significant improvement to about 82% accuracy

in face recognition. Since we do not have person tracks for

Buffy, we perform this evaluation only for BBT.

SS+Constraints MLR We evaluate our method starting

with the supervised loss only and then add the other loss

terms for incremental improvement. The MLR multi-class

classifier already outperforms both LR and SVM for both

series (77.4% for BBT and 65.82% for Buffy). By adding

additional (unlabeled) data and constraints, we can further

increase the identification accuracy. With the full loss term,

we reach on average about 79.5% accuracy for BBT (al-

most 90% on episode 1) and 66.37% on Buffy. In addition,

we perform 10 runs on 90% of the data (leave out 1 of 10

folds each) and perform a paired t-test against the baseline

(SVM), in which we are able to reject the null-hypothesis

of equal means (p < 0.01). The big drop in accuracy in

BBT-6 can be explained by the large number of unknowns

present in that episode (195 tracks, see Table 1), which are

harder to identify because there is usually no training data

for them. Also, speaking-face precision and recall are sig-

nificantly lower for BBT-6, which is in parts also caused by

unknowns which are incorrectly assumed to be speaking.

Figure 3 shows the confusion matrix over all 6 episodes

of BBT, which confirms the difficulty in identifying un-

knowns.

Curiously, while adding constraints helps more for BBT,
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BBT Avg. BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 BF Avg.

Max Prior 37.94 33.98 34.42 17.56 24.19 23.66 28.63 29.97 19.31 18.69 25.75 35.24 14.58 23.92

baseline: NN [5] 72.19 71.86 66.88 59.04 59.50 55.98 64.24 60.34 51.92 55.13 58.92 61.96 50.74 56.50

baseline: one-vs-all LR 88.42 84.60 73.57 73.84 70.97 65.73 76.19 69.50 59.29 66.05 65.87 67.56 60.33 64.77

baseline: one-vs-all SVM [15] 87.46 84.96 74.06 74.87 70.25 66.46 76.34 69.90 59.71 66.23 66.47 68.07 61.44 65.30
baseline: one-vs-all SVM + MRF [15] 94.05 92.21 76.18 79.00 75.63 74.51 81.93 – – – – – – –

ours: MLR 88.59 87.61 76.18 74.01 72.76 65.24 77.40 68.85 61.37 65.96 67.19 69.85 61.72 65.82

ours: MLR + Lu 88.59 87.61 76.35 74.01 72.94 65.24 77.46 71.60 60.54 66.42 67.78 70.10 61.44 66.31

ours: MLR + Lu + Lc 89.23 89.20 78.47 76.59 75.09 68.05 79.44 71.99 61.27 66.60 67.07 69.59 61.72 66.37
ours: MLR + Lu + Lc + MRF [15] 95.18 94.16 77.81 79.35 79.93 75.85 83.71 – – – – – – –

Table 3: Evaluation results. The first line shows the accuracy that could be achieved by assigning each track the most often appearing

person in the series (Leonard for BBT, and Buffy for Buffy). In the middle section of the table, we report baseline results of different

methods on our data set. The bottom section shows the performance of our approach in multiple steps of improvement. MLR denotes the

basic supervised multinomial logistic regression classifier, and Lu and Lc denote the additionally incorporated loss terms.

for Buffy adding unlabeled data helps. The importance of

constraints in BBT can be explained from the fact that BBT

contains many shots with multiple faces, thus allowing con-

straints such as uniqueness to be useful. On the other hand,

Buffy favors close-up face shots, which also results in much

fewer and less diverse constraints. The lack of influence of

unlabeled data in BBT can be explained by the relatively

small cast compared to Buffy, while at the same time hav-

ing many training samples for each of the main characters.

Finally, if we use the face identification results from our

best-performing method as input to the clothing-based MRF

model of [15], we can further increase the performance to

83.71% and thus achieve the best results on the BBT data

set.

Failure analysis We already identified the naming of un-

knowns as one of the error sources (see also Fig. 4 (a)). A

refusal-to-predict scheme, as used for example in [5, 10],

could help to reduce the number of falsely accepted/named

unknowns.

Second, our employed DCT features are – despite the

pre-processing alignment to a normalized pose – far from

pose-invariant. We analyze the identification accuracy de-

pending on the mean pan-angle of the face tracks (see

Fig. 4 (b)). The performance drops significantly for greater

pan angles to about 50% rank-1 performance for |pan| > 75
for BBT. However, at rank 3, we consistently reach around

80% for all pan angles. Pose independent face recognition

has been an active research area for many years, and a more

robust feature should directly have an impact on our recog-

nition performance.

Curiously, there is a drop in performance for frontal

faces. This can be explained by a similar drop in speaker as-

signment recall for those pose angles (see Fig. 4 (c)), which

again can be explained from wide angle shots where usually

multiple persons in near-frontal poses are present, but just

one is speaking.

Similar to the dependency on the average pan angle,

there is a dependency on track length and average face size.

We observe that the identification accuracy decreases for

shorter tracks or tracks with a small average face size.

Finally, for some minor characters we are unable to find

any speaking tracks, e.g. for Doug and Summer, see Tbl. 2.

Therefore, we are unable to correctly identify any face track

that belongs to these characters (see Fig. 3). However, these

only represent a very small portion of the data set (about

0.4%).

5. Conclusion
In this paper, we address the problem of person identi-

fication in multimedia data. We propose to use a unified

learning framework combining both labeled and unlabeled

data, along with their constraints in a principled manner,

and apply it to train multinomial logistic regression classi-

fiers. We also set our goal to identify all the people named

in the video, thus providing full coverage even for guest

appearances. The methods are tested on six episodes each

of two TV series – The Big Bang Theory and Buffy the

Vampire Slayer – and we obtain state-of-the-art results for

person identification.
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[15] M. Tapaswi, M. Bäuml, and R. Stiefelhagen. “Knock!

Knock! Who is it?” Probabilistic Person Identification in

TV-Series. In CVPR, 2012. 2, 4, 5, 6, 7

[16] R. Yan, J. Zhang, J. Yang, and A. G. Hauptmann. A dis-

criminative learning framework with pairwise constraints for

video object classification. PAMI, 28(4):578–93, 2006. 2

[17] B. Zeisl, C. Leistner, A. Saffari, and H. Bischof. On-

line Semi-supervised Multiple-Instance Boosting. In CVPR,

2010. 3

360736073609


