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Abstract

Action Recognition in videos is an active research field
that is fueled by an acute need, spanning several applica-
tion domains. Still, existing systems fall short of the appli-
cations’ needs in real-world scenarios, where the quality of
the video is less than optimal and the viewpoint is uncon-
trolled and often not static. In this paper, we extend the
Motion Interchange Patterns (MIP) framework for action
recognition. This effective framework encodes motion by
capturing local changes in motion directions and addition-
ally uses mechanisms to suppress static edges and compen-
sate for global camera motion. Here, we suggest to apply
the MIP encoding on gradient-based descriptors to enhance
invariance to light changes and achieve a better description
of the motion’s structure. We compare our method using
Patterns of Oriented Edge Magnitudes (POEM) and Differ-
ence of Gaussians (DoG) as gradient-based descriptors to
the original MIP on two challenging large-scale datasets.

1. Introduction

Real world applications of human action recognition in

video are yet to emerge. This, in spite of the growing suc-

cess of commercial systems that are based on recent ad-

vances in other computer vision domains such as object

recognition and face recognition. A current trend, attend-

ing directly to the needs of real world video analysis, is

the shift from developing algorithms for benchmarks that

are based on staged videos taken under controlled settings,

to working with collections of unconstrained video. Com-

pared to the first benchmarks, the more recent ones show a

much larger variation in both scene parameters and imaging

parameters, including the actors’ identity and clothes, the

scene background and illumination, camera viewpoint and

motion, and image resolution and quality.

In order to work with unconstrained video, new video

descriptors have emerged. The recently suggested Motion

Interchange Patterns (MIP) method described in [11] en-

codes motion interchanges, i.e., the creation of a signature

that captures at every time point and at every image location

both the preceding motion flow and the next motion compo-

nent. This is done using a patch-based approach, sometimes

known as “self-similarity”, and local pattern encoding. To

decouple static image edges from motion edges, MIP in-

corporates a unique suppression mechanism, and to over-

come camera motion, it employs a motion compensation

mechanism. A bag-of-words approach is then used to pool

this information from the entire video clip, followed, when

appropriate, by a learned metric technique that mixes and

reweighs the various features. In this work, we created new

variants of the Motion Interchange Patterns (MIP) family

by incorporating gradient-based descriptors.

2. Related Work

Action Recognition is an on-going research in Computer

Vision, that is addressed by various approaches [22, 25].

One line of research extracts the high-level information of

the human shape in motion by building explicit models of

bodies [30], silhouettes [2] or 3D volumes [6]. In a recent

paper [23] a bank of action templates is collected, and the

templates are used for high-level action representation ap-

plied to challenging action recognition datasets.

A central family of approaches uses low-level represen-

tation schemes of the information in a video. These ap-

proaches can be further categorized as local descriptors, op-

tical flow and dynamic-texture methods. The MIP frame-

work, which is the basis of the current work, belongs to the

dynamic-texture based representations.

Local descriptors. Recent methods use local descriptors

for recognition [13, 28, 17]. The locality of the human mo-

tion in time and space is captured by a local spatio-temporal

environment representation, using feature point descriptors

borrowed from images or adapted to include temporal in-

formation. As a first stage, pixels that are potentially sig-

nificant to understand the scenario are detected. These are

often referred to as space-time interest points (STIP) [15].

The region around each interest point is represented by a

local descriptor. To represent the entire video, these de-

scriptors are processed and combined using, for example, a

bag-of-words representation [16]. This approach was tested

successfully on recent real-world datasets (e.g., [12]). How-

ever, a major drawback of this approach is the sensitivity to

the number of interest points detected. In videos with subtle
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motion, only a small number of interest points is detected,

providing insufficient information for recognition. Videos

with too much motion (textured motion such as waves in a

swimming pool or leaves moving in the wind) may provide

a lot of information irrelevant for recognition thus masking

the relevant discriminative points required for recognition.

Optical-flow based methods. The optical flow between

successive frames [1, 24], sub-volumes of the video [9], or

surrounding the central motion [4, 5] is highly valuable for

Action Recognition. A drawback of optical flow methods,

is committing too soon to a particular motion estimate at

each pixel. When these estimates are mistaken, they affect

subsequent processing by providing incorrect information.

The Motion Boundary Histograms (MBH) descriptor

proposed in [3] computes oriented histogram of differential

optical flow, thus capturing motion while being more robust

to camera motion than optical flow. An alternative method

is based on dense trajectories [28, 29]. The trajectories are

extracted efficiently with optical flow and represent the lo-

cal motion information in the video. The descriptors are

then computed as HOG, HOF or MBH on a spatio-temporal

volume defined by the trajectory. This method is state of the

art on the HMDB51 [14] dataset but was not tested before

on the ASLAN [12] dataset.

Dynamic-texture representations. Existing techniques for

recognizing textures in 2D images extend the textures to

time-varying “dynamic textures” (e.g., [10, 7]). One such

technique is Local Binary Patterns (LBP) [21], that extracts

texture using local comparisons between a pixel and the pix-

els surrounding it, and encodes these relations as a short

binary string. The frequencies of these binary strings are

combined to represent the entire image region. In [10, 32],

an extension of the LBP descriptor to 3D video data was

successfully applied to facial expression recognition tasks.

The Local Trinary Patterns (LTP) descriptor of [31] is

another LBP extension to videos. An LTP code of a pixel

p is computed as follows: a spatial patch around p is de-

fined as the central patch. In the next frame, a circle cen-

tered at the pixel corresponding to p is sketched, and spatial

patches are uniformly distributed around it. A similar circle

of patches is sketched in the preceding frame. Every pair of

patches, one patch from the former frame and one from the

next, is compared to the central patch in the current frame.

A trinary bit represents the comparison result - whether the

central patch is more similar to the patch in the preceding

frame, the succeeding frame or if the two similarities are ap-

proximately the same. The comparisons conducted for all

pairs of former and succeeding patches are represented in a

trinary string. A video is partitioned into a regular grid of

non-overlapping cells and the histograms of the LTP codes

in each cell are then concatenated to represent the entire

video. The Motion Interchange Patterns (MIP) (described

in detail in Section 3) is closely related to LTP.

In this work, a single frame is locally encoded either

based on the soft version of Patterns of Oriented Edge Mag-

nitudes [27, 26], or by the Difference of Gaussians [19].

Patterns of Oriented Edge Magnitudes (POEM). An effi-

cient image gradient-based descriptor, suggested in [27] and

further investigated in [26]. POEM computes the gradient

orientation for every pixel in the image and quantizes it. For

each pixel p, the matching descriptor is the orientations his-

togram over a patch centered at p. The gradient magnitude

of every pixel in the patch is assigned to the histogram bin

corresponding to the nearest orientation. In the soft version

of POEM, the magnitude assignment of every pixel in the

patch is distributed between the bins corresponding to the

two nearest orientations.

Difference of Gaussians (DoG). An image descriptor ob-

tained by applying s Gaussian kernels differing in their

σ values, thus constructing s blurred versions of the im-

age [18]. For each pair of adjacent σ values, the differ-

ence between the corresponding blurred images is calcu-

lated. The DoG descriptors are (s− 1)-dimensional vectors

containing the computed differences per pixel.

3. Motion Interchange Patterns
Given an input video, the MIP encoding [11] assigns to

every pixel of every frame eight strings of eight trinary dig-

its each. Every single digit compares the compatibility of

two motions with the local patch similarity pattern: one mo-

tion in a specific direction from the previous frame to the

current frame, and one motion in another direction from the

current frame to the next one. Figure 1 illustrates the mo-

tion structure extracted from comparing different patches.

A value of −1 indicates that the former motion is more

likely, 1 indicates that the latter is more likely. A value

of 0 indicates that both are compatible in approximately the

same degree.
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Figure 1. Representation of motion comparisons between two

patches. For a given pixel and frame, blue arrows show the mo-

tion from a patch in the preceding frame and red arrows show the

motion to a patch in the succeeding frame.

A 3 × 3 patch is centered around the given pixel. Eight

possible locations in each of the previous and the next
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Figure 2. Each trinary digit in the MIP encoding represents a com-

parison of two SSD scores, both referring to the same central patch

(in green). SSD1 is computed between the central patch and a

patch in the previous frame (in blue), and SSD2 is computed be-

tween the central patch and a patch in the next frame (in red).

frames are denoted i and j (respectively) and numbered

from 0 to 7. All 64 combinations of i and j are consid-

ered, and the resulting code is denoted by S(p). Each digit

Si,j(p) corresponds to one combination of patch locations

in the previous and next frames (respectively).

The sum of squared differences (SSD) patch-comparison

operator is used to set the matching bit. Denote by SSD1

(SSD2) the sum of squared differences between the patch in

the previous (next) frame and the patch in the current frame,

as depicted in Figure 2. Each trit, Si,j(p), is computed as

follows, for some threshold parameter θ:

Si,j(p) =

⎧⎨
⎩

1 if SSD1− θ > SSD2
0 if |SSD2− SSD1| ≤ θ

−1 if SSD1 < SSD2− θ
(1)

MIP compares all eight motions to the eight subsequent

motions, obtaining a comprehensive characterization of the

change in motion at each video pixel.

To overcome the ambiguity introduced by camera mo-

tion even in motionless parts of the scene, a motion com-

pensation module finds the alignment parameters that max-

imize the number of zero encoded pixels in the video. To

avoid implausible motion patterns such patterns are sup-

pressed.

Computing Similarity Positive and negative parts of each

string are separated, obtaining 2 UINT8 per pixel, for each

of the eight possible values of the angle between direction i
and direction j. These 16 values represent the complete mo-

tion interchange pattern for that pixel. For each fixed value

of α, the histograms of these MIP codes are pooled from a

16×16 patches around each image pixel, thus creating 512-

dimensional code words. A bag-of-words is applied by em-

ploying k-means clustering on the code words obtained for

the training images, k = 5000. Each local string is assigned

to the closest word, and a video clip is then represented by

eight histograms denoted as uα.

Applying MIP in learning tasks For the vanilla supervised

multi-class Action Recognition, the feature vector u repre-

senting a video clip is a concatenation of the eight uα of

all channels. Linear SVM is then used to build a suitable

classification model.

In the action pair-matching task, the input comprises of

pairs of video clips, labeled as describing the same action

or a dissimilar action. This setting is cheaper to label, as it

does not require specifying an actual action, and only refers

to the similarity between two videos. Once a suitable simi-

larity measure between a pair of actions is learned, this set-

ting generalizes easily to measuring distance between pre-

viously unseen actions.

For this task, one can use the histograms directly (em-

ploying the L2 similarity) or employ a metric learning

step. The Cosine Similarity Metric Learning (CSML) al-

gorithm [20] was previously shown to be effective for MIP

encoding of the ASLAN benchmark. It is employed to each

of the eight uα vectors described above, and learns eight

corresponding transformations Tα.

CSML is computationally demanding, therefore, before

learning the CSML transformations, PCA is trained for each

channel separately on a subset of the training data and the

50 most significant dimensions are used. The resulting

transformation maps the feature vectors to a 30-dimensional

space, and concatenating the channels, the final representa-

tion of a single video clips is a 240-dimensional feature vec-

tor. The feature vector representing the similarity between

a pair of video clips is the element-wise multiplication of

their transformed feature vectors. Finally, a binary SVM

trains a similarity model on the feature vectors representing

the training set pairs.

CSML metric is learned on a training set {(vi, v′i), li}ni=1

consisting of n pairs of samples labeled as same (li = 1) or

not same (li = −1). The CSML optimization problem finds

a transformation T which minimizes

CSML(T, {(vi, v′i)}, {li}) =
∑
{i|li=1} CS(T, vi, v

′
i)−

β1

∑
{i|li=−1} CS(T, vi, v

′
i)− β2||T − I|| ,

(2)

with I being the identity matrix, and the transformed cosine

similarity defined as: CS(T, v, v′) = (Tv)�(Tv′)
||Tv|| ||Tv′|| .

In the MIP paper, as well as here, the regularization pa-

rameter β1 is set to one, and the parameter β2 is optimized

using a coarse to fine scheme as suggested in [20].

4. Overview of the new variants

We suggest two variants of the original MIP scheme.

These variants are based on replacing the patch represen-

tation employed in MIP by representations that are based

on the gradients within each video frame. We call the first

variant histMIP, as it encodes each frame as a histogram of

gradient orientations, and second variant DoGMIP after the

Difference of Gaussians representation.
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histMIP Given an input video, the texture of each frame

is encoded separately as a collection of local histograms.

These are then compared using the MIP scheme. For ev-

ery pixel p in the frame, let θ(p) and m(p) denote the gra-

dient orientation and magnitude respectively. The orien-

tation space 0 − π is evenly discretized to d orientations

φ1, . . . , φd (indiscernible to opposing orientations). In our

experiments we use d = 3. Consider pixel pi with ori-

entation θ(pi) and the nearest discrete orientations φi1 and

φi2 , arranged φi1 ≤ θ(pi) ≤ φi2 . A d-dimensional vector

[m̂1(pi), . . . , m̂d(pi)] is constructed by projecting the gra-

dient magnitude m(pi) to the discrete orientations above.

The projection is done by bilinear interpolation. Define α =
θ(pi)−φi1 and β = φi2−θ(pi), then m̂i1(pi) =

β
α+βm(pi)

and m̂i2(pi) = α
α+βm(pi) while all other coordinates are

nullified.

To incorporate information from neighboring pixels, a

local histogram of orientations over all the pixels within a

local image patch is computed. At pixel p, the feature vector

is [m̃1(p), . . . , m̃d(p)] where m̃i(p) =
∑

pj∈C m̂i(pj) and

C refers to a patch (3× 3) centered at the considered pixel.

The received histograms define d layers, where layer i
refers to orientation φi and contains all m̃i(p) for all pixels

in all the frames in the video. MIP is computed separately

for each layer. In patchMIP, the distance between match-

ing pixels in consecutive frames is computed as an SSD

distance on 0 − 255 gray-level intensities of local patches

centered around the pixels. Instead, for each layer i =
1..d separately, we compute the distance between match-

ing aggregated magnitude scalars from three consecutive

frames. Let m̃prev
i (p), m̃curr

i (p) and m̃next
i (p) be the val-

ues matching pixel p for orientation φi. The distance di(p)
is (m̃curr

i (p)− m̃prev
i (p))2 − (m̃next

i (p)− m̃curr
i (p))2 .

Each comparison provides a trinary value as described in

Eq. 1. We set the threshold to 2500, which is approximately

the distance di(p) between a pair of idential aggregated

magnitude values, and a pair of patches with a constant

magnitude gap of 5.5, translating into ≈ 50 difference

between the aggregated matnitudes. Finally, the trinary

values across the layers are concatenated.

DoGMIP In this variant, the texture information of each

frame is extracted using Difference of Gaussians (DoG).

DoG applies d Gaussian kernels with differing standard de-

viation σ on the image to achieve various levels of blurring.

For every pair of subsequent blurred images sorted by their

σ values, we subtract one blurred image from the other, re-

sulting in d − 1 subtracted images per frame. We use four

Gaussian kernels with standard deviation 0.5, 1, 2 and 3,

hence compute three layers of subtracted images per frame.

Each layer is encoded separately, where the scalar values

of the DoG operators are used instead of the patches of the

same locations, and simple scalar square distances replace

(a)

(b)

(c)

(d)

(e)

(f)
Figure 3. An example of the MIP varients encodings. (a) the orig-

inal image, (b) patchMIP features. Left: SSD1, middle: SSD2,

right :MIP encoding of the SSD differences, (c) histMIP features

per layer (d) MIP encoding for each histMIP layer, (e) DoGMIP

features per layer, (f) MIP encoding for each DoGMIP layer. The

encoded motion extracted by the gradient-based variants is more

accurate than the patchMIP encoding, possibly because patchMIP

compares all image charectaristics over time, while histMIP and

DoGMIP first extract image gradients and compare only this in-

formation over time, yielding a better localization of motion.

the SSD operators. The trinary values are provided based

on the compared distance values and a threshold, set in our

experiments based on trial and error to 80, 40 and 7 for the

three layers respectively. The final output from all three

layers is concatenated to represent the video.

An example of both methods is shown in Figure 3. For

each method, the gradient-based layers and the MIP motion

descriptors are presented.
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5. Experiments

We compare the performance of histMIP and DoGMIP

to the performance of patchMIP with and without combin-

ing those to the STIP method [15], the dense trajectories

method [29] and the Motion Boundary Histograms (MBH)

method [3]. In all our experiments we use the MIP parame-

ters as described in [11].

To evaluate the dense trajectories and the MBH we used

the code published in 1 and employed it with the default

parameters. For the HMDB51 dataset, our results are sig-

nificantly lower than the results reported in [29].

We test on two challenging real-world Action Recogni-

tion benchmarks, ASLAN and HMDB51.

ASLAN. The Action Similarity Labeling (ASLAN) bench-

mark [12] is a large-scale benchmark containing thousands

of video clips collected from YouTube and over 400 com-

plex action classes. Following the Labeled Faces in the

Wild face identification dataset [8], the authors supply a

baseline test for the action pair-matching task (“same/not-

same”) using a cross-validation over 10 splits. The splits

are mutually exclusive, and each contains 300 pairs of same

action videos and 300 not-same pairs.

The results are averaged on the ten experiments. In each

experiment, nine splits are used for training, and the tenth

for testing. To ensure that the experiments are independent

of each other, all intermediate models, such as the dictio-

nary built in the BOW stage, the PCA matrices and the

CSML transformations, are learned per experiment.

The comparison among all tested methods and combi-

nations of methods with and without employing CSML

transformation is presented in Table 1. For each method

or combination of methods, we report the average accu-

racy ± standard error, and the aggregated Area Under the

ROC Curve (AUC). Incorporating the STIP detection con-

sistently pushes performance 1 − 3% higher. Learning the

CSML transformations further boosts performance by ad-

ditional 1 − 2%. Combining the three MIP variants with

MBH descriptors achieves the best recognition rates, with

and without CSML transformations.

HMDB51. The Human Motion Database [14] contains 51

actions and at least 101 video clips per action, summing

to a total of 6, 766 video clips. The data was collected

from movies and public databases. The performance level

of HOG and HOF is in the low twenties, which suggests

that this dataset is very challenging. However, recently the

dense trajectories method was reported to achieve a state-

of-art performance of 46.6%.

The dataset was evaluated using the three splits bench-

mark, each containing a hundred clips per each action - 70
for training and 30 for testing. The splits were selected to

1http://lear.inrialpes.fr/people/wang/dense_
trajectories

display a representative mix of video quality and camera

motion attributes. We did not use the stabilized HMDB51

and used the original video clips instead, as the MIP con-

tains a motion compensation mechanism.

The results are depicted in Table 2. The patchMIP result

is taken from [11]. We tested histMIP, DoGMIP and their

combinations. Combining patchMIP, histMIP and DoGMIP

achieves a significant improvement over each variant by its

own, and when incorporating dense trajectories or MBH to

this combination, the accuracy is further increased.

Table 2. Comparison of MIP variants, dense trajectories and MBH

on the HMDB51 database, tested on the unstabilized HMDB51

data. Combininng the MIP variants with the other methods boosts

the performance. The patchMIP results are taken from [11].

System Accuracy

patchMIP 29.22%

histMIP 29.65%

dogMIP 22.5%

patchMIP + histMIP + dogMIP 34.77%

Traj (our own runs) 30.63%

MBH (our own runs) 29.13%

patchMIP + histMIP + dogMIP + Traj 36.93%
patchMIP + histMIP + dogMIP + MBH 36.71%

6. Conclusions
In countless competitive contributions in computer vi-

sion, including the original MIP work and the MBH work,
the combination of multiple descriptors leads to a boost in
performance. In action recognition, which still lags behind
other computer vision domains with respect to performance,
such a combination might be a necessity when considering
the complexity of the tasks involved in real-world applica-
tions. We set to create new variants of the Motion Inter-
change Patterns framework. While not being able to present
an increase in performance in comparison to the original
MIP, combined with MIP, performance improves. We also
present results, which currently lead the ASLAN bench-
mark, in which the MBH descriptor is incorporated into the
set of descriptors employed. We are now working on di-
rectly combining the underlying encoding of MBG into the
MIP framework, i.e., on creating a MIP variant which is
based on optical flow and its derivatives. Hopefully, such a
hybrid descriptor would capture the strengths of both meth-
ods.
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