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Abstract

In this work, we propose a novel fast and accurate
method based on keypoints and temporal information to
solve the registration problem on planar scenes with moving
objects for infrared-visible stereo pairs. A keypoint descrip-
tor and a temporal buffer (reservoir) filled with matched
keypoints are used in order to find the homography trans-
formation for the registration. Inside a given frame, the
problem of registration is formulated as correspondences
between noisy polygon vertices. Sections of polygons are
matched locally to find the corresponding vertices inside a
frame. These correspondences are then accumulated tem-
porally using a reservoir of matches for homography calcu-
lation. Results show that our method outperforms two re-
cent state-of-the-art global registration methods by a large
margin in almost all tested videos.

1. Introduction
Nowadays, the field of image registration is rapidly ex-

panding in computer vision community as new sensors be-

come available. Because it is a well-known domain, the

focus is to accelerate the computing time [8] and to im-

prove the precision of the registration [7]. However, reg-

istration is still very challenging for image modalities that

capture very different information, as for example, visible

and infrared. Even if difficult, combining two complemen-

tary sensors such as infrared and visible is a good solution

to extract more information about the targets in the scene.

Many applications such as human detection [4, 14] or track-

ing system as well as medical imaging to monitor a patient

and its temperature, benefit from that kind of combination.

Finding an accurate transformation that maps objects from

an image to another allows us to clarify their boundaries and

to apply information fusion (appearance, shape, etc.).

Since images captured by infrared and visible cameras

come from different phenomena [12], finding the corre-

spondences (i.e. registration) between both sources is quite

challenging. For example, object’s texture from visible im-

age is often missing in the infrared image because it does

not have a big influence on the heat emitted by the object.

To solve this problem, we propose a new fast and accurate

method for finding correspondences between pairs of visi-

ble and infrared videos. Since image regions are very differ-

ent in both sources, we decided to focus on the boundaries

of binary silhouettes and to formulate the problem as find-

ing correspondence of vertices of noisy polygons. As such,

our method more specifically addresses video surveillance

applications aimed toward detecting and tracking humans.

We also focus on finding the homography of persons in pla-

nar scenes. We use an adapted implementation of Discrete

Curve Evolution (DCE) [1] to extract keypoints on the con-

tours. A reservoir (temporal buffer) that contains a temporal

set of matches is used to find the best global transformation

(planar homography) for a scene. Our assumption about the

stereo pair configuration is that the cameras are co-located

and roughly parallel. The contributions of the paper are:

1. We formulated the registration problem as finding cor-

responding vertices between noisy polygons. Vertices

are matched using the local shape formed by three con-

secutives vertices;

2. We included temporal information to add candidate

pairs for the homography computations by using a

reservoir (temporal buffer) of matched pairs.

We compared our method with DCE keypoints-based [1]

and trajectory-based [18] registration methods in terms of

precision. Our results show that our global registration

method outperforms the state-of-the-art.

2. Related works
Previous works have considered image region correla-

tion or mutual information [12, 13, 15] to register visible-

infrared images or videos. The problem is that texture in-

formation in both sources is quite different, thus correlation

is hard to find in the entire image. Local Self-Similarity

(LSS) over regions seems promising, but computing LSS
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over large regions is slow [17]. Because features on bound-

aries such as orientations and magnitudes are similar in both

sources [3, 5, 11], using edges or connected edges is the

most popular solution [3, 5]. With the same idea, skeleton

or DCE keypoints are used in [1] to identify shape feature

and to estimate the homography. A method that combines

edges and feature points can also be used like the one de-

scribed in [10]. Another solution is to add a temporal pro-

cess such as blobs tracking [19] or trajectory computation

[2, 9, 18] in order to find correspondences.

Usually, methods based on feature points are simple, fast

and give reasonable results. But, they are not very accurate

because they are often applied one frame at a time. Thus,

the number of matching points is not high enough to obtain

accurate results. On the other hand, trajectory-based meth-

ods use a temporal component to have more matches, but

it is very hard to have stable trajectory points based on the

centroid or the point at the top of silhouettes. To benefit

from both approaches, our proposed method combines con-

tour keypoints (feature points) and temporal information in

the form of a reservoir of keypoint matches to achieve ac-

curate and fast registration.

3. Methodology
3.1. Overview of the method

The first step of our method is to perform a simple back-

ground subtraction like the one described in [16] that detects

the foreground using the temporal average of the intensity

of each pixel and a threshold. From the foreground blobs,

we use the adapted implementation of the DCE described in

[1] to detect significant keypoints on a contour. Then, those

keypoints, viewed as polygon vertices, are described and

used for the matching process in order to make correspon-

dences. The correspondences of each frame are saved in a

reservoir that has a fixed size, which is the temporal extent

of the keypoint matches that will be considered for finding

the homography. If the reservoir is full, we delete the first

entry and add the last one, like a sliding temporal window.

All the keypoints in the reservoir are used to compute the

global transformation matrix. That matrix is obtained by a

standard RANSAC-based algorithm [6]. Then, we apply the

matrix on the current infrared frame to evaluate the over-

lap ratio between the transformed infrared and the visible

frame. At each iteration, the overlap ratio is compared with

the last ratio and the best one is saved, as well as the trans-

formation matrix. At the end of the algorithm, we obtain

the best transformation matrix for the video.

3.2. Keypoint extraction and description

The adapted DCE algorithm of [1] is used on the

infrared-visible foreground images to detect and keep the

most significant keypoints of the contours. It is essentially

Figure 1. Polygonal approximation and keypoints found. Left :

The binary foreground. Right : The contours. The dots (vertices)

represent the keypoints found using [1].

a polygonal approximation of each foreground blob, where

it is possible to control the number of vertices we want to

keep in the final contours. To make the matching process

easier and faster, we elected to eliminate all the possible

holes inside the contours. Each contour ends with only 16

significant vertices. These contours form polygons that es-

timate the human shape. Figure 1 gives an example of the

foreground, the polygons and DCE keypoints found in each

image. To describe a DCE keypoint, we describe the local

shape of the polygon at each vertex. The polygons are too

noisy to allow matching them globally. We use a feature

vector with two components (c, θ). Note that this feature

vector is different from what was previously proposed by

[1]. Ours focuses on the polygon vertices local shape, in-

stead of global segment poses in the image. Suppose that

we have three consecutive keypoints (P1, P2 and P3) on the

contour (polygon) in a clockwise order.

• c : is the convexity of the polygon at each keypoint.

For example, to find the convexity of the polygon at

keypoint P2, all we need to do is to compute a simple

cross product,

�n = �P12 × �P23 , (1)

where �n is the normal vector, �P12 is a vector from P1 to

P2 and �P23 is a vector from P2 to P3. In this case, we

suppose that each keypoint vector in equation 1 is in

three dimensional coordinate (x, y, 0). After the cross

product, �n will have a value in the z coordinate. If

that value is greater than 0, the polygon at keypoint

P2 is concave, otherwise, it is convex. This is true

only if the keypoints of the polygon are placed in a

clockwise order. In a counter clockwise order, it will

be the opposite.

• θ : is the angle of the polygon at each keypoint. For

example, the angle of the polygon at keypoint P2 is the

angle between �P21 and �P23. To find that angle, we use

standard trigonometry and calculate

θ = cos−1

⎛
⎜⎝

∣∣∣ �P21

∣∣∣
2

+
∣∣∣ �P23

∣∣∣
2

−
∣∣∣ �P13

∣∣∣
2

2 ∗
∣∣∣ �P21

∣∣∣ ∗
∣∣∣ �P23

∣∣∣

⎞
⎟⎠ . (2)
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3.3. Matching process

After describing all of the infrared and visible keypoints,

we have to define some metrics for the matching process.

These metrics are :

• Ed : The euclidean distance between two keypoints.

Ed = |PI − PV | , (3)

where PI and PV are the position of a keypoint from

an infrared and a visible image respectively.

• Eθ : The difference between two keypoint angles.

Eθ = |θI − θV | , (4)

where θI and θV are the angles of a polygon at a key-

point from an infrared and a visible image respectively.

During the matching process, we first compare the convex-

ity of a pair of keypoints (from infrared and visible images).

If it is the same, it is a possible match, otherwise we ignore

it and we continue with another pair. If the convexity is the

same, we then compute Ed (equation 3) and Eθ (equation

4). To improve the algorithm accuracy by eliminating false

matches, we define two thresholds :

• EdMax : The maximum euclidean distance. This cor-

responds to maximum expected disparity, a standard

threshold in all registration methods.

• EθMax : The maximum angle error. This is to enforce

a minimum level of similarity between keypoints.

If Ed ≤ EdMax and Eθ ≤ EθMax, then, a keypoint pair

may be a possible match. Otherwise, we ignore it and we

continue with another pair. If all conditions are met, we

save the match temporarily, because it is possible that for

some keypoints in the infrared image, there is more than

one match in the visible image. If there is only one possible

match, this is the best match. Otherwise, to select the best

match, the following score is minimized :

S =
αEd

EdMax

+
Eθ

EθMax

. (5)

We used α = 2 because our experimentations show that the

distance is more important than the angle for determining

the quality of a match. All possible pairs are considered

during the matching process. At the end, we obtain a set of

matched keypoints for a given pair of frames.

3.4. Finding the best global transformation matrix

With only one set of matched keypoints from one frame,

it is not possible to find an accurate global transformation

matrix for all videos, particularly when the detected fore-

grounds are noisy. We do not have enough good keypoint

pairs. We can solve this problem by saving our matches

from each frame in a match reservoir (temporal buffer of

keypoint matches). But, if the length of the video is one

hour, we cannot save all the frames, it would take too much

memory and the computation time would be too long. It is

more appropriate to limit the number of frames that we save

in the reservoir. When the reservoir is full, we can simply

erase the first saved matches and add the new ones in the

fashion of a temporal sliding window. With this method,

we use only a certain number of the last frames to compute

the homography matrix for the current frame. The homog-

raphy matrix is more accurate in this way, because those last

frames in the reservoir are more similar to the current frame.

Using the matches in the reservoir, we use a RANSAC-

based algorithm [6] to filter all the matches and to find the

homography matrix. We use the standard function for find-

ing homography with RANSAC in OpenCV. That matrix is

saved and applied on the infrared foreground frame. We

then compute the following overlapping ratio (R) to select

the best homography matrix dynamically:

R =
AI ∪AV

AV
, (6)

where AI and AV are the foreground regions of the trans-

formed infrared and the visible blobs respectively. At the

end, to select the best matrix, we keep the one that gives us

the ratio closest to 1. Algorithm 1 shows all the steps of our

method.

4. Experimentation and results
4.1. Overview of the experimentation

We validate our registration method with several planar

scenes. We used a publicly available dataset that contains

9 video sequences, which is the LITIV dataset [18]. The

persons are viewed from afar, the silhouettes are small and

the scenes are assumed to be planar. We performed global

image registration with our proposed method to find the cor-

respondences between the foreground blobs in infrared and

visible images. We selected the best matrix for each video

using the ratio calculation (see Eq. 6). To compare our best

result for each sequence, we used the ground-truth matri-

ces in the LITIV dataset [18] as a reference to transform

the infrared silhouettes. The mean euclidean distance (E)

between the centroids of the transformed infrared silhou-

ettes from the ground-truth and the ones from our method

is computed. We also compared our results with two state-

of-the-art methods. The first one uses described DCE key-

points (Bilodeau et al. [1]), but does not use any temporal

information, and the second use a trajectory point matching

method (Torabi et al. [18]). For each sequence, we perform

two tests. The first with 30 frames in our reservoir (size of

Reservoir in algorithm 1), and the second, with 100 frames.
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Reservoir = empty;

foreach frame do
foreach video (IR and Visible) do

- Apply background subtraction [16] ;

- Extract DCE keypoints (kpt) [1];

foreach keypoint do
- Calculate the convexity (c, Eq. 1);

- Calculate the angle (θ, Eq. 2);

end
end
foreach described IR keypoint do

foreach described Visible keypoint do
if IR kpt convexity = Visible kpt convexity
then

- Compute the distance between the

two keypoint positions (Ed, Eq. 3);

- Compute the difference between the

two keypoints angles (Eθ, Eq. 4);

if (Ed ≤ EdMax) and (Eθ ≤ EθMax)
then

- Save the Visible keypoint index;

- Save the distance error (Ed);

- Save the angle error (Eθ);

end
end

end
- Compute the min error with Eq. 5;

- Save the match with min error;

end
if Reservoir is full then

- Erase the first saved matches from the

Reservoir;

end
- Add current frame matches in Reservoir;

- Use RANSAC [6] with the keypoints from

Reservoir to find the homography matrix;

- Apply the homography matrix on the IR frame;

- Compute the blob ratio (R) with Eq. 6;

if The new blob ratio (R) is better than the last
iteration then

- Save the new blob ratio (R);

- Save the new homography matrix;

end
end
- Use the last saved homography matrix;

Algorithm 1: Fast and accurate registration algorithm

4.2. Results

Table 1 shows the mean registration errors for the best

frames for each sequence (1 to 9) in a planar homography

scenario. For sequences 1 to 4, we compare our results with

the DCE keypoints method proposed by Bilodeau et al. [1].

These results are also the minimum errors that they found

for each sequence. For sequences 1 to 9, we compare our

method with a trajectory point matching method (Torabi et
al. [18]). In this case, a matrix selection method is used to

find the best homography matrix. With a 30-frame reservoir

the best selected frames for sequences 1 to 9 are the follow-

ing : {110, 193, 902, 113, 290, 76, 393, N.A., 180}. With

100-frame reservoir, the best selected frames are : {98, 157,

892, 125, 319, 108, 806, N.A., 183}.
Table 1. Global Registration errors for the LITIV dataset (Seq. 1-9,

videos from LITIV dataset (dataset 01)[18]). E =
√

Ex
2 + Ey

2

: Mean registration error compared to the ground-truth.

Seq. Method E
1 Our method (30-frame reservoir) 1.06

Our method (100-frame reservoir) 0.94
Bilodeau et al. [1] 4.34

Torabi et al. [18] 2.27

2 Our method (30-frame reservoir) 4.63

Our method (100-frame reservoir) 1.05
Bilodeau et al. [1] 8.79

Torabi et al. [18] 5.34

3 Our method (30-frame reservoir) 1.19
Our method (100-frame reservoir) 1.76

Bilodeau et al. [1] 13.33

Torabi et al. [18] 3.95

4 Our method (30-frame reservoir) 4.56

Our method (100-frame reservoir) 1.55
Bilodeau et al. [1] 4.71

Torabi et al. [18] 4.82

5 Our method (30-frame reservoir) 2.94

Our method (100-frame reservoir) 2.74
Torabi et al. [18] 4.20

6 Our method (30-frame reservoir) 0.53
Our method (100-frame reservoir) 1.61

Torabi et al. [18] 6.69

7 Our method (30-frame reservoir) 1.83
Our method (100-frame reservoir) 4.25

Torabi et al. [18] 5.68

8 Our method (30-frame reservoir) N.A.

Our method (100-frame reservoir) N.A.

Torabi et al. [18] 3.77
9 Our method (30-frame reservoir) 4.25

Our method (100-frame reservoir) 2.49
Torabi et al. [18] 7.44

The results from table 1 are obtained with EdMax = 65
pixels and EθMax = 40 degrees. We used EdMax = 65
because the viewpoint of the 9 sequences is from afar, so,

the disparity tends to be large for each sequence. Because

the silhouettes are small, the angle of each vertex on the
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a)

b)

Figure 2. Planar homography scenario (Sequence 8, frame no.

330). a) Infrared foreground and contours. b) Visible foreground

and contours. The disparity and the difference between the poly-

gons from both images (infrared-visible) are too large to find good

matches.

contours is very different between an infrared and a visible

image. This is the reason why EθMax is big (40). In any

case, our score function 5 can filter the matches and keep

the best.

Table 1 shows that our method outperforms the other

methods almost all the time, except for sequence 8. Se-

quence 8 is indeed very complex, because the disparity be-

tween infrared and visible images is too high. The poly-

gons between the two images are also very different. Figure

2 shows the differences between infrared and visible fore-

ground and contours for sequence 8. We tried to change

EdMax to put a higher value because of the high disparity,

but it cannot solve the problem, because of a poor back-

ground subtraction, there is a lot of noise in the visible im-

age. This noise produces bad matches. Torabi et al. [18]

performs better in sequence 8 because they do not need to

deal with the shapes of polygons, but only with trajectories.

Even if there is noise in the scene, only the moving blobs

are tracked and considered for the registration.

The good point is that except for sequence 8, the errors

for all the other sequences are always lower than the state-

of-the-art by a large margin. The errors vary between 0.5

and 5 pixels. This is possible because our matching process

is very strict. For each frame, only few best matches are

saved in the reservoir. Figure 3 shows four samples of our

results from table 1.

Our experimentation shows that the more we have

matches to work with, better the result will be. This is ex-

actly what table 1 shows. Most of the times, we have fewer

errors with 100 frames in the reservoir than with 30 frames.

a) b)

c) d)

Figure 3. Planar homography scenario. Samples of our registra-

tion method. a) Sequence 1, frame no. 98, 100 frames in reservoir.

b) Sequence 2, frame no. 157, 100 frames in reservoir. c) Se-

quence 5, frame no. 319, 100 frames in reservoir. d) Sequence

6, frame no. 76, 30 frames in reservoir. See table 1 for errors

comparison.

The reason is that even if we have some noise (bad matches)

in the reservoir, we have better chance to keep track of more

good matches in the previous frames than noise. If this is

the case, RANSAC algorithm will eliminate all the noise.

With a smaller reservoir, it is possible that sometimes in

the video, it contains more noises than good matches. In

that case, RANSAC algorithm will eliminate good matches

and keep the noisy matches as good matches. However, be-

cause the reservoir works like a sliding window, when the

noisy matches exit the temporal window, everything will

work again in the next frames. Thus, it is not always neces-

sary to have a larger reservoir.

Moreover, the problem with a larger reservoir is that

computing time is longer. Table 2 shows the average com-

puting time for one frame in each sequence. These comput-

ing times include all the steps from background subtraction

to matrix computation and selection. If an application needs

a faster result, a smaller reservoir can be used without radi-

cally degrading the results, but if it needs a better accuracy,

it is worth to have a larger reservoir. In short, depending

on the application, reservoir size should be adapted. Even

if 100 frames in the reservoir is better than 30 most of the

time, the results for 30 frames in the reservoir are also good

and better than the other methods in table 1.

5. Summary and conclusions
We have presented an alternative to region-based, frame-

by-frame keypoints-based and trajectory-based registration

methods that works for visible and infrared stereo pairs. It
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Table 2. Average computing time for one frame

Seq. 30-frames reservoir 100-frames reservoir

Comp. time (s) Comp. time (s)

1 0.114 0.167

2 0.157 0.211

3 0.119 0.141

4 0.165 0.230

5 0.143 0.231

6 0.122 0.189

7 0.153 0.185

8 0.123 0.184

9 0.190 0.341

Computer used : Windows 7 (64-bits), Intel Core i5 CPU,

2.4 GHz, 6 Go RAM.

uses a simple contour keypoint descriptor and a temporal

buffer (reservoir) filled with matched keypoints. We con-

firmed the accuracy of our global registration method with

planar scenes from a publicly available dataset. The re-

sults show that our method outperforms two recent methods

from the state-of-the-art by a large margin, for almost every

tested sequence. However, it doesn’t work well when the

disparity and the difference between the polygons in both

infrared-visible images are too high.
Future work: Although the results with our global reg-

istration method are very good for a planar scene, it is not
perfectly adapted to non-planar scenes, because in that case,
it is possible to have more than one depth plane in the same
image. So, we cannot only apply one global transforma-
tion matrix for all the silhouettes in the same image. We
need to consider a local approach. To improve our regis-
tration method, it would be useful to add after a first global
transformation, a local transformation for each silhouette,
for example, by a silhouette tracking method to get their
matching points.
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