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Abstract

Understanding human actions in videos has been a cen-
tral research theme in Computer Vision for decades, and
much progress has been achieved over the years. Much
of this progress was demonstrated on standard benchmarks
used to evaluate novel techniques. These benchmarks and
their evolution, provide a unique perspective on the grow-
ing capabilities of computerized action recognition systems.
They demonstrate just how far machine vision systems have
come while also underscore the gap that still remains be-
tween existing state-of-the-art performance and the needs
of real-world applications. In this paper we provide a com-
prehensive survey of these benchmarks: from early exam-
ples, such as the Weizmann set [1], to recently presented,
contemporary benchmarks. This paper further provides a
summary of the results obtained in the last couple of years
on the recent ASLAN benchmark [12], which was designed
to reflect the many challenges modern Action Recognition
systems are expected to overcome.

1. Introduction

Capturing digital videos has long ceased to be restricted

to experts with high-end equipment. Similarly, storage and

transfer of high-quality videos now no longer requires ex-

pensive hardware. Not surprising, digital videos are now

abundant. With this abundance comes a growing need for

effective video understanding techniques, and in particular,

human action recognition. Over the last decade, this has led

to a growing interest in action recognition research, yielding

a wide range of techniques and systems being proposed.

Similarly to other Computer Vision problems, interest in

action recognition has led many to assemble and put forth

benchmarks for action recognition. These benchmarks have

evolved along-side the growing capabilities of machine vi-

sion methods. As methods improved in performance, so

did the benchmarks become more challenging: From the

early benchmarks, which included few videos of atomic ac-

tions acquired under controlled conditions, to the more re-

cent benchmarks offering thousands of videos obtained out-

side the lab, “in the wild”, and representing a wide range of

complex actions and behaviors.

In this paper we survey these benchmarks. On one hand

we intend to review the significant progress made by ac-

tion recognition systems over a relatively short period of

time. On the other hand, we highlight the wide gap that re-

mains between existing capabilities and the needs of real-

world applications. This gap is particularly meaningful

when comparing action recognition in videos to other Com-

puter Vision tasks, particularly in image classification: The

most recent and challenging benchmarks for action recog-

nition fall far short, in size and class variety, from those as-

sembled for image understanding (e.g., the “80 million tiny

images” [35] and “ImageNet” [5] collections).

We conclude by reviewing the existing performance on

the Action Similarity LAbeliNg benchmark (ASLAN) [12],

one of the recent benchmarks proposed for this problem

and the focus of the ACTion Similarity (ACTS) in uncon-

strained videos workshop, at the Computer Vision and Pat-

tern Recognition (CVPR) conference, 2013, further illus-

trating the distance that still remains to be crossed remain-

ing by action recognition systems.

1.1. Related work

This paper is by no means the first to review the vari-

ous benchmarks proposed for action recognition. Two very

recent examples include [3, 12] and [19]. It is therefore rea-

sonable to ask what is the need for another survey? Rather

than providing a taxonomy of the benchmarks according to

their design and intended purposes, our goal here is to learn

what Computer Vision systems can and cannot do, by con-

sidering the benchmarks used to test them; the evolution

of these benchmarks testifies to the growing capabilities of

the systems developed over the years. Consequently, re-

ports of perfect scores on some of the older benchmarks,

suggest that the settings they present, no longer offer sig-

nificant challenges to modern systems. The design of the

newer benchmarks, however, provides an important picture

of the challenges that still remain.

2. A survey of action recognition benchmarks

We survey many of the benchmarks commonly used in

action recognition research. These are summarized in Ta-
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ble 1. We note that our survey focuses exclusively on ac-

tion recognition from visual data, excluding benchmarks

which use additional channels of information (e.g., depth,

as in [24]). We further limit the discussion to benchmarks

designed to measure performance on general action recog-

nition tasks, rather than specific applications (e.g., violence

detection in [8] or gait recognition [31]).

Whenever possible, we report existing state-of-the-art re-

sults. We note that different benchmarks define different

testing protocols and different performance measures. Due

to space considerations, we report only the best scores for

each set without elaborating on the different measures. Care

must therefore be taken when interpreting these values, as

different benchmarks use different evaluation protocols and

have different levels of chance recognition.

2.1. The early years: Action recognition “in the lab”

Two early benchmarks are the KTH [32] and Weiz-
mann [1] sets, both used extensively over the years. These

sets provide low resolution videos of a few, “atomic” action

categories, such as walking, jogging, and running. These

videos were produced “in the lab”, and present actors that

perform scripted behavior. The videos they provide were

acquired under controlled conditions, with static cameras

and static, un-clutered backgrounds. In addition, actors ap-

pear without occlusions, thus allowing action recognition to

be performed by considering silhouettes alone [1].

Performances on these databases has saturated over the

years, with perfect accuracy reported on the Weizmann

set [40] and near-perfect accuracy on KTH (e.g., ∼ 95%
in [7]), which has been reported saturated as far back

as [23]. Curiously, despite being saturated and despite their

simplistic settings, these benchmarks are still frequently

used today, with recent examples including [13] on the

Weizmann set and [34] on KTH.

Over the years other benchmarks have been proposed,

providing videos obtained under laboratory conditions, with

different emphasis placed on the data set design and the set-

ting these benchmarks attempted to reflect. These sets in-

clude the IXMAS benchmark, proposed in [41], designed

to study action recognition under varying viewpoints. Al-

though IXMAS provides synchronized, multi-view footage

of each action, and this has been used to include depth in-

formation for recognition, tests on this benchmark often

include videos only. Additional sets are The UMD Com-
mon Activities Dataset [37], which records activities from

a synchronized pair of viewpoints, the University of Illi-

nois at Urbana-Champaign UIUC1 benchmark [36], and fi-

nally, the University of Rochester Activities of Daily Liv-
ing (ADL) [22] benchmark, released in 2009 and the latest

such benchmark proposed, to our knowledge.

As we report in Table 1, perfect, or near perfect results

have been reported on all these benchmarks. We believe

this is a strong testament on the capabilities of modern ac-

tion recognition systems: controlled setting such as those

offered by these early sets no longer seem to pose signifi-

cant challenges to modern computer vision systems.

2.2. Interim years: TV, sports, and motion pictures

In an effort to increase the diversity of appearances and

viewing conditions, benchmark designers have turned to

TV, sports broadcasts and motion pictures as sources for

challenging videos of human actions. These benchmarks

no longer represent controlled conditions; viewpoints, illu-

minations, occlusions are all arbitrary, thereby significantly

raising the bar for action recognition systems.

One early example is the UIUC2 benchmark [36], which

provided unconstrained sports videos of badminton matches

downloaded from YouTube. To our knowledge, this is the

first benchmark to provide such unconstrained data. An-

other early, popular example is the UCF-Sports bench-

mark [28] with its 200 videos of nine different sports events,

collected from TV broadcasts. Sports videos were also con-

sidered in the Olympic-Games benchmark of [23].

Feature films were used by some as a source for chal-

lenging action recognition videos. These included the UCF
Feature Films Dataset [28], sometimes referred to as the

“Kissing-Slapping” benchmark, which provides 90 videos

of kissing and 110 of slapping scenes obtained from a

range of classic movies, and the challenging Hollywood-2
(HOHA2) [21] from 2009, an extension to the Hollywood-
1 (HOHA) benchmark [16] released a year earlier. Finally,

the most recent benchmark to use TV and motion picture

data, included in this survey, is the High-Five collection

of [26], which, like the UCF Feature Films Dataset, focuses

on interactions, rather than single person activities.

Of these benchmarks, the two Hollywood sets seems to

remain challenging even today. This, despite the relatively

small number of action categories they include. One pos-

sible reason for this is that the action samples in these sets

are not well localized in time; action recognition systems

tested on these sets must include temporal action detection,

localizing the action in time, not just recognizing it, thereby

making it more challenging than other sets.

2.3. Recent years: Action recognition “in the wild”

TV and motion picture videos introduced unconstrained

viewing conditions, yet they were in some sense still lim-

ited in the range of challenges they represented. Specifi-

cally, although unconstrained, the videos in these sets were

all typically produced under favorable conditions, were of

high quality, and were shot from carefully selected view-

points. Not surprising, high performances were already re-

ported for most of these sets. All this cannot be said of

the many videos accumulating in online repositories such

as YouTube. In recent years, several have offered bench-
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Table 1. Action Recognition Databases. �acn. is the number of action classes. �clips are the numbers of clips in the collection. SotA

reflects the best performances obtained on each benchmark in recent years. It is important to note that these measures are not comparable,

as the different benchmarks use different performance measures. Moreover, these scores do not reflect the improvement over chance, which

varies from one benchmark to the other (e.g., 2% for the UCF50 benchmark [27] and 50% for ASLAN [12]).

Database Year �acn. �clips Setting Technical details SotA

KTH [32] 2004 6 600 Laboratory: 25 actors, 4 conditions, 4
repetitions = 2391 sub-sequences

Homogeneous background, static camera, 25fps,
160x120px, 4s duration, AVI DVIX-compressed

∼ 95% [7]

WEIZMANN
[1]

2005 9 81 Laboratory: 9 actors Static background, low resolution, 25fps 100% [40]

UMD [37] 2006 10 100 Laboratory: 1 actor, many repetitions Two synchronized views, resolution 300px 100% [37]

IXMAS [41] 2006 11 110 Laboratory: 10 actors arbitrary orienta-
tion, 5 view points with multiple cameras,
30 sub-sequences

Resolution 100-200px, very short sequences 93.6% [38]

UIUC1 [36] 2008 14 532 Laboratory: 8 actors, single view, exten-
sive repetition

Resolution 400px N/A

UIUC2 [36] 2008 2-4-5 3 Youtube videos: 3 badminton games Resolution 80px 98.3% [38]

UCF-sports
[28]

2008 9 200 Real sports broadcasts Unconstrained: wide range of scenes and view-
points, simple background, resolution 720x480px

95% [29]

Olympic-
games [23]

2008 17 166 Video footage from Olympic games 5065 manually annotated frames: high intra class
variability, background clutter, large camera mo-
tion, motion blur, occlusions and appearance vari-
ations

69.6% [23]

Kissing-
Slapping [28]

2008 2 200 Feature Films Large variability in genres, scenes and views, actors 96.75% [2]

Hollywood1
(HOHA1) [16]

2008 8 430 Short sequences from 32 movies See below. 62% [33]

Hollywood2
(HOHA2) [21]

2009 12 3669 69 movies 20.1 hours of video in total. Large intra-class variability, label ambiguity, multi-
ple persons, challenging camera motion, rapid scene
changes, unconstrained and cluttered background,
high quality, 240x450px, 24fps.

59.9% [38]

UCF-YouTube
[20]

2009 11 1168 Youtube and personal videos 25 sub-groups: different environments and sources.
Mix of steady and shaky cameras, cluttered back-
ground, variation in object scale, views points and
illumination, low resolution (mpeg4-codec)

86.1% [30]

ADL [22] 2009 10 150 Laboratory: 5 actors, 3 repetition Complex activities in living environment, static
background, res. 1280x720px, 30fps, duration 10-
60s

96% [39]

High-Five [26] 2010 4 300 23 different TV shows 30-600 frames, realistic human interactions: vary-
ing number of actors, scale, and views

68% [18]

YouTube
Olympic
Sports [25]

2010 16 800 YouTube videos Complex activities, 50 sequences per class, labeled
by Mechanical Turk

82.7% [6]

HMDB51 [14] 2011 51 6,766 Motion pictures, YouTube Over 100 clips per class. Stabilized videos. 46.6% [38]

UCF50 [27] 2012 50 6,676 YouTube videos 100 videos per action category. Each category or-
ganized into 25 groups with clips sharing common
features

72.68%
[10]

ASLAN [12] 2012 432 3,697 YouTube videos Binary, “same / not-same” classification of never-
before-seen action pairs (training on action-
category-exclusive data)

66.1% [17]

marks assembled from such “in-the-wild” sources.

One of the first to offer such videos was the UCF-
YouTube set [20], also referred to as the YouTube Actions

benchmark. Taking advantage of the availability of huge

numbers of videos, it provides 1,168 videos in eleven cat-

egories, obtained from both YouTube and personal video

collections. More recently, and returning to Olympic sports

events, the Olympic Sports Dataset [25] was released, con-

taining 16 complex actions represented by 50 videos each,

all downloaded from YouTube. Here, an attempt was made

to go beyond atomic actions, by considering events involv-

ing several different stages or different actions performed

at once. An example being the long-jump, which combines

standing, running, jumping, landing and standing up again.

2.4. Emerging trends

Two conclusions are clearly evident from the survey

above and further illustrated in Figure 1. The first is that

many of these benchmarks have been saturated. This tes-

tifies to the high performance and capabilities of modern

action recognition techniques, as well as suggests that new

benchmarks must be designed to reflect more challenging

problem settings. The second conclusion is evident when

comparing these benchmarks to those used in photo clas-

sification applications: action recognition benchmarks cur-

rently provide a few dozen categories to the thousands of-
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Figure 1. Visual summary benchmarks. Some benchmarks from

Table 1, ordered from left to right by year of publication. Bottom:

number of action categories in each benchmark, color coded by the

video sources (controlled sets in purple, TV and motion pictures in

red, and “in the wild”, web-videos in green). Top: state-of-the-art

performances for each benchmark. Note that these performances

are not directly comparable as different performance measures are

used with each benchmark, and in particular, chance values vary

according to the number of categories.

fered by image classification sets, and thousands of videos

to the millions of images (e.g., [5, 35]).

In an effort to address these issues, three recent bench-

marks were proposed, offering significantly more videos

and more action categories than those listed above. The

first is the HMDB51 set [14]. Released in 2011, it pro-

vided 6, 766 videos in 51 categories, significantly more than

previous benchmarks. These were collected from various

web repositories and motion pictures. The challenge this

set poses is evident in the state-of-the-art results published

on this set, reaching only 46.6% in [38].

A similar number of classes and videos was made avail-

able by the UCF50 benchmark [27], which extends the

UCF-YouTube discussed above. Here, all videos were har-

vested from YouTube, and focus on articulated actions –

excluding actions restricted to facial expressions, etc. of

which four are included in the HMDB set. The evaluation

protocol recommended by [27] is a Leave-One-group-Out

(LOgO) cross validation scheme for which the best reported

scores are 72.68% in [10] with chance being 2%.

3. The ASLAN benchmark
A different benchmarking approach was taken when as-

sembling the Action Similarity LAbeiNg (ASLAN) chal-

Table 2. Results on the ASLAN benchmark. See text for details.

Method Acc. ± SE AUC

1 HOG,
∑

(x1. ∗ x2) [12] 56.58 ± .74 61.6

2 HOF,
√∑

(x1. ∗ x2) [12] 56.82 ± .57 58.5

3 HNF,
√∑

(x1. ∗ x2) [12] 58.87 ± .89 62.1

4 STIP, 12 sim. [12] 60.88 ± .77 65.3

5 OSSML [11] 64.25 ± .70 69.1

6 MIP [10] 64.62 ± .80 70.4

7 MIP+STIP [10] 65.45 ± .80 71.9

8 Traj. [17] 62.02 ± 1.1 66.9

9 MBH [17] 64.25 ± .90 69.9

10 Multi-rep. [17] 66.13 ± 1.0 73.2
11 Human [12] 94.19 97.8

lenge [12], which put an emphasis on providing substan-

tially more action categories. ASLAN contains video sam-

ples downloaded from YouTube, of 432 action categories.

Labeling videos into separate action groups can be costly

and particularly difficult for videos where action defini-

tions may be ambiguous. To this end, and following the

example of [9], rather than designing a multi-class cate-

gorization benchmark, the ASLAN benchmark is a binary,

“same”/“not-same” classification task. That is, given two

videos of never-before-seen actions, the task is to determine

if the same action is being performed in both videos. In so

doing, it encourages the development of action similarity
measures and techniques, rather than the design of methods

for learning the properties of particular actions.

We next briefly review the performances reported on the

ASLAN benchmark by different methods. Results are re-

ported for View-2, on a ten-fold cross validation task, where

the estimated mean accuracy (Acc.) μ̂ is given by

μ̂ =

∑10
i=1 Pi

10

Pi being the percentage of correct classifications on View-

2, using subset i for testing. In addition, the standard error
of the mean (SE) is reported, given by,

SE =
σ̂√
10

,

where,

σ̂ =

√∑10
i=1(Pi− μ̂)2

9
.

Finally, we report the area under the ROC curve (AUC) for

each method. Performances are summarized in Table 2.

The original results on the ASLAN benchmark, reported

in [12], evaluated performance using Bags-of-features

(BoF) produced using 5,000 word vocabularies and using

different Space Time Interest Points (STIP) [15], namely

HOG, HOF and HNF. Two videos were compared using dif-

ferent (dis-)similarities and a threshold was automatically

determined over these values using linear support vector

machines trained on separate training data (Table 2, rows

248248248248



1-3). Twelve different similarities were computed for all

three STIP representations and combined into 26D vectors

representing each video pair. These were again classified as

same/not-same using linear-SVM in Table 2 row 4. In [11]

a metric learning approach was designed for the One Shot

Similarity of [42]. Their OSSML approach improved per-

formance but at a significant computational cost (row 5).

Motion Interchange Patterns (MIP), presented in [10],

are low-level features, encoding at each space-time pixel a

measure of the likelihood for a change in motion occurring

at that pixel. A video is represented by building BoF us-

ing these codes. Mechanisms are described for both motion

stabilization and screening of irrelevant codes. Their sys-

tem is more efficient than OSSML, yet achieves better per-

formance rates (row 6). By combining MIP with the three

STIP (HOG, HOF, and HNF) results are slightly improved,

suggesting that the MIP descriptors already capture much

of the information available from the STIP descriptors.

The Dense Motion Trajectories representation (Traj.),

originally described in [38], encode point trajectories over

time, on a dense grid in space and scale, using optical flow

computed between subsequent frames. Each trajectory is

encoded as a vector of (normalized) 2D displacements of

points. ASLAN results obtained with this representation

were reported in [17] using the code made available by the

authors of Traj. [38] and appear here in row 7 of Table 2.

In [17] the Motion Boundary Histogram (MBH) repre-

sentation of [4] were also evaluated. MBH represents mo-

tion by considering the horizontal and vertical derivatives

of motion in each pixel, separately, in order to compare the

relative motion of pixels to their neighbors. In [38] this

representation was used to encode actions by quantizing

these derivatives into 8-bin, weighted histograms. Results

from [17] using MBH are reported in row 8.

Finally, [17] propose a number of extensions to the MIP

descriptor [10]. For the HistMIP descriptor, MIP codes

are computed separately over different channels of each

frame. Each such channel captures spatial gradient orienta-

tions, quantized into local spatial histograms and weighted

by their magnitude. Thus, HistMIP is designed to reflect

the changes in motion of local textures, rather than intensi-

ties of the original MIP. The DoGMIP, on the other hand,

first processes each frame to produce multiple Difference

of Gaussians layers. These are then processed, produc-

ing MIP codes for each layer. The results reported in [17]

show that none of these representations, on their own, pro-

vides a significant performance boost over existing meth-

ods. Their combination, along with the other descriptors

described above, however, does improve performance, as

evident in row 10 of Table 2, which is the best performance

reported on the ASLAN benchmark to date.

Table 2 also provides human performances on the

ASLAN benchmark, originally published in [12]. These re-

sults demonstrate the remaining gap between man and ma-

chine on the task represented by the ASLAN benchmark.

4. Conclusions

The survey presented here demonstrate that contempo-

rary action recognition systems can now perform very well

in controlled settings, with few atomic actions and clear,

known viewing positions, and even on uncontrolled videos

of high quality, when actions are well localized in time.

Unconstrained action recognition from “real-world” videos,

however, remains a challenging problem. State-of-the-art

methods are currently very far from the perfect scores ob-

tained by systems developed for image classification. This

fact is underscored by the properties of the benchmarks

used to develop, train, and test systems for action recog-

nition in videos, compared to systems for image classifica-

tion: where the latter include hundreds of action categories,

peaking at thousands of video samples, the former provide

thousands of categories and millions of photo samples. This

is particularly troubling when considering that actions can

vary greatly in how they appear in videos, possibly far more

than static items vary in appearance in photos, implying that

data sets for action recognition must be designed to offer

more examples, not less.

In an effort to bridge this gap, the ASLAN benchmark

has recently been proposed in [12]. With 432 classes, it

offers a far greater variability of categories than other exist-

ing benchmarks. In this paper we review the performance

reported on this set and show the wide gap that remains be-

tween the best performing methods and human capabilities.

We do so in an effort to motivate subsequent research into

action recognition on larger and more challenging video

collections, reflecting realistic, “in the wild” conditions.
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