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Abstract

We propose a novel approach for detecting partial re-
flectional symmetry in images. Our method consists of two
principal stages: candidate selection and validation. In the
first step, candidates for mirror-symmetric patches are iden-
tified using an existing heuristic procedure based on Hough
voting. The candidates are then validated using a princi-
pled statistical procedure inspired from the a contrario the-
ory, which minimizes the number of false positives. Our
algorithm uses integral image properties to enhance the ex-
ecution time.

1. Introduction

Symmetry cues play an important role in human percep-
tion for detecting and recognizing objects, as stressed by
numerous psychophysical studies (e.g. [2]). Symmetry can
provide global information about the structure of an object
that is otherwise difficult to capture. Inspired by this find-
ing, recent works in computer vision show considerable im-
provement when symmetry information is incorporated into
automatic methods for object classification and recognition,
by using appropriate symmetry descriptors [20, 11].

The problem of classifying various types of symmetries
is well studied from a theoretical point of view [25], while
the majority of methods for detection of symmetries in im-
ages have concentrated on mirror (reflectional), rotation and
translation symmetries.

The most popular approaches for symmetry detection
rely on voting procedures, e.g. Hough transform, carried
out on symmetric pairs of feature points, like SIFT [14] or
ASIFT [19] assuming either a (near-) orthogonal view of
the symmetric objects [15], or trying to take into account
the perspective skew induced in the image formation pro-
cess [24, 4, 5].

A major weakness of these approaches is the absence of a
validation procedure, as pointed out in [20], and highlighted
by the results of CVPR11 contest on symmetry detection
[1]. Most of the time, the candidates proposed by the vot-
ing procedure are accepted or rejected based on predefined
detection thresholds. In the absence of a careful tuning, the
result in terms of false detections (false positives and false
negatives), is difficult to predict.

Choosing the right values for the detection thresholds is a
generic issue in many computer vision detection tasks. Us-
ing hard thresholds is clearly not appropriate, since they
cannot adapt to various noise levels, image resolution or
content. Some works used different empirical approaches
to compute threshold values that behave satisfactory in cer-
tain predefined scenarios [3, 17]. This improved the perfor-
mance to some extent, but still one cannot predict threshold
values for all possible image and object sizes.

A more principled approach to resolve this issue has
been proposed by the a contrario theory [7], which for-
malises the non-accidentalness principle [13]. Informally,
the principle states that there should be no detection in a ran-
dom (white noise) image. Putting this very simple idea into
an appropriate probabilistic framework has given uniformly
good results in tasks including geometric feature detection
[10, 21], or fundamental matrix estimation [18], as it al-
lows to automatically compute self-tuning thresholds. The
main goal of this paper is to give an a contrario formulation
for the mirror-symmetry detection problem in images taken
from orthogonal views.

Our algorithm focuses on the minimization of the num-
ber of false detections, and consists of two major stages.
The first phase – candidate selection – can be carried out
using any of the existing symmetry detectors, and the main
concern is to avoid the false negatives. For efficiency rea-
sons, we use the algorithm proposed by Loy and Eklundh
[15], that we will denote by baseline algorithm. The second
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step – a contrario validation – aims at reliably filtering out
the false positives, without the need for parameter tuning.

The next two sections detail the underlying theory of the
validation step and the main implementation aspects of the
whole pipeline. Section 4 illustrates the advantages of the
proposed validation procedure on several representative de-
tections. Finally, section 5 outlines the directions of future
improvement.

2. A Contrario Validation of Symmetric Image
Patches

In the following, we denote by I a gray-scale image of
m×n pixels. A symmetry axis is represented in polar coor-
dinates by (ρ, θ), with ρ being the distance between the axis
and the origin, and θ the angle of the vector from the ori-
gin to the closest point on the axis. For simplicity, a mirror-
symmetric patch is represented by its bounding box, defined
by the limits of the symmetry axis and the width.

We first remind the generic a contrario framework, and
then we adapt it to the symmetry detection problem.

Following the non-accidentalness principle, the a con-
trario validation starts by defining an unstructured (random)
model, and then it accepts as valid detections only candi-
dates that represent unexpected deviations (outliers) from
this model.

The reasoning is similar to the multiple hypothesis test-
ing formulation [8], where the unstructured model corre-
sponds to the null hypothesis; we denote it by H0. Let X
be a random image drawn under H0, having the same size
as the analyzed image I . Given a candidate s, we define
a function k(s) to compute its test statistic, on which we
evaluate the probability that s appeared in X . If the p-value
of the test s is smaller than a predefined significance level
α — i.e. the probability of observing in the random model
a candidate with a test statistic at least as extreme as k(s)
is less than α — then there exists enough evidence to reject
the null hypothesis and declare the candidate meaningful.
With this choice, the probability of accepting one false pos-
itive is smaller than α. In other words, the number of false
positives is controlled by α, which can be set as small as de-
sired. Common values are α = 0.01 or α = 0.05. However,
one needs to consider that in an image I there are in fact NI

candidates to test. In this case, the control of the number of
false positives at the α level is ensured only if each test si

rejects the null hypothesis whenever the p-value of the test
is smaller than α/NI , i.e. PH0 [kX(si) ≤ kI(si)] ≤ α/NI

(Refer to [7, p. 71] or [22, p. 45] for the proof of this result).
By definition, the number of false alarms (NFA) of a

candidate si is given by NFA(si) := NIPH0 [kX(si) ≤
kI(si)]. The NFA of a candidate is a central notion in the
a contrario theory, and can be interpreted as the overall
expected number of false positives that we could observe
when accepting candidates at least as extreme as si. With

this definition, the above inequality writes: NFA(si) ≤ α.
Note that in this case, α up-bounds in fact an expectation,
and its value is no longer restricted to (0, 1). We denote by
ε the significance level having this new meaning to avoid
confusion. Thus a candidate is declared meaningful if its
NFA is smaller than ε.

In most practical applications, the simple value ε = 1
appears to be suitable, so it can be set once and for all.
With this choice, the expected number of false positives in
a random image is guaranteed to be upper-bounded by 1. If
the unstructured model is properly chosen, then this result,
translated to the analyzed image I , ensures that the number
of false positives, i.e. accidental detections reported in the
background, is very small.

This framework can be applied to the symmetry detec-
tion problem by defining an appropriate unstructured model
H0, and a function k(s) to compute the test statistic of a
symmetric patch candidate s.

We suggest that a robust evaluation of the degree of sym-
metry that a patch s exhibits can be obtained by analyzing
the gradient orientation errors of the pixels symmetrically
positioned w.r.t. the symmetry axis supporting the patch.
Let p1i and p2i be the pixels of the i-th symmetric pair,
i = {1, . . . , Np}, where Np is the number of pairs con-
tained in s. Then the orientation error of the pair is given
by δi = |Angle(�I(p1i),�sI(p2i))|, where �I(p1i) is the
gradient vector at p1i and �sI(p2i) is the gradient vector of
the pixel p2i, symmetrized w.r.t. the given symmetry axis
(see figure 1 b). A similar idea was used in [11] to com-
pute symmetry descriptors for image patches. Our goal is
not only to assign a symmetry score to each patch, but to
provide a decision-taking value about the meaningfulness
of the patch symmetry.

With this choice, an appropriate (unstructured) null hy-
pothesis H0 is a gradient field whose orientations are i.i.d.
random variables, uniformly distributed over [0, 2π]. These
properties hold in a Gaussian white noise model, under cer-
tain conditions of sub-sampling [7, p. 67]. From now on,
X will denote a Gaussian white noise image, with the same
size as the analyzed image I .

The function k(s) can now be defined as the additive ori-
entation error of the symmetric pairs of pixels in s. Let δi

be the normalized orientation error of a pair, i.e. δi = δi/π.
The test statistic of the patch s is given by k(s) =

∑Np

i=1 δi.
A perfect symmetric patch has all δi = 0, whilst the worst
has all δi = 1.

To validate a given candidate s, we need to compute the
probability of observing in the random image X , candi-
dates with test statistics at least as extreme as kI(s), i.e.
PH0 [kX(s) ≤ kI(s)].

Generally speaking, we need to consider every config-
uration in which r independent uniformly distributed ran-
dom variables taking values in [0, 1] could sum to a value
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Figure 1. Validation pipeline: a)-b) Given a symmetry axis candidate (ρ, θ), we extract and redress the maximal patch sms×ns along it;

using the per-pair gradient orientation error δ, we fill the integral images I
ms
2 ×ns

err and I
ms
2 ×ns

def , and then scan them (c) to locate the best
patch (d).

smaller than a given z ∈ R. Observe that these configura-
tions are uniformly distributed on the unit hypercube. Let
Ir denote the r-dimensional unit hypercube, placed in the
positive hyperoctant of Rr, with one vertex at the origin.
For any real z, let Gr

z denote the half-space in Rr given by
Gr

z = {x = (x1, . . . , xr)T ∈ Rr|∑r
i=1 xi ≤ z}. The cu-

mulative distribution of the sum of r uniformly distributed
random variables taking values in [0, 1], is the volume of
the slice obtained by intersecting the hypercube Ir with
the half-space Gr

z . Indeed, given r independent and uni-
formly distributed random variables xi ∈ [0, 1], with sum
S =
∑r

i=1 xi, then

P[S ≤ z] = Vol(Ir ∩Gr
z) =

1
r!

�z�∑
k=0

(−1)k

(
r

k

)
(z − k)r,

for 0 ≤ z ≤ r, where �z� is the largest integer not bigger
than z. This formula is derived from a more general case
studied in [16].

In our case, the sought probability is given by the volume
of the slice obtained by intersecting the hypercube INp with
the half-space G

Np

kI(s). Moreover, it can be proven that the
first term of the sum gives an upper bound of this probabil-
ity. For computational reasons, we keep only this first term,
as it is a sufficient approximation to evaluate the NFA test.
Thence:

PH0 [kX(s) ≤ kI(s)] ≤ [kI(s)]Np

Np!
.

Finally, to complete the reasoning, we need to give an ap-
proximation for the number of tests NI , i.e. the total number
of patch candidates in image I . Assuming the representa-
tion of a patch by its bounding box, it follows that a patch
has 5 d.o.f.: the coordinates of the symmetry axis limits (4
d.o.f.) and the width (1 d.o.f.). For a 1-pixel precision, the
number of tests can then be approximated by NI = (mn)

5
2 .

The number of tests ensures that the proposed validation

adapts to the image size, in order to keep under control the
false positives for increasing image sizes.

To conclude, a symmetry candidate s, observed in an im-
age I of size m × n, containing Np pairs of pixels, is ac-
cepted as valid detection if its NFA satisfies the simple test:

(mn)
5
2

Np!

⎡
⎣ Np∑

i=1

|Angle(�I(p1i),�sI(p2i))|
π

⎤
⎦

Np

≤ 1. (1)

As an aside, note that this is a continuous formulation
of the NFA, similar to those proposed in [12] to merge
segments in a segmentation application, or to compute de-
tection thresholds in line segment detection problems [9].
Another possibility would be to use a discrete formulation
similar to [7, 10, 21], in which for example, the test statistic
k(s) would denote the number of pairs whose orientation
error is less than a precision threshold δ̂. However, we pre-
fer the continuous formulation, which avoids this precision
parameter.

3. Implementation Details

3.1. Candidate Selection

The detection pipeline starts by performing the candidate
selection stage using the baseline algorithm [15]. Recall
that this algorithm uses matched pairs of SIFT points to vote
for salient symmetry axes. The votes are weighted by the
gradient magnitude of the pixels in the pair, and by their
orientation error, similar to Reisfeld transform [23].

3.2. Selection – Validation

This voting procedure is just the first part of the candi-
date selection. It provides the orientation and location (ρ, θ)
within the image of possible symmetry axes. Optionally, the
bounding box of the symmetric patch candidate can be re-
covered as the rectangle that covers the convex hull of the
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pairs supporting the axis. However, this latter information
may lack accuracy because of frequent errors in detecting
and matching the SIFT feature points. Thus, we keep only
the (ρ, θ) parameters of the axis. Afterwards, we use the
properties of integral images to efficiently evaluate for sym-
metry all possible patches along the given symmetry axis.
This is possible due to the additive nature of the k(s) term
involved in the NFA computation. Figure 1 shows the main
steps of the proposed candidate validation procedure.

First, we extract and redress the maximal patch along
the given axis (figure 1 a-b). The gradient of the patch is
computed on 2 × 2 windows, and the gradient orientations
in each symmetric pair are evaluated for symmetry with re-
spect to the vertical middle axis. The error is then normal-
ized as needed by the NFA test. Note that in a perfectly
uniform image region, the gradient orientation is not de-
fined. We choose to ignore pairs for which both pixels have
undefined orientations. If only one of the pixels has unde-
fined orientation, the pair gets maximum normalized error,
i.e. 1.0.

The cumulative normalized error associated to the pairs
in the patch is stored in an integral image Ierr, which has the
same number of lines ns as the maximal patch, but halved
number of columns ms/2. Additionally, another integral
image Idef of the same size as Ierr, is used to keep track
of the number of pixels that have defined orientations (fig-
ure 1 c). Then, any triplet (yt, yb, xl), where ns ≥ yt ≥ 1,
and 0 ≤ yb < yt, and ms

2 > xl ≥ 0, defines a possible
patch along the middle vertical axis, with size (yt−yb, 2xl).
Thanks to integral image properties [6], by simply scan-
ning the two integral images, we can extract the quantities
(k(s), Np) needed to evaluate each patch, with only two ad-
ditions and four subtractions, allowing to perform an ex-
haustive search for the best bounding-box in a reasonable
time.

Note that in this case, the NFA score acts not only as
a validation criterion, but also as a model selection crite-
rion, guiding the search for the best meaningful symmetric
patch. This dual usage has been proposed also in [7, 18, 21].
The exemplar detections given in section 4 show the advan-
tage of this approach, as it allows to recover from imprecise
bounding boxes given by the baseline algorithm as a result
of accidental merging of pairs not belonging to the same
object.

It is important to mention that natural images usually
contain only approximate (partial) symmetries. Moreover,
the gradient orientations are inherently affected by the im-
age noise. Hence, a multi-scale evaluation of the NFA is
necessary. We perform this by smoothing and successively
sub-sampling the original image. This has the effect of con-
cealing the noise and the imperfections of the symmetric
patches, so we can identify meaningful detections.

Thus, to validate a candidate, one needs to rotate the

maximal patch along the axis, and then fill and scan the
two integral images to obtain the best patch. On a regu-
lar computer (CPU i5 2.53GHz), this operation takes about
2s per candidate, for an 800 × 600 pixels image. For effi-
ciency, one can choose to keep and validate only the first 5
or 10 candidates reported by the baseline algorithm which
are more likely to correspond to real symmetries, so that the
execution time of the validation stage is comparable to the
execution time of the candidate selection stage. Note that if
the precision of the symmetry axis candidates is poor, the
whole validation pipeline can be repeated for small varia-
tions around the (ρ, θ) values proposed by the baseline al-
gorithm, and keep eventually the most meaningful patch.
However, this increases the execution time.

4. Exemplar Detections

This section illustrates in a qualitative manner the advan-
tages of the proposed detection pipeline, and also the main
directions of improving its performance.

We first carried out tests on random noise images, as a
sanity check for the probabilistic model underlying the val-
idation procedure (figure 2, 1st row). We used 15 random
noise images of 512 × 512 pixels, generated with different
variance values (figure 2, 1st row, 1st column gives a sam-
ple). The baseline algorithm reported on average 10 (false
positive) detections per image (figure 2, 1st row, 2nd col-
umn). None of the candidates passed the validation test (1)
(figure 2, 1st row, 3rd column).

The rows 2 – 5 in figure 2 illustrate the satisfactory be-
havior of the proposed pipeline on natural images contain-
ing single or multiple symmetries. It succeeds in pruning
most of the false positives proposed by the baseline algo-
rithm, while identifying with relatively good accuracy the
expected bounding box of the symmetric patches.

The 6th row presents a typical false negative case: the
candidates proposed by the baseline algorithm are too far
from the real symmetry, so no detection is validated by our
approach, even after repeating the validation as mentioned
in the previous section. This underlines the need of a more
precise candidate selection. The Hough voting used by the
baseline algorithm has the advantage of reducing the num-
ber of detections by clustering the pairs that possibly sup-
port the same symmetry axis, but at the same time it can
accidentally merge pairs belonging to different objects or to
the background, resulting in low quality candidates.

Finally, the last row exemplifies two types of false pos-
itives reported by our procedure, and points to directions
of future work. The detections reported on the background
correspond to smooth, relatively uniform image regions. In-
deed, such regions are symmetric according to our model,
i.e. the gradient orientation error is smaller than the one ex-
pected in a Gaussian noise image. However, they should
be pruned because they are not meaningful for the human
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perception. The second type of false positives are the detec-
tions reported on actually symmetric patches which were
not labeled by the human experts, because they do not be-
long to the foreground objects which usually capture ex-
perts’ attention, e.g. the horizontal detection on the body of
the zebra, or some of the detections on rows 2 – 5, unlabeled
by experts. This also points out the difficulty of designing
an accurate benchmark for symmetry detectors evaluation.

5. Conclusion

In this paper we proposed a novel approach for the de-
tection of mirror-symmetric image patches, which uses a
heuristic method to select potential symmetric patches, and
a principled validation step, based on the a contrario the-
ory, which accepts as valid detections only candidates that
are not likely to appear in noise. However, this work is in
progress, and several improvements are foreseen. The vali-
dation step could be improved through a principled method
of weighting the gradient orientation errors according to the
gradient magnitude. This would prevent the pixels with low
gradient to contribute to the symmetry score, as their orien-
tation can be strongly affected by noise, thus not reliable.
The expected effect of this idea is the decrease of the num-
ber of false positives reported on smooth, uniform image
regions, where pixels have low gradient magnitude.

The candidate selection step remains a challenging is-
sue. Here we used an existing heuristic combined with inte-
gral image properties to recover efficiently the most salient
symmetry candidates. However, this method still intro-
duces false negatives either because of the absence of fea-
ture points on regions with low contrast, or because of fea-
ture points wrongly matched or point pairs wrongly merged
by the Hough voting procedure. Another important direc-
tion is the handling of the perspective skew, hence we need
to use feature points and descriptors invariant to affine trans-
forms, like ASIFT [19].
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Figure 2. Comparative qualitative results. 1st column: human-labeled ground truth, 2nd column: first 10 detections reported by the baseline
algorithm, 3rd column: detections validated by the proposed method. Since we keep only the (ρ, θ) parameters of the candidates proposed
by the baseline algorithm, the detections reported by our method may have different locations along the axes.

216216216216


