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Abstract

This paper considers the person verification problem in
modern surveillance and video retrieval systems. The prob-
lem is to identify whether a pair of face or human body im-
ages is about the same person, even if the person is not
seen before. Traditional methods usually look for a dis-
tance (or similarity) measure between images (e.g., by met-
ric learning algorithms), and make decisions based on a
fixed threshold. We show that this is nevertheless insuffi-
cient and sub-optimal for the verification problem. This pa-
per proposes to learn a decision function for verification
that can be viewed as a joint model of a distance metric and
a locally adaptive thresholding rule. We further formulate
the inference on our decision function as a second-order
large-margin regularization problem, and provide an effi-
cient algorithm in its dual from. We evaluate our algorithm
on both human body verification and face verification prob-
lems. Our method outperforms not only the classical metric
learning algorithm including LMNN and ITML, but also the
state-of-the-art in the computer vision community.

1. Introduction
Person verification, “Are you the person you claim to

be,” is an important problem with many applications. Mod-

ern image retrieval systems often want to verify whether

photos contain the same person or the same object. Person

verification also gets more and more important for social

network websites, where it is highly preferred to correctly

assign personal photos to users. More importantly, the huge

amount of surveillance cameras - there are more than 30

million surveillance cameras in U. S. recording about 4 bil-

lion hours of videos per week, calls for reliable systems

which are able to identify the same person across differ-
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Figure 1. Example images of George W. Bush showing huge intra-

person variations.

ent videos, a critical task that cannot merely rely on human

labors. So developing an automatic verification system is of

great interest in practice.

There are two main visual clues for person verification:

face images and human body figures. Although our human

vision system has the amazing ability of performing verifi-

cation - we can judge whether two faces are about the same

person without even seeing that person before, it is difficult

to build a computer-based automatic system for this pur-

pose. For a given query image, the person in the image may

not appear in the database or has only one or few images in

the database. Furthermore, the query image and the other

images in the database are rarely collected in exactly the

same environment, which leads to huge intra-person varia-

tions including viewpoint, lighting condition, image quality,

resolution, etc. Figure 1 provides some examples illustrat-

ing the difficulties with the person verification problem.

We can formally describe the verification problem as fol-

lows: for a pair of sample images represented by x, y ∈ R
d,

respectively, each of which corresponds to category label

c(x) and c(y), we aim to decide whether they are from the

same category, i.e., c(x) = c(y), nor not. Given a set of
training samples, our goal is to learn a decision function
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f(x, y) where

f(x, y)

{
> 0, if c(x) = c(y)
< 0, otherwise.

(1)

Note that to infer f we need not to know the respective value
of c(x) or c(y), which means it has the generalization ability
to verify samples from unseen categories.

Learning the decision function f for verification is fun-
damentally different from learning a classifier for traditional

machine learning problems. Traditional machine learning

algorithms consider individual samples instead of a pair

of samples. This paired setup for verification naturally

imposes some symmetry constraint for the decision func-

tion, i.e., f(x, y) = f(y, x), a constraint seldom seen in

ordinary learning algorithms. Most multi-class classifiers,

which model the category-specific probability distributions

(for generative models) or learn the decision boundaries (for

discriminant models), are not appropriate for verification.

For verification, of interest is to determine whether a pair

of samples is from the same category or not, but not to an-

swer which category/categories they belong to. The ability

of dealing with unseen categories is the key for person veri-

fication, since most testing samples are from unseen persons

which are not in the training pool.

Recently, metric learning (ML) approaches [26] have

been applied to person verification [12, 19, 6, 2]. The key

idea behind ML is to learn a parametric distance metric be-

tween two images x and y, which in most cases take the
form of (x − y)tM(x − y) where M is a semi-positive

definite matrix Then one can decide whether x and y are
from the same class based on some thresholding rule, i.e.,

(x− y)tM(x− y) ≤ d.
Although ML is very important for many supervised

learning applications (e.g. classification) that often deal

with complex and high-dimensional features, it has a few

limitations particularly in the verification setting. The ob-

jective of many ML algorithms is to ensure that samples

from the same class be closer to each other than those from

different classes. In other words, it enforces a relative rank-
ing constraint between intra-class and inter-class pairs (in

terms of pairwise distances), and this is why ML is often

tied with the nearest neighbor classifier for a classification

task. However, for verification where many test samples

might come from unseen classes, nearest neighbor classi-

fiers are not applicable. Then ML only leads to an absolute
decision rule with a constant threshold d:

fML(x, y) = d− (x− y)tM(x− y). (2)

This intrinsic mismatch (classification vs. verification, rel-

ative ranking vs. absolute discrimination) leaves ML ap-

proaches not optimal for verification problems.

In Section 2, after showing the sub-optimality of (2), we

propose to adjust the decision rule locally, i.e., consider

f(x, y) = d(x, y) − (x − y)tM(x − y) where d(x, y) is
a function of x, y rather than a constant. As a starting point,
we assume d(x, y) takes a simple quadratic form, which
leads to our general second-order decision function. In Sec-

tion 3, we formulate the inference on our second-order deci-

sion function as a large-margin regularization problem, and

provide an efficient algorithm based on its dual. Further,

we can interpret our approach as learning a linear SVM

in a new feature space which is symmetric with respect to

(x, y). With this new interpretation, our second-order de-

cision function can be easily generalized to decision func-

tions of high-orders by the kernel trick. In Section 4, we

evaluated our proposed algorithm on three person verifica-

tion tasks. We show that in all cases, our method achieves

state-of-the-art results in comparison with existing works.

Finally, we give the conclusion remarks in Section 5.

2. Bridging Distance Metric and Local Deci-
sion Rules
Metric learning (related to feature selection, dimension

reduction, or subspace projection, etc) plays a fundamen-

tal role in machine learning. It is particularly important

for computer vision applications, where the feature repre-

sentation of images or videos is usually of complex high-

dimensional form [28, 22]. In these cases, the Euclidean

norm associated with the original feature space usually

does not provide much useful information for the subse-

quent learning tasks. In most applications we consider here,

the sample data are sparse in the high-dimensional feature

space. So we focus on metric learning with respect to a

global metric, i.e., the matrixM in (2), although learning a

local metric has attracted an increasing interest in machine

learning research.

However, metric learning itself is insufficient for verifi-

cation problem, as discussed in Section 1. The problem is

that after metric learning, we still need to make a decision.

As to be shown below, a simple constant threshold in (2)

is sub-optimal, even if the associated metric is correct. A

decision rule that can adapt to the local structures of data

[9], is the key to achieve good verification performance. To

this end, we consider a joint model that bridges a global dis-

tance metric and a local decision rule, and we further show

the optimality of our method over ML in the verification

setting.

Consider f(x, y) = d(x, y)− (x− y)tM(x− y) where
d(x, y) acts as a local decision rule for a learned metric
M . Since the metric itself is quadratic, as a starting point,

we also assume d(x, y) takes a simple quadratic form. We
will see later in Section 3 that, this formulation leads to a

kernelized large-margin learning problem, and thus can be

easily generalized to decision functions of high-orders by

the kernel trick [1].

For now, let us focus on the second-order decision rule,
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i.e., d(x, y) = 1
2z

tQz+wtz+b, where zt = [xt yt] ∈ R
2d,

Q =

[
Qxx Qxy

Qyx Qyy

]
∈ R

2d×2d, wt =
[
wt

x w
t
y

] ∈ R
2d,

and b ∈ R. Due to the symmetry property with respect to x
and y, we can rewrite d(x, y) as follows:

d(x, y) =
1

2
xtÃx+

1

2
ytÃy + xtB̃y + ct(x+ y) + b

=
1

4
(x− y)t(Ã− B̃)(x− y)

+
1

4
(x+ y)t(Ã+ B̃)(x+ y)

+ct(x+ y) + b, (3)

where Ã = Qxx = Qyy and B̃ = Qxy = Qyx are both d×d
real symmetric matrices (not necessarily positive semidefi-

nite), c = wx = wy is a d-dimensional vector, and b is the
bias term.

Now we obtain the second-order decision function for

verification:

f(x, y) = d(x, y)− (x− y)tM(x− y)
=

1

2
xtAx+

1

2
ytAy + xtBy

+ct(x+ y) + b, (4)

by letting A − B = Ã − B̃ − 4M and A + B = Ã + B̃.
Again, A andB are real symmetric and need not to be PSD.

The above decision function has the following desirable

properties:

• Learning globally, acting locally. We bridge a global
metricM and a local decision rule using a joint model

(4). Interestingly, the number of parameters is at the

same order (O(d2)) as that of ML.
• Fully informed decision making. The local decision
rule in (3) depends not only on x − y, the difference
vector usually considered by ML, but also on x + y,
which contains orthogonal information of (x, y) that
would otherwise be neglected by x− y alone.

• Kernelizable to higher order. As we will see in Sec-
tion 3, the decision function in (4) leads to a kernelized

large-margin learning problem, and thus can be easily

generalized to decision functions of higher-orders by

the kernel trick [1].

We now show the optimality of our decision function

overML, by considering a simple case where two categories

of samples in Rd are linearly separable. We show that in the

verification setting, the performance of any given metric is

inferior to that of our model, in this simple case.

Observation. Given two linearly separable classes, the
verification error rate by our second-order decision func-
tion (4) is always lower than that by a learned metric with a

fixed threshold (2). More specifically, in this particular set-
ting, our model can always achieve zero verification error
while ML does not.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

joint distributions of (x,y)

c(x)=c(y)
c(x)!=c(y)
xy>0.2

(a) Joint distribution of (x,y), with zero-error decision function by our

model: xy − 0.2 > 0.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

Δ = x−y

pd
f

distributions of Δ = x−y

c(x)=c(y)
c(x)!=c(y)

(b) Distribution of Δ = x − y in case of metric learning, with finite
verification error.

Figure 2. Distributions of same-class pairs (red) vs. different-class

pairs (blue).

Proof. Suppose the two classes inRd satisfies: wtx+b > 0
for class 1, and wtx+ b < 0 for class 2. In verification, we
aim to identify if two samples x and y are from the same

class or different ones.

1. We first show that our decision function in (4) always

achieves zero verification error.

x and y are from the same class if and only if (wtx + b)
and (wty + b) are of the same sign. In other words, we can
perfectly identify pairs from the same class vs. those from

different classes, by checking the sign of (wtx+ b)(wty +
b) = xt(wwt)y + bwt(x+ y) + b2. This decision function
is clearly a special case of (4).

2. We then show that the ML approach in (2) does not

always achieve zero verification error.

AnyMahalanobis distance between x and y can be regarded
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as the Euclidean distance on the space transformed by L,
namely, d(x, y) = (x−y)tM(x−y) = (x−y)LtL(x−y) =
‖x′− y′‖22, whereM = LtL, x′ = Lx and y′ = Ly. In this
new space, the two classes are still linearly separable, since

wtx+ b = w′tx′ + b and w′ = wL−1 (assumingM is full

rank). Therefore, in order for ML method in (2), or simply

|x−y| < d, to achieve zero verification error, the following
condition needs to be satisfied:

max
c(x)=c(y)

‖x′ − y′‖2 < min
c(x)�=c(y)

‖x′ − y′‖2. (5)

Unfortunately, the above condition does not always

hold. Consider a counter example in 1-D: class 1 is uni-

formly distributed in [−2, −0.5] and class 2 in [0.5, 2].
The two classes are indeed separable, but condition (5)

is not satisfied since maxc(x)=c(y) ‖x′ − y′‖2 = 1.5 and

minc(x)�=c(y) ‖x′ − y′‖2 = 1. In fact, from Figure 2(b) we

see that ML method (|x − y| < d) inevitably results in fi-
nite verification error, while our model is able to perfectly

separate the two types of pairs on the (x, y) space, shown in
Figure 2.

A more realistic example that also violates (5) is: face

images of the same person but from different poses are usu-

ally more dissimilar than those from different person but of

the same pose. Figure 3 shows such an example with se-

lected image pairs of the LFW dataset [16].

3. A Large-Margin Solution with an Efficient
Algorithm

3.1. A large margin formulation

Recall that the objective of a verification problem is to

learn a symmetric decision function: f(x, y) : Rd × R
d →

R that takes a pair of samples x, y ∈ R
d as inputs, with

decision rule:

f(x, y)

{
> 0, if c(x) = c(y)
< 0, otherwise.

Our goal is to find the optimal second-order decision func-

tion f(x, y) in (4) that is parametrized by {A,B, c, b}. This
naturally leads to a choice of an SVM-like [4] objective

function, as the resulting large-margin model generalizes

well to unseen examples.

Specifically, assume we are given a dataset of exam-

ples, and pairwise labels are assigned. A sample pair

pi = (xi, yi) is labeled as either “positive” (li = +1), if
xi and yi are from the same class; or “negative” (li = −1),
otherwise. We further denote by P the set of all labeled

sample pairs. An SVM-like objective function can be for-

(a) Intra-person distances (different poses).

(b) Inter-person distances (same pose).

Figure 3. Comparison of intra-person and inter-person distances

under a learned metric.

mulated as:

min
1

2

(‖A‖2F + ‖B‖2F + ‖c‖22
)
+ λ

∑
i∈P

ξi (6)

s.t. lif(xi, yi) ≥ 1− ξi ∀i ∈ P
ξi ≥ 0 ∀i ∈ P.

Here ‖A‖F =
√
tr(AtA) is the Frobenius matrix norm,

and tr(A) denotes the trace of matrix A.

Noticing the inner product defined on the matrix space,

〈A,B〉 = tr(AtB), we reformulate the decision function
(4) into:

f(x, y) =
1

2
tr

(
A (xxt + yyt)

)
+

1

2
tr

(
B (xyt + yxt)

)
+ct(x+ y) + b

=
1

2

〈
A, xxt + yyt

〉
+

1

2

〈
B, xyt + yxt

〉
+ 〈c, x+ y〉+ b

= 〈ζ, ψ(x, y)〉+ b, (7)

where ζ ∈ R
2d2+2 is a vectorized representation of the

hyper-parameters (excluding b), and ψ(x, y) defines a map-
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ping Rd × R
d → R

2d2+d:

ζ =

⎡
⎣ vec(A)

vec(B)
c

⎤
⎦ (8)

ψ(x, y) =

⎡
⎣

1
2vec(xx

t + yyt)
1
2vec(xy

t + yxt)
x+ y

⎤
⎦ , (9)

where vec(·) denotes the vectorization of a matrix. Note
that ψ(x, y) can be viewed as a symmetrization of the orig-
inal feature space (x, y), that is, any function of ψ(x, y) is
now a symmetric function of x and y.
Similarly, the objective function can be rewritten as:

min
1

2
〈ζ, ζ〉+ λ

∑
i∈P

ξi (10)

s.t. li(〈ζ, ψi〉+ b) ≥ 1− ξi ∀i ∈ P
ξi ≥ 0 ∀i ∈ P ,

where ψi is an abbreviation of ψ(xi, yi). This looks identi-
cal to the standard SVM problem [4]. Thus existing SVM

solvers could be employed to solve this problem, such

as stochastic gradient decent [23] that works on the pri-

mal problem directly, or sequential minimal optimization

(SMO) [21] that solves the dual problem instead.

3.2. An efficient dual solver

Though looking straightforward, solving (10) directly is

infeasible due to the high dimensionality of 2d2 + d. For
instance, a moderate image feature of 1000 dimensions will

lead to more than 1 million parameters to estimate. What’s

more, direct application of existing SVM solvers may re-

quire forming ψ(xi, yi)’s explicitly, which is highly inef-
ficient and prohibitive in memory usage. In this section,

we will show that the original problem can actually be con-

verted into a kernelized SVM problem that could be solved

much more efficiently.

We start with the Lagrange dual of (10):

max
1

2

∑
i

αi − 1

2

∑
i,j

αiαj lilj 〈ψi, ψj〉 (11)

s.t.
∑
i

αili = 0, 0 ≤ αi ≤ λ,

where αi is the Lagrange multiplier corresponding to the i-
th constraint. If we could have solved the above problem

with optimal α∗i ’s, the solution for the primal is then given
by:

ζ∗ =
∑
i

α∗i liψi

b∗ = −li − 〈ζ∗, ψi〉 , ∀i : α∗i > 0.

And the optimal decision function is therefore:

f(x, y) = 〈ζ∗, ψ(x, y)〉+ b∗
=

∑
i

α∗i li 〈ψi, ψ〉+ b∗. (12)

We notice that either solving the dual problem (11) or ap-

plying the optimal function (12) involves only the so-called

kernel function K(ψi, ψj) = 〈ψi, ψj〉. By substituting (9)
and the equality vec(A)tvec(B) = 〈A,B〉 = tr(AtB),
we arrive at:

K(ψi, ψj) =
1

4
tr

(
(xix

t
i + yiy

t
i)(xjx

t
j + yjy

t
j)
)

+
1

4
tr

(
(xiy

t
i + yix

t
i)(xjy

t
j + yjx

t
j)
)

+(xi + yi)
t(xj + yj)

=
1

4
(xtixj + ytiyj)

2 +
1

4
(xtiyj + ytixj)

2

+(xi + yi)
t(xj + yj). (13)

Note that the kernel function here is defined on a new space

of ψ(x, y) that is symmetric with respect to x and y. More
specifically, different from a traditional kernel function that

is between two individual samples,K(ψi, ψj) is defined be-
tween two pairs of samples.

We now see that, to evaluate each kernel function

K(ψi, ψj), one only needs to calculate 4 inner products

on R
d: xtixj , x

t
iyj , y

t
ixj , and y

t
iyj , rather than working

on the (2d2 + d)-dimensional space instead. In this way
we reduce the complexity of each kernel evaluation from

O(d2) to O(d), which is usually the most costly operation
in solving large-scale dual SVM problems [7]. In addition,

the memory cost is alleviated accordingly, as explicitly con-

structing ψ(x, y)’s by (9) is no longer necessary. Based on
(13), existing dual SVM solvers such as SMO algorithm

[21, 7] can be applied to solve (11) efficiently.

Moreover, the fact that only inner products are involved

in K(ψi, ψj) implies the extension to implicit kernel em-
bedding of original features, namely,

K(ψi, ψj) =
1

4
(G(xi, xj) +G(yi, yj))

2

+
1

4
(G(xi, yj) +G(yi, xj))

2

+G(xi, xj) +G(xi, yj)

+G(yi, xj) +G(yi, yj), (14)

where G(·, ·) is a kernel function of the original feature

space. Based on this kernel embedding, we can thus ex-

tend our decision function (4) to higher orders by the kernel

trick [1]. However, in practice, cubic polynomials or higher

order functions often work less robustly, so in experiments,

we will mainly use the second-order decision functions.
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3.3. Regularizations

In practice, especially when there is only limited amount

of training data, we might consider further regularizing the

parameters (A and B in particular). For instance, Huang

et al. [13] impose various constraints on the learned Ma-

hanalobis matrix (for metric leanring), including positive

semi-definity, low rank, sparsity, etc. While all these regu-

larizations can be applied in addition to the Frobenius norm

used in (6), we find in practice that positive/negative semi-

definity to be particularly useful. Note that here we have

two matrices A and B that need to be constrained. Both

metric learning and the toy example in Section 2 indicate

that we could force A to be positive semi-definite while re-

quiring B be negative semi-definite. So we are adding two

constraints to the objective function in (6): A ∈ PSD and

B ∈ NSD. Gradient projection algorithms can be employed

to solve the optimization problem, i.e., after each gradient

descent step, we project the updated A onto the PSD space,

and B onto the NSD space. Alternatively, we could let

A = MM t and B = −NN t and optimize on M and N
instead. Though the problem onM andN is no longer con-

vex, it does not seem to suffer from seveve local minimum

issues [24].

4. Experiments
We conduct experiments on three different datasets:

“Viewpoint Invariant Pedestrian Recognition” (VIPeR)

[11], “Context Aware Vision using Image-based Active

Recognition for Re-Identification” (CAVIAR4REID) [3],

and “Labeled Faces in the Wild” (LFW) [16]. The

first two datasets focus on person verification from hu-

man body images, while the latter one on face verifica-

tion. In each experiment, we present results by com-

paring with classic metric learning (ML) algorithms as

well as other state-of-the-art approaches. We demonstrate

that our proposed approach significantly outperforms ex-

isting works and achieves state-of-the-art results on all

datasets. The image features and the code for the learn-

ing algorithm used in our experiments are available at

http://pikachu.ifp.uiuc.edu/˜zhenli3/learndecfunc.

4.1. VIPeR

The VIPeR dataset consists of images from 632 pedes-

trians with resolution 48 × 128. For each person, a pair of
images are taken from cameras with widely differing views.

Viewpoint change of 90 degrees or more as well as huge

lighting variations make this dataset one of the most chal-

lenging datasets available for human body verification. Ex-

ample images are shown in Figure 4.1.

We follow [28] to extract high level image features based

on simple patch color descriptors. To accelerate the learn-

ing process, we further reduce the dimensionality of the fi-

Figure 4. Example images of VIPer dataset. Each column shows

two images of the same pedestrian captured under two different

cameras.

nal feature representation to 600 using PCA (learned on the

training set). We also follow exactly the same setup as in

[10, 11, 3]: each time half of the 632 people are selected

randomly to form the training set, and the remaining people

are left for testing (so that no people will appear in both the

training and testing). The cumulative matching characteris-

tic (CMC) curve, an estimate of the expectation of finding

the correct match in the top n matches, is calculated on the
testing set to measure the verification performance (see [10]

for details on computing the CMC curve). The final results

are averaged over ten random runs.

Figure 5(a) compares our proposed method with clas-

sic ML algorithms: LMNN [24] and ITML [5], using the

same feature. It is apparent that, in the verification problem,

the optimal second-order decision function (4) does signifi-

cantly improve over traditional ML approaches with a fixed

threshold (2). Note that here LMNN performs the worst.

One of possible reason is that each class contains only two

examples with huge intra-class variations. We are also in-

terested in comparing with other state-of-the-art methods

on this dataset, though different features and/or learning

algorithms have been used. Figure 5(b) shows the com-

parison with PS [3], SDALF [8], ELF [11], and PRSVM

[20]. Clearly our method outperforms all previous works

and achieves state-of-art performance.

4.2. CAVIAR4REID

CAVIAR4REID [3], extracted from the CAVIAR

dataset, is another famous dataset widely used for person

verification tasks. This dataset not only covers a wide range

of poses and real surveillance footage, but also includes

multiple images per pedestrian with different view angles

and resolutions. There are in total 72 pedestrians, and each

person has images recorded from two different cameras in

an indoor shopping mall in Lisbon. All the human body

images have been cropped with respect to the ground truth,

and the resolution various from 17 × 39 to 72 × 144. Here
we extract the same image feature as in Section 4.1, and we

also use the same training/testing protocol.

Again, we compare with popular ML algorithms as well

361336133615
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(a) Comparison with metric learning algorithms.

5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Score

R
ec

og
ni

tio
n 

P
er

ce
nt

ag
e

CMC Curve for VIPeR Dataset

Ours
PS
PRSVM
SDALF
ELF

(b) Comparison with other state-of-art algorithms.

Figure 5. Experimental results on VIPeR dataset.

as other state-of-the-art approaches, as shown in Figure 6(a)

and Figure 6(b), respectively. Similarly as in Section 4.1,

we observe a substantial improvement over traditional ML

algorithms, and our method also outperforms state-of-the-

art works including PS [3] and SDALF [8]. It should be

noted that, the curves by both PS and SDALF shown in 6(b)

have been extrapolated for the sake of fair comparison. The

reason is that we have to separate a subset of 36 people for

learning the parameters of our decision function (4) or dis-

tance metric. With only half of the people left in testing, we

rescale the horizontal axis of PS and SDALF by 50% for a

fair comparison.

4.3. LFW

The “Labeled Faces in the Wild” (LFW) [16] is a

database of face images designed for studying the problem

of unconstrained face recognition. The face images were

downloaded from Yahoo! News in 2002–2003, and demon-

strate a large variety of pose, expression, lighting, etc. The

dataset contains more than 13,000 face images from 5,749

people, among which 1,680 people have two or more dis-

tinct photos. We extract the same high level image feature
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Figure 6. Experimental results on CAVIAR4REID dataset.2

as in Section 4.1 and 4.2, except that SIFT [18] descriptors

are computed for local patches instead of color, as suggested

by [12]. The features are reduced to 500 dimensions using

PCA.

We test our algorithm under the standard “image re-

stricted” setting that is particularly designed for verification.

In this setting, the dataset is divided into 10 fully indepen-

dent folds, and it is ensured that not the same person appears

across different folds. The identities of the people are hid-

den from use; instead, 300 positive and 300 negative image

pairs are provided within each fold. Figure 3 shows some

examples of positive and negative image pairs. Each time

we learn both the PCA projection and the parameters of our

decision function on 9 training folds, and evaluate on the

remaining fold. Pairwise classification accuracy averaged

over 10 runs is reported, as suggested by [16].

As shown in Table 1, our approach significantly outper-

forms state-of-the-art works on the LFW dataset. It should

be noted that our verification accuracy of 89.6% outperfoms

2We have rescaled the curves by PS [3] and SDALF [8] for a fair com-

parison. See text.
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Table 1. Comparison with state-of-the-art algorithms on LFW

dataset. The best performance is highlighted in bold.

Methods Accuracy (%)

MERL+Nowak [14] 76.2

LDML [12] 79.3

LBP + CSML [19] 85.6

CSML + SVM [19] 88.0

Combined b/g samples [25] 86.8

DML-eig combined [27] 85.7

Deep Learning combined [15] 87.8

Our method 89.6

the best reported results3 in LFW under the category of “no

outside data is used beyond alignment/feature extraction”.

This result also significantly improves our previous work in

[17].

5. Conclusion
In this paper, we propose to learn a decision function

for the verification problem. Our second-order formu-

lation generalizes from traditional metric learning (ML)

approaches by offering a locally adaptive decision rule.

Compared with existing approaches including ML, our ap-

proach demonstrates state-of-the-art performance on sev-

eral person verification benchmark datasets such as VIPeR,

CAVIAR4REID, and LFW.
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