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Abstract

We propose an approach to assess the quality of fin-
gerprint samples captured by smartphone cameras under
real-life scenarios. Our approach extracts a set of qual-
ity features for image blocks. Without needing segmenta-
tion, the approach determines a sample’s quality by check-
ing all image blocks divided from the sample and for each
block a trained support vector machine gives a binary indi-
cation - "high-quality" or "non-high-quality" (including the
low quality case and the background block case). A qual-
ity score is then generated for the whole sample. Experi-
ments show this approach performs well in identifying the
high quality blocks - the Spearman correlation coefficient
between the proposed quality scores and samples’ normal-
ized comparison scores (ground truth) reaches 0.53 while
the rate of false detection (background blocks judged as
high-quality ones) is still low as 4.63 percent over a chal-
lenging dataset collected under various real-life scenarios.

1. Introduction

Fingerprint recognition has been widely used in industry

and forensic area. It is quite common to select the dedicated

sensors to acquire biometric samples in an controlled envi-

ronment compliant to existing standards [5, 6]. However,

smartphones are being found in almost everyone’s pocket

nowadays and normally embedded with a 5-mega-pixels (or

above) camera, it becomes feasible to use these general-

purposed cameras for capturing fingerprint samples. Pre-

vious research [3, 11, 14, 12] has shown that it is feasible

to implement the fingerprint recognition functionality using
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(a) by NIST MINDTCT (b) by VeriFinger 6.0

Figure 1: High quality samples detected by NFIQ (score 1)

with red cross indicating the detected minutae.

smartphones’ cameras as an alternative to dedicated finger-

print sensors. Compared to the quality of the fingerprint

samples captured under the ideal laboratory environment,

the sample quality is quite unstable while data acquisition

takes place under a real-life scenario [9] due to camera mo-

tion, de-focusing, poor illumination and complicated back-

grounds. Thus it is essential to assess the sample quality

before implementing practically useful biometrics-enabled

applications on these smartphone cameras.

Several quality assessment methods and mechanisms

have been proposed in the literature, such as [13, 4, 7], but

they are designed for samples generated by dedicated fin-

gerprint sensors. There are two fingerprint samples shown

in Figure 1 which are considered as high quality (‘score

1’ by NIST Fingerprint Image Quality (NFIQ) [13]) but

with a lot of spurious minutiae detected on the background.

These methods are not designed to cope with fingerprint

samples captured by smartphone cameras [14] with so com-

plicated environments requiring accurate segmentation and

noise (variance in lighting and color) suppression of the

foreground (finger area). Consequently, their simple pre-

processing mechanisms (e.g., the quality map used in NFIQ

to identify foreground blocks) which were accustomed to

contact-based fingerprint patterns are not capable towards
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such contactless-based samples any more.

We propose a segmentation-free approach in this pa-

per to assess the quality of fingerprint samples captured by

smartphones’ cameras under real-life scenarios. A critical

challenge during taking photo under real-life scenarios is

the unpredictable background which may cause false detec-

tion of the finger area. Instead of using pixel-level fore-

ground (finger area) segmentation, which could be both in-

accurate and high in computational complexity for a mo-

bile device, the approach checks each image block’s quality

status - high quality or non-high quality (i.e. the low qual-

ity and the background cases) - and combines all blocks’

quality decisions to produce the final quality score for the

sample. This quality score can be adopted to predict the

sample’s utility in terms of recognition performance, and

then the camera can decide either to store the samples (if

the quality score is large enough) or to automatically adjust

the camera settings (such as the focusing distance or flash)

for the next sample capture.

The remaining sections are organized as follows: Section

2 presents the proposed approach; Section 3 shows experi-

mental results; and Section 4 concludes this paper.

2. The Proposed approach
2.1. Processes of the proposed approach

A conventional quality assessment usually include two

steps: fingerprint area segmentation and quality prediction

of the fingerprint area. Instead, we propose a one-step qual-

ity assessment approach which will not differentiate the

foreground (fingerprint area) from the background in view

of the computational efficiency and low-memory consump-

tion requirement to mobile phones.

Figure 2: Processes of the proposed approach.

Figure 2 illustrates the processes of the proposed ap-

proach which uses support vector machine (SVM) to gener-

ate a quality binary decision di (1 = high quality; 0 = non-

high quality) for each block bi(i = 1, 2, ..., n) divided from

a sample image I . The SVM classifier is trained from a

ground truth data set composed of high-quality block fea-

tures with label one and non-high-quality block features

with label zero to obtain a binary classifier. During quality

assessment, we use the trained classifier to predict if each

input block bi divided from sample image I should be clas-

sified as high-quality or not. A global quality score SI is

generated to indicate the whole fingerprint sample’s quality

by counting the number of blocks labelled as high quality.

To make this quality indicator more accurate, sample im-

ages can be resized to offset the variance in the finger-to-

camera distance, as we did in Section 3.1.2.

2.2. Proposed quality features

2.2.1 Image block alignment in ridge orientation

A sample image is divided into non-overlapping blocks

b0
i (i = 1, 2, ..., N) sized R × C in pixel (R and C =

2k, k = 1, 2, 3, ...) on which the quality features are com-

puted. Before computing the features, the image blocks are

aligned according to their ridge orientation using the PCA

based gradient orientation estimation method [2]. That is,

inside each block b0
i neighbouring pixels’ differences dv

and dh (in both vertical and horizontal directions respec-

tively) are obtained to form a gradient vector with orienta-

tion tan−1(dv/dh). Then the principal component analy-

sis θi is calculated by exploiting PCA to find the principal

one among all orientations of the (R − 1) × (C − 1) cal-

culated gradient vectors. Now by clock-wise rotating the√
2(R−1)×√2(C−1) size area concentric to b0

i by angle

θi we can crop a block bi sized R × C concentric to b0
i . In

this way we assume bi has the maximum gradient value in

the horizontal direction.

2.2.2 Quality features for block quality assessment

We propose 12 quality features fi(i = 1, 2, ..., 12) in three

categories to assess an image block’s quality: (1) pixel

based features; (2) autocorrelation based features; and (3)

frequency features from autocorrelation result. And the de-

tails are as follows.

1. Pixel based features
(1) f1: Exposure (a block’s gray level). Denote the aver-

age pixel value of bi, i.e.

f1 =
1

R× C

∑R

r=1

∑C

c=1
bi(r, c) (1)

where bi(r, c) is the pixel value at the r-th row and c-th
column inside the block bi.

(2) f2: Significance of the principal component analysis.

We represent it using the first eigenvalue λ1 of the covari-

ance matrix of all gradient vectors in the PCA calculation.
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(3) f3: Certainty of the block principal gradient orienta-

tion. We use a modified definition of ocl (orientation cer-

tainty level) in [8] as follows:

f3 =

{
1− λ2

λ1
if λ1 �= 0

0 if λ1 = 0
(2)

where λ2 is the second eigenvalue of the covariance matrix

of all gradient vectors in the PCA calculation.

2. Autocorrelation based features
Considering the fact that bi has the principal gradient

orientation aligned to the horizontal direction, autocorrela-

tion calculation along the horizontal direction of bi could be

useful to enhance the dominant spatial frequencies and thus

the autocorrelation result can be used for quality feature ex-

traction. Instead of calculating autocorrelation directly, we

do the autocorrelation on the horizontally-differential vec-

tors di(r), 1 ≤ r ≤ R− 1. The details are as follows:

acri =
∑R−1

r=1
autocorr(di(r)) (3)

where di(r) = (bi(r, 2) − bi(r, 1), bi(r, 3) −
bi(r, 2), ..., bi(r, C)− bi(r, C − 1)).

The resultant acri is the (C − 1)-dimensional sum-up

vector with each row’s autocorrelation calculated as fol-

lows:

autocorr(di(r))(j) =
C−1∑
c=1

di(r, c)di(r, c+ j) (4)

where (0 ≤ j ≤ C−2), with all (C−1) amplitudes divided

by the highest amplitude of autocorr(di(r)). Before the

follow-up feature extraction, low-pass filtering by setting

zero the higher half of DCT-transform frequencies is used

to smoothen the autocorrelation resultant vector. We denote

the final (C − 1) dimensional vector as ACRi.

(4) f4: ACRi’s peak active rate. From the observations

in the experiments, we find the peaks of the ACRi curve

have a stable increasing rate if the sample quality is good

enough. We use the 1-order polynomial (i.e. a straight line)

to fit the M detected peak points with the x-coordinates

P1(x), P2(x), ..., PM (x)(M) � C − 1 in the ACRi curve

(shown in Figure 3) and obtain a straight line with slope S
on which M amplitudes A(Pn(x))(n = 1, 2, ...,M) can be

found. Then the ACRi’s peak active rate is defined as

f4 =
1

M

∑M

n=1
A(Pn(x))(A(Pn(x)) > 0). (5)

(5) f5: ACRi’s peak pick-up rate. We denote it as the

slope S directly:

f5 = S (6)

(6) f6: ACRi’s peak variance rate. We use this rate

to represent the degree the M amplitudes A(x) on the

Figure 3: ACRi curve, C=80 (the straight line is the linear

best fit of the M peak points).

fitted line diverge from the actual M peak amplitudes

P1(y), P2(y), ..., PM (y)

f6 = UP/DOWN. (7)

where, UP = (
1

M

∑M
n=1 |Pn(y)−A(Pn(x))|)

DOWN = (max(A(Pn(x)))−min(A(Pn(x)))).
(7) f7: ACRi’s peak drop rate. We use this rate to rep-

resent the degree of the amplitude drop ADj = Pj+1(y)−
Pj(y)(j = 1, 2, ...,M − 1) of one peak compared to its

previous counterpart. From the observation in the exper-

iments, large drops in amplitude seldom happen to high

quality blocks.

f7 = UP/DOWN (8)

where, UP = 1− (
∑M−1

j=1 |ADj(ADj < 0)|/(M − 1))
DOWN = (max(A(Pn(x)))−min(A(Pn(x)))).
3. Frequency features from the autocorrelation result
This category of features is derived from the frequency

characteristics of the FFT coefficients of ACRi, which we

denote as fACRi Frequency features are useful to represent

the ridge spatial frequency characteristics.

(8) f8: Principal frequency’s amplitude:

f8 = max(abs(fACRi)) (9)

(9) f9: Principal frequency’s index in vector fACRi.

(10) f10: Principal frequency’s dominance rate.

f10 =
4×∑C/4

n=2 Qi(n)

(C − 4)×Qi(1)
(10)

where we denote Qi(1), Qi(2), ..., Qi(C/4) as the first

quarter of fACRi’s components sorted by descending am-

plitude.

(11) f11: Principal frequency’s prominence rate – close

neighbours.

f11 =
(
∑H

n=−H fACRi(L+ n))− fACRi(L)

2H × fACRi(L)
(11)
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where L is denoted as the feature f9 that is the principal

frequency’s index in the vector fACRi. We consider 2H
neighbours around the principal frequency.

(12) f12: Principal frequency’s prominence rate – second

close neighbours:

f12 =

X∑

n=−X

fACRi(L+ n)−
H∑

n=−H

fACRi(L+ n)

2(X −H)× fACRi(L)
(12)

where L is the principal frequency’s index in the vector

fACRi, 0 < H < X < C. And L − X > 0, otherwise

f12 = 0.

2.2.3 Feature dynamic range normalization

All the 12 features fi(i = 1, 2, ..., 12) are z-score normal-

ized prior to being used by the SVM as:

f
′
i =

fi − E(fi)

σ(fi)
(13)

where E(fi) and σ(fi) are expectation and standard devia-

tion values of the feature fi.

3. Experimental design and results
Good sample quality can be represented by its high nor-

malized comparison scores [13]. We evaluate in this section

how well the normalized comparison score, as the ground

truth, and the quality score generated from the proposed

approach correlate. Spearman’s rank correlation coeffi-

cient [10] is computed between the two for each sample.

3.1. Experimental setup

3.1.1 Data collection and experimental settings

Three smart phones - iPhone 4, Samsung Galaxy S, and

Nokia N8 - were selected to capture fingerprint samples

from 100 different fingers of 25 groups (corresponding to

25 subjects) of right index finger, right middle finger, left

index finger and left middle finger. Table 1 lists the speci-

fication of selected mobile phone cameras. Three scenarios

are tested: indoor scenario with good illumination but chal-

lenging background with similar color and texture as fin-

gers (shown in Figure 1); dark scenario with illumination

only from the smartphone automatic flash; outdoor scenario

with complex background such as buildings, lawns, lakes

and trees. Figure 4 shows the finger examples generated

in the three scenarios respectively. We use each phone to

capture three samples for each finger in the first and third

scenarios, but only Nokia N8 in the second scenario (the

other two failed to take photos in darkness). In total, there

are 2100 fingerprint samples captured. For quality assess-

ment, the parameters used in our experiments were set as:

R = C = 80, H = 2, X = 4 (refer to Section 2.2). 100

Mobile phone Nokia N8 iPhone 4
Samsung

Galaxy S

Mega pixel 12.0 5.0 5.0

Resolution 1536×1936 2592×1936 1600×960

Auto-focus Yes Yes Yes

Image format JPEG JPEG JPEG

ISO control automatic automatic automatic

Flash source Xenon LED no flash

Flash setting automatic automatic no flash

Aperture f/2.8 f/2.8 f/2.6

Sensor size 1/1.83" 1/3.2" 1/3.6"

Table 1: Specification of the 3 smartphones’ cameras.

high-quality blocks and 200 non-high-quality ones (visu-

ally judged as ground truth) with size RC were randomly

cropped from samples for SVM training.

(a) (b) (c)

Figure 4: Fingerprint samples under 3 different scenarios:

(a) In-door, (b) Dark(auto flash) and (c) Out-door.

3.1.2 Sample pre-processing

Although our proposed approach does not need to seg-

ment the foreground (finger area) for quality assessment,

in practice for recognition purpose pre-processing are usu-

ally needed over the samples directly output from the cam-

eras. Such pre-processing steps could include (1) segmen-

tation of the fingerprint area; (2) sample resizing (to offset

the distance variance of fingers from the camera); and (3)

fingerprint area enhancement. Instead of performing such

pre-processing steps for quality assessment, we need to do

them in this paper to calculate the normalized comparison

score [13] of each sample to obtain the ground truth of the

sample’s quality. We tested two types of pre-processed sam-

ples in our experiments as follows.

Pre-processing Type 1. Segmentation only, in which

only manually segmentation is performed to crop the fore-

ground, without applying sample resizing and enhance-

ment. This type provides the baseline condition for nor-

malized comparison score calculation.

Pre-processing Type 2. Manual segmentation of the fore-

ground, foreground resizing, and foreground enhancement.

Resizing is realized by the following steps: (1) fitting the
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finger-tip shape as a half-circle, detect this finger-tip cir-

cle using Hough transform over the boundary of the fore-

ground; (2) align the radius of the detected finger-tip half-

circle to a fixed value (20 pixels in our experiments); and

(3) resize the whole cropped sample according to the new

aligned radius value. In this way, all the resized samples

contain finger-tips with almost the same radius value. Af-

ter the resizing, the fingerprint enhancement implementa-

tion from [1] is applied to generate ridge orientation and

frequency enhanced images.

Note that for both types, segmentation is done in a man-

ual way which is necessary because the segmented fore-

ground is deemed as ground truth for normalized compari-

son score calculation. At the recognition phase, segmenta-

tion algorithm such as the pre-processing in [12] can be ap-

plied to realize segmentation in real time. How to improve

the pre-processing steps is out of the scope of this paper.

Also note that all the pre-processing steps mentioned

above are only for recognition performance and normalized

comparison scores calculation and they are not at all used

by our proposed quality assessment approach. In this pa-

per, all the quality scores are generated from the full size

original samples with full backgrounds. We assume such

a pre-processing-free quality estimation step is desirable

for smartphones in terms of efficiency and power saving,

considering the accurate segmentation and enhancement of

foreground shall involve high computational complexity.

3.1.3 Accuracy performance evaluation

To evaluate the recognition accuracy performance we gener-

ate two datasets called ‘original cropped samples’ and ‘en-

hanced cropped samples’ corresponding to the Type 1 and

Type 2 processed data in Section 3.1.2.

We used two software - NIST MINDTCT and the Neu-

roTechnology VeriFinger 6.0 to generate the templates from

original cropped samples and enhanced cropped samples.

By NIST MINDTCT there are 2100 templates generated as

expected. By VeriFinger 6.0 there are only 424 templates

belonging to 73 fingers generated from the original cropped

samples and 906 templates belonging to 97 fingers gener-

ated from the enhanced cropped samples due to the sample

quality checking functionality inherent in the software. We

see by sample enhancement the number of samples that can

generate templates by VeriFinger 6.0 doubles (from 424 to

906). We give in Table 2 and 3 an example of accuracy per-

formance using VeriFinger 6.0 over the 424 templates from

the original cropped samples. Note that in both tables the

sums of references and probes are less than 424 - this is

because some fingers have only one sample for a specific

camera or scenario and thus not selected for performance

calculation.

Computing

scenario
Nokia iPhone Samsung

Number of

reference images
63 31 23

Number of

probe images
193 44 44

Number of

imposter scores
11929 1239 968

EER 4.3% 2.3% 5.3%

Table 2: EER value of intra-cameras using VeriFinger 6.0

based on 424 templates from original cropped samples.

Computing

scenario
Indoor Darkness Outdoor

Number of

reference images
50 53 26

Number of

probe images
117 97 55

Number of

imposter scores
5268 4378 1008

EER 19.6% 0.01% 1.8%

Table 3: EER value of intra-scenario using VeriFinger 6.0

based on 424 templates from original cropped samples.

3.2. Distribution of the quality scores

Figure 5(a) gives the distribution of the quality scores of

all 2100 samples, with the minimum score 0 and the maxi-

mum score 47. As a reference to the performance examples

in Table 2 and 3, the distribution of the quality scores of the

424 samples from which templates can be generated by Ver-

iFinger 6.0 is depicted in Figure 5(b). We can observe some

correlation between the proposed quality scores and the bi-

nary quality decision made by VeriFinger 6.0 (i.e., most of

the samples that generate templates have the quality score

larger than 4).

3.3. Evaluation of the proposed quality assessment
approach

In this section we analyse the correlation between the

normalized comparison score ci and the quality score qi
generated by our approach for each sample xi. The nor-

malized comparison score is defined as follows according

to the NIST definition [13].

c(xi) =
sm(xi)− E[sn(xji)]

σ(sn(xji))
(14)

where E[·] is mathematical expectation, and σ(·) is standard

deviation, sm(xi) is the genuine comparison score gener-
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(a) (b)

Figure 5: Quality scores distribution: (a) 2100 samples

and (b) 424 samples that can successfully generate minu-

tiae templates by VeriFinger 6.0 extractor.

ated by comparing the samples from the same finger and

sn(xji) are the imposter scores of sample xi generated by

comparing the samples from different fingers, ∀j, i �= j.

As we mentioned in the section 3.1.3, there are two types

of datasets (original cropped samples and enhanced cropped

samples) that are used to generate the normalized compari-

son scores. The comparison scores sm(xi) and sn(xji) are

produced by both NIST BOZORTH3 and NeuroTechnology

VeriFinger 6.0 comparator. In the VeriFinger 6.0 case, we

assign the comparison score 0 to those samples that cannot

successfully generate templates. We use the samples with

maximum sum of intra-finger sample comparison scores as

references for enrolment in recognition performance test-

ing. In order to include these reference samples into the cor-

relation calculation, we assign the largest comparison score

found in the testing to all these reference samples for nor-

malized comparison score calculation. At last, we obtain a

group of score pairs (ci, qi), i = 1, 2, ..., 2100. To illustrate

the correlation of the two types of scores, we can quantize

the quality scores qi into 10 bins and calculate the average

value of the normalized comparison scores ci in each qual-

ity score bin. An example of such correlation is shown in

Figure 6 where the comparison scores are generated by Ver-

iFinger 6.0 from the two datasets (original and enhanced

cropped samples). The graphs indicate very high correla-

tion between the two types of scores.

We compute the Spearman’s rank correlation coefficient

ρ as a quantitative method to analyze how well two vari-

ables ci and qi correlate. The results are given in Table 4

with different experimental settings for generating the nor-

malized comparison scores (note that for generating the pro-

posed quality scores we use the same 2100 full size original

samples with full background for all settings). The results

show that the proposed quality metrics are accurate to as-

sess the samples’ quality in all settings assuming the nor-

malized comparison score for each sample as the ground

(a) (b)

Figure 6: Normalized comparison scores v.s. proposed

quality scores under 10 quality score bins. (a): Normalized

comparison scores generated from original cropped sam-

ples (424 samples with templates + 1676 zero comparison

score samples). (b): Normalized comparison scores gen-

erated from enhanced cropped samples ((906 samples with

templates + 1194 zero comparison score samples)).

Experimental settings using normalized

comparison scores as ground truth
ρ

424 Original cropped samples using

NeuroTechnology VeriFinger 6.0 comparator
0.59

906 Enhanced cropped samples using

NeuroTechnology VeriFinger 6.0 comparator
0.42

2100 Original cropped samples (424

template-generated samples + 1676 samples with

manually set normalized comparison score zero)

using VeriFinger 6.0 comparator

0.47

2100 Enhanced cropped samples (906

template-generated samples + 1194 samples with

manually set normalized comparison score zero)

using VeriFinger 6.0 comparator

0.53

2100 Original cropped samples using

BOZORTH3
0.20

2100 Enhanced cropped samples using

BOZORTH3
0.49

2100 NFIQ on original full samples -0.06

2100 NFIQ on original cropped samples 0.07

Table 4: Spearman’s rank correlation coefficients ρ under

different experimental settings using the normalized com-

parison scores as ground truth for quality (for quality score

generating full size original samples with full background

are used for all settings).

truth of sample quality. The NFIQ related results in Ta-

ble 4 provide a reference to demonstrating the effectiveness

and advantage of the proposed quality assessment approach.

Generally speaking, the quality of samples that can suc-
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Experimental settings using VeriFinger 6.0’s

template generation decision as ground truth
ρ

Original cropped samples 0.45

Enhanced cropped samples 0.57

Table 5: Spearman’s rank correlation coefficients ρ under

two experimental settings using VeriFinger 6.0 sample qual-

ity checking binary decision as ground truth for quality (for

quality score generating full size original samples with full

background are used for all settings).

False detected

blocks

Total detect high

quality blocks
Rate

424 samples 112 6312 1.77%

906 samples 258 8369 3.08%

2100

samples
471 10155 4.63%

Table 6: Rate of false detection (background blocks identi-

fied as high-quality ones).

cessfully produce template via NeuroTechnology VeriFin-

ger 6.0 extractor should be better than that of those samples

that fail to generate the templates. If we assign a score 1

to those samples with template generated and a score 0 to

those without, a pair of (ti, qi) can be constructed where ti
equals 0 or 1. The Spearman’s rank correlation coefficients

for these 2100 pairs (ti, qi) are shown in Table 5, which also

indicates a high correlation.

3.4. The false detection case

In our experiments, there are a few samples with false

detection (background blocks labelled as high-quality ones)

mostly in the in-door scenario of the challenging back-

ground - the office desk surface (seen in Figure 1 and Fig-

ure 4(a)) - has the texture and the color looking similar to

finger areas. The total number of false detected high-quality

blocks is 471 blocks accounting for 4.63% of all 10155 high

quality blocks on these 2100 samples, listed in Table 6.

3.5. Correlation between individual features and
the block quality decision

We also evaluated the correlation between each of 12

block features and the binary quality decision for each block

by computing Spearman’s rank correlation coefficient. Ta-

ble 7 shows the correlation coefficient for each feature.

Features 1st 2nd 3rd 4th

ρ 0.05 0.04 0.08 0.30

Features 5th 6th 7th 8th

ρ 0.30 0.26 0.27 0.27

Feature 9th 10th 11th 12th

ρ 0.14 0.27 0.26 0.35

Table 7: Spearman’s rank correlation coefficient ρ between

individual block features and the block quality decision.

Type Group 1 Group 2 Group 3

Quality score 0-3 4-11 12-47

Samples number 1401 376 323

EER from

original images
48.6% 46.6% 45.2%

EER from

enhanced images
49.0% 35.0% 24.1%

Table 8: EER under different levels of quality score from

the 2100 samples using NIST BOZORTH3.

3.6. Purpose verification of quality assessment:
EER under different levels of quality scores

Recall that the purpose of sample quality assessment is

to select high quality samples for recognition use. To verify

if this purpose is achieved by the proposed approach or not,

we calculate EERs under three levels of quality scores using

NIST BOZORTH3 and NeuroTechnology VeriFinger 6.0 on

different datasets. The sample with maximum quality score

is always selected as the reference sample for each finger

in all experiments. There are four types of combinations to

compute EERs as follows:

(1). We divide the 2100 original cropped samples into 3

groups in terms of quality score: Group 1 with quality score

0-3 (more than 50% samples are with low quality), Group

2 with quality score 4-11, and Group 3 with quality score

larger than 11. NIST MINDTCT and BOZORTH3 are used

to extract and compare the templates. The experimental re-

sults are shown at the row "EER from original samples" in

Table 8.

(2). Using the same settings as (1) but on 2100 cropped

enhanced samples. The experimental results are shown at

the row "EER from enhanced samples" in Table 8.

(3). We only used the 424 original cropped samples with

templates generated by NeuroTechnology VeriFinger 6.0.

And the three groups are [0 − 9], [10 − 19], [20, 47]. Neu-

roTechnology VeriFinger 6.0 is used to generate the com-

parison scores. The results are shown in Table 9.

(4). We only use 906 enhanced cropped samples with

templates generated by NeuroTechnology VeriFinger 6.0.
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Type Group 1 Group 2 Group 3

Quality score 0-9 10-19 20-47

Samples number 147 136 141

Number of

genuine scores
90 74 90

Number of

imposter scores
3757 2746 3266

EER 22.2% 12.8% 3.9%

Table 9: EER under different levels of quality score from

424 original samples using VeriFinger 6.0.

Type Group 1 Group 2 Group 3

Quality score 0-3 4-14 15-47

Samples number 362 324 220

Number of

genuine scores
275 242 147

Number of

imposter scores
19187 16027 8968

EER 35.3% 22.5% 2.7%

Table 10: EER under different levels of quality score from

906 enhanced samples using VeriFinger 6.0.

And the three groups are [0 − 3], [4 − 14], [15, 47]. Neu-

roTechnology VeriFinger 6.0 is used to generate the com-

parison scores. The results are shown in Table 10.

Note that in Table 8-10 we try to group the samples in

even distribution of sample amount. We observe that EERs

are significantly reduced along the increase of sample qual-

ity except the case NIST BOZORTH3 operating on origi-

nal samples which is however not very likely to be adopted

for practical use. The experimental results demonstrate the

effectiveness of our proposed quality assessment approach

in predicting the quality of fingerprint samples generated by

smartphone cameras. Note that for Group 1 and 2, the EERs

in Table 10 is higher than those in Table 9, which could be

due to the fact that sample enhancement increases the num-

ber of samples that can generate templates but decreases the

average sample quality in the meanwhile.

4. Conclusion and future work
This paper proposes an effective fingerprint sample qual-

ity assessment approach for the samples captured by smart-

phone cameras using a set of block based quality fea-

tures. Our approach is pre-processing-free (without needing

segmentation and enhancement) and block-based (memory

saving and parallelizable in computation) thus potentially

efficient in computation on mobile devices. The correla-

tion between the quality score generated by the proposed

approach and the normalized comparison score (as ground

truth of quality) of each sample has been evaluated by com-

puting Spearman’s rank correlation coefficient of the two

scores. Experimental results demonstrate that the proposed

quality assessment approach is capable of identifying the

high-quality fingerprint area from both those low-quality

ones and those complicated background ones and thus ca-

pable of predicting the sample quality. Our future work will

focus on reducing the false detection rate and improve the

block size normalization across different cameras.
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