
Big Data Scalability Issues in WAAS

Jan Prokaj, Xuemei Zhao, Jongmoo Choi, Gérard Medioni
University of Southern California

Los Angeles, CA 90089
{prokaj,xuemeiz,jongmooc,medioni}@usc.edu

Abstract

Wide Area Aerial Surveillance (WAAS) produces very
large images at 1-2 fps or more. This data needs to be pro-
cessed in real time to produce semantically meaningful in-
formation, then queried efficiently. We have designed and
implemented a full system to detect and track vehicles, and
infer activities. We address here the scalability issues, and
propose solutions to have the tracker run in real time using
different parallelism strategies. We also describe methods
to efficiently query the data in forensic mode. Our methods
are validated on large scale real world data, and have been
transferred to a National Laboratory for deployment.

1. Introduction
The increased use of unmanned aerial vehicles, or

drones, for aerial surveillance is resulting in large amounts

of collected imagery. As this imagery often covers a geo-

graphic area of a few square kilometers, it is named Wide

Area Aerial Surveillance (WAAS) imagery. This data is

characterized by its large format (60-100 megapixels in ev-

ery frame), multi-sensor capture, low sampling rate, and is

in grayscale (see Figure 1). All of these properties pose

challenges for computer vision analysis, but the main chal-

lenge we are concerned with here is the sheer amount of

data to process, currently reaching about 100 megapixels a

second, and going to nearly 2 gigapixels 10 times a second

in the future. Simply storing the data is a challenge, not to

mention semantic analysis, such as the detection and track-

ing of moving objects, and recognition of activities, which

is our goal. These tasks have been studied in computer vi-

sion for a long time, but what has not received as much

attention, is also accomplishing these tasks at frame rates.

As other big data problems, efficient and scalable algo-

rithms and distributed computation are part of our solutions.

Keck et al [7] proposed a distributed architecture for real-

time tracking of vehicles in WAAS imagery, and adopted

a classic multiple hypothesis tracker for tracking. We use

a similar architecture with tile-to-tile handoff, but propose

Figure 1. Example of WAAS imagery, full frame (left) and detail

(right).

a modern and more efficient multiple-target tracking algo-

rithm that avoids the computation of all possible data as-

sociation hypotheses [12]. It accomplishes this by formu-

lating a labeling problem, whose solution significantly re-

duces the data association search space. Other trackers for

WAAS imagery have been proposed [11, 18, 15], but they

have not been shown to work in a distributed environment,

and process large-scale imagery at real-time speeds. The

tracker of [12] is in fact in regular use by a national lab. To

minimize the number of false alarms, we estimate motion

patterns and integrate them into the tracker. The estimation

of motion patterns is also designed for a distributed envi-

ronment. Finally, we insert the estimated trajectories into

a database and propose to use a scalable ERM framework

for activity representation and inference. The ERM-based

activity inference framework [5] enables us to utilize highly

optimized scalable RDBMSs.

The distributed computation takes different form in dif-

ferent modules, and involves spatial or temporal division of

the data. Whenever data are divided this way, the key is

to ensure that you get the same result as without the divi-

sion. Because some processes are interdependent, simple

distributed massive parallelism is limited.

The contributions of this paper are a multiple-target

tracker designed to handle large-scale problems, an algo-

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.67

399

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.67

399

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.67

399

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.67

399

Figure 2. Overview of the proposed approach.

rithm for large-scale motion pattern estimation, and an ac-

tivity inference framework for large trajectory datasets. Our

approach is illustrated in Figure 2. Our proposed tracker

along with integrated motion patterns can process WAAS

imagery in real-time, generating tracking results with min-

imal number of errors. We analyze the scalability of the

ERM based activity recognition, explain standard optimiza-

tion techniques for large databases, and propose some task-

specific strategies for the parallelism. We demonstrate that

many activities can be effectively and efficiently defined

and inferred using spatial and temporal partitioning tech-

niques.

Our paper is organized as follows. In the next section

we discuss our approach, explaining each module in detail,

as well as our techniques for distributed computation. Then

we present our results, and conclude the paper.

2. Our Approach
2.1. Tracking

We first stabilize the video stream, which is straightfor-

ward to implement in real time [6]. Our goal is to track all

moving objects in the video from frame to frame. We adopt

the efficient approach presented in [12], which determines

the tracklets optimally by maximizing the joint probability

of a set of detections over a temporal window. We extend it

to take advantage of learned motion patterns during data as-

sociation by incorporating motion pattern priors in the joint

probability distribution as presented in [14]. This work is

now briefly reviewed.

We take a hierarchical approach to tracking. That is, we

first estimate short tracks, or tracklets, over a short tempo-

ral window and then associate them with an existing set of

tracks. The input to our algorithm is a set of object detec-

tions (blobs) in each frame, which we estimate using back-

ground subtraction. Each detection in the first frame of the

window is a potential object. Therefore, we find an optimal

tracklet, or a set of tracklets, starting at each detection in

the first window frame. This is not a problem, because for

detections that are false alarms, the model of a valid track-

let (consistency of motion and appearance) is not satisfied,

and the tracklet is discarded. Tracklets that start in the sec-

ond or later frame of the window are found when the sliding

window shifts to that frame.

Given a detected object in one frame, we know there

must be another detected instance of that object located

nearby in subsequent frames. By recursively applying this

idea, a directed acyclic graph called an association graph, or

detection graph is constructed. This graph stores all possi-

ble associations of object detections over time. The number

of these associations (greater than or equal to the number of

paths from the root down to leaves) is large and intractable

to evaluate in entirety. The key idea of [12] is to first remove

inconsistent detections in this graph by solving a binary la-

beling problem, which is very efficient. Once this has been

done, the search space of paths in this tree is significantly

reduced, and the few (often one) remaining possible paths

are easily extracted. Missed detections, due to occlusion

or background subtraction failure, are easily handled in this

framework by generating virtual detections in this graph.

The binary labeling problem is posed as MAP inference in

a Bayesian network, constructed directly from the detection

graph. This formulation allows easy incorporation of other

evidence, such as motion patterns, into the problem [14].

2.1.1 Distributed Computation

Wide area imagery often covers a region of several square

kilometers, which means the number of vehicles that needs

to be tracked is in the thousands. In order to achieve real-

time processing at this scale, the tracking task needs to be

parallelized and divided among several processors. Since

tracklets are estimated independently for each detection in

the first frame of the temporal window, the estimation can

proceed in parallel. This includes the construction of the

association graph, solving the binary labeling problem, and

extraction of tracklet(s) from the labeled graph. In our im-

plementation, we launch as many threads as the number of

available CPU cores, create a queue of detections for which

tracklets should be estimated, and then let all threads pro-

cess the queue until it is empty, each at its own pace. Even

though tracklets are estimated independently, since we use

a long temporal window for tracklet inference, the number

of id switches is limited. At the same time, this indepen-

dent estimation allows us to exploit parallelism to a great

degree. This allows us to run the tracker at real-time speeds

for imagery up to about 2K×2K in size (depending on the

number of detections in each frame). For imagery larger

than this, as WAAS imagery, multi-threaded processing is

not enough, and we turn to distributed computation.

A natural way to divide up the work is to create a grid of

“tiles”, each covering an equal area of the monitored region

(we assume the imagery has been stabilized and georegis-

tered), and run an independent tracker on each one. This is

illustrated in Figure 3. Even though each tracker estimates

tracks on only a small portion of the region under surveil-

400400400400

Figure 3. Parallel estimation of tracks and motion patterns on a

cluster of computers is enabled by creating an overlapping grid of

tiles.

lance, we can avoid track fragmentation arising from the

grid by handing off, or linking, tracks for targets that move

from the field of view of one tile to the next. This is facil-

itated by including a small overlap region. The size of the

tiles should be set according to the tracking algorithms re-

source requirements. For example, we have experimented

with tiles 2176× 2176 in size.

We have implemented a simple track linking approach

that works as follows. Whenever a new track is initiated

in an overlap region, the initiating tile sends a “new-track”

message to the overlapping neighbors, which contains the

track’s ID and its initial trajectory. At the same time, each

tile maintains a set of tracks that have terminated in an over-

lap region. On every frame, the set of terminated tracks is

matched against the set of new tracks. Whenever a termi-

nated track matches with a new track, a “hand-off track”

message is sent with the trajectory of the terminated track

to the tile containing the new track. The historical trajectory

is then merged into the new track. Matching of terminated

tracks with new tracks can be done with the Hungarian algo-

rithm for robustness. However, we have found that having

a reasonable overlap region allows a greedy track matching

algorithm with no loss in accuracy.

2.1.2 Experiments

We have evaluated the multi-target tracker on a publicly

available dataset from Air Force Research Laboratory [3].

This dataset was captured by an array of six cameras at

roughly 1 Hz, and it is in grayscale. We mosaicked the

dataset using [13], stabilized it, and georeferenced it prior

to tracking. A reference with a resolution of 0.30 meters (1

foot) per pixel was used, making vehicles, our targets of in-

terest, about 20× 10 pixels in size. A 1024-frame sequence

of a 1408 × 1408 region was selected for evaluation. The

dataset includes ground truth, which was manually gener-

ated, and contains 403 tracks in the region of interest.

Several metrics were used to measure performance: ob-

Metrics Performance

Object Detection Rate 0.36

False Alarm Rate 1.03

Track Swaps 0.48

Track Breaks 0.64

FPS non-distributed (no handoff) 8.83

FPS non-distributed (with handoff) 7.53

FPS distributed on 4 nodes* 11.2
Table 1. Quantitative evaluation of the proposed algorithm. *The

distributed runtime was estimated.

ject detection rate, false alarm rate, mean cumulative swaps

of tracks, and mean cumulative broken tracks. Object detec-

tion rate is defined as the fraction of detections in the ground

truth found in the estimated tracks. False alarm rate is de-

fined as the average number of false detections in estimated

tracks in every frame. Mean cumulative swaps of tracks is

defined as the average number of swaps (ID switches) in

every ground truth track (over its lifetime). Mean cumu-

lative broken tracks is defined as the average number of

breaks in every ground truth track (over its lifetime). A

break happens when a ground truth track is not matched

to any ID in the next frame. These last two definitions are

based on [16]. Computational efficiency was measured by

the average number of frames processed per second (FPS)

on an AMD FX-6300 CPU. This was measured with “cold

cache”, to reflect real-world conditions where the tracker

is running in real-time and has not seen the dataset before.

The results are shown in Table 1.

The results show that the proposed tracking algorithm is

very good at making data associations. It makes a small

number of tracking errors, such as id-switches and breaks.

The detection rate is lower than we would expect, primarily

due to the tracker not being able to track vehicles after they

stop.

It is also clear that the proposed tracking algorithm is

efficient. When the tracker runs on the full 1408 × 1408
imagery on one node, where no hand-off between tiles is

needed, it can process the dataset at 8.83 frames per sec-

ond, which is real-time considering the dataset was cap-

tured at 1 Hz. When the imagery is divided into 4 tiles,

each 754 × 754 in size, and a 100 pixel common region

between them, the tracker can process the dataset at 7.53

frames per second on one node. The overhead of 0.020 sec

every frame is due to the necessary handoff processing. To

estimate the performance of the tracker running on a 4-node

cluster, we determined the maximum runtime of the tracker

on a 754 × 754 tile, which was 11.9 frames per second.

Then, we assumed the handoff cost would be uniformly dis-

tributed across nodes, a reasonable assumption, considering

the cost is proportional to the number of tracks in each tile.

Taking this into account, the final runtime on a 4 node clus-

ter would be 0.084 sec + 0.020 sec / 4 = 0.089 sec = 11.2

401401401401

frames per second. Again, this shows we are able to run the

tracker in real-time on a 4-node cluster.

2.2. Motion Flow Estimation from a Big Video

Multiple objects undergoing coordinated movements

produce motion patterns [19, 20]. Motion patterns are im-

portant in video analysis because they convey rich infor-

mation of the scene. For instance, motion patterns contain

the information of moving objects regular movement, i.e.,

direction, speed, and they assist the detection of different

movement. In wide area aerial surveillance videos, motion

patterns are usually clear and informative, and they enable

us to improve the tracker.

2.2.1 Motion Pattern Learning

When tracklet points are embedded into (x, y, vx, vy) fea-

ture space, points form into clusters, and manifold struc-

tures emerge [19, 20]. These manifolds are correspond-

ing to motion patterns. In the learning framework, tracklets

are first extracted [12] and used as input. In aerial scenes,

parallax causes many false tracklets. Compared to the pos-

itive tracklets caused by real moving objects, false track-

lets are usually distinguishable. For example, they are in-

consistent and short, and the area scanned by the move-

ment is usually small. So a large portion of false track-

lets can be removed due to these properties. Once tracklets

are pre-filtered, for each point on the remaining tracklets,

velocity (vx, vy) is calculated, and 2D (x, y) information

is transformed to (x, y, vx, vy) feature space, where points

form into clusters, corresponding to the road networks in

the aerial scene. Tensor Voting is then used to explore the

geometric properties of the structures.

Tensor Voting Tensor Voting is a computational frame-

work to estimate geometric information in N -D space. In

this section, we only introduce the fundamental concepts re-

lated to our application, readers can refer to [9, 10] for the

complete presentation and implementation details.

Suppose we have a set of samples in a high dimensional

space, and these samples lie on a manifold of much lower

dimension. Our objective is to infer the geometric structure

of this manifold. In other words, we try to find the vectors

that span the normal and tangent space at each point, and

use them to characterize the manifold. Tensor voting is an

unsupervised approach to estimate a structure tensor T at

each point. Here, T is a rank-2, symmetric tensor, whose

quadratic form is a symmetric, nonnegative definite matrix,

representing underlying geometry.

Recall that a tensor can be decomposed as,

T =

N∑

i=1

λieiei
T

=

N−1∑

i=1

(λi − λi+1)

i∑

k=1

ekek
T + λN

N∑

i=1

eiei
T

(1)

where {λi} are the eigenvalues arranged in descending or-

der, and {ei} are the corresponding eigenvectors, and N

is the dimensionality of the input space. Equation 1 pro-

vides a way to interpret the local geometry from T . The

maximum difference between two consecutive eigenvalues,

λi − λi+1, encodes the saliency of certain structure, whose

normal space is i-D and the tangent space is N − i-D. λN

is the saliency of an unoriented structure. Summing the

saliency together for all i, λ1 is an estimate of the proba-

bilities for all possible manifold structures.

Outliers are usually brought in by false tracklets or false

associations on the positive tracklets, and they indicate false

structures in motion feature space. Compared to inliers

which form clusters, outliers receive inconsistent and little

support from their neighbors, and have low saliency. Thus,

all points are ranked according to their λ1, and the bottom

ones are filtered out.

2.2.2 Distributed Computation

In order to achieve real-time processing at WAAS scale, a

natural way is to divide up the work to create a grid of spa-

tial tiles, each covering a certain area of the monitored re-

gion (we assume the imagery has been stabilized and geo-

registered), and Tensor Voting can be performed indepen-

dently on each one.

Choosing tile size is important. It depends on the res-

olution of input data, and the coverage of the map. Once

proper tile size is used, the number of points in the volume

of each tile is both large enough to perform informative de-

noising and local structure inference, and small enough to

achieve high efficiency. Also, the tiles should have small

overlap regions. The proposed method is in nature suitable

for parallel processing by dividing the data space into small

volumes. That’s because Tensor Voting is based on local

neighborhood information, instead of the global structure.

As shown in Figure 3, we first divide the spatial space into

non-overlapping regions (in blue), then depending on the

voting scale which determines the neighborhood size, we

consider a larger area (in red) for each tile to perform Ten-

sor Voting. After independent processing for each tile, only

the results within the blue region of each tile is kept. Thus,

the results are stitched back together with no need of further

processing. The voting scale is determined empirically and

is independent of the tile size.

402402402402

Distributed Computation is more efficient from two per-

spectives. First, for each point, there is a smaller candidate

pool for selecting nearest neighbors, since only the points in

the tiles need to be considered. Second, the tiles are com-

pletely independent from each other, so that they can be

processed by different processors simultaneously, and there

is no further step to stitch the results back together. Assume

we divide the whole region into M ∗ N tiles, distributed

Tensor Voting is roughly M2N2/c2 times faster than pro-

cessing the whole region together. c is a factor indicating

the effect of overlap region, and c is larger as M and N in-

crease. Intuitively, the larger M and N are, the smaller each

region is, and the larger the overlap region is needed.

Our framework can also handle online incoming long

sequences. For every Y frames, the first X frames are

used to learn and update motion patterns, suppose they are

{Xi}, i = 1, 2, 3, , and each contains Nx points. From X1,

initial motion patterns can be learned. Instead of combin-

ing all the tracklet points from X1 and X2 together to learn

motion patterns, we perform Tensor Voting in an incremen-

tal way. That means points from X1 do not vote to each

other, but vote with points from X2, and points from X2

vote for each other. Once {Xi}, i = 1, 2, 3, k are processed,

and Xk+1 comes, the number of vote we need to perform

is 2k ∗ Nx ∗ Nx + N2
x , instead of (k + 1)2 ∗ N2

x . There-

fore, motion patterns can be updated in an efficient online

fashion.

2.2.3 Experiments

We have evaluated our motion pattern learning algorithm

on a sequence from another wide area imagery dataset from

Air Force Research Laboratory [1]. The dataset is captured

at about 2 frames per second and contains significant paral-

lax from campus buildings and trees. We have mosaicked,

stabilized, and georeferenced the dataset to 0.75 meters per

pixel resolution before tracking. For quantitative evalua-

tion we selected a 1312 × 738 region in the middle of the

persistently visible area and manually determined tracking

ground truth for 100 frames. The selected sequence has 205

tracks of vehicles, each being about 10× 5 pixels in size.

Given an input tracklet, we first calculate the movement

of every tracklet point compared to the start of the track-

let, and remove the tracklet if the median of the move-

ment is smaller than 6 pixels. That is because the tracklet

points caused by parallax are often constrained in a small

region, while tracklets caused by real moving objects oc-

cupy a large area. In outlier filtering, all points are ranked

according to their λ1, and the bottom 10% are filtered out.

Figure 4 shows the motion pattern learning results, which

more or less correspond to the road network.

For quantitative evaluation, we integrated the learned

motion patterns into the tracker and compared tracking per-

Figure 4. Parallel estimation results of motion patterns.

Without MP With MP

ODR 0.28 0.23

FAR 0.85 0.19

SWP 0.55 0.35

BRK 0.75 0.46
Table 2. Vehicle tracking performance with and without motion

patterns (MP) on wide area imagery. Please see the text for metric

definitions.

formance to a tracker without them. Several metrics were

used to evaluate performance: object detection rate (ODR),

false alarm rate (FAR), mean cumulative swaps of tracks

(SWP), and mean cumulative broken tracks (BRK). Object

detection rate, track swaps, and track breaks are defined the

same way as in the previous section. However, FAR is de-

fined as the number of false positive detections divided by

the total number of estimated detections. The results are

shown in Table 2.

The results show that motion patterns significantly re-

duce the false alarm rate with a small corresponding de-

crease in the object detection rate. This is because most of

the false alarms come from moving objects detections due

to parallax and these are denoised by tensor voting. Further-

more, the number of ID switches and track fragmentation

has also decreased with the use of motion patterns, as is ev-

ident in the decrease in the track swap rate and broken tracks

rate. It’s another indication that ambiguity during tracking

has been reduced.

In terms of efficiency, the proposed algorithm processes

the 1312×738 region as a whole at 1.89 frames per second.

When the region is divided into 4 overlapping tiles, each

756×469 in size, the algorithm is able to process the data at

16.8 frames per second. This efficiency is determined by the

longest processing time of each of the tiles, and there is no

extra cost to combine the results from tiles. Since the data

is captured at about 2 frames per second, it shows that our

algorithm is able to process in real-time in a distributed way.

Moreover, it’s worth noting that learning motion patterns

is an independent step of tracking, which means it doesn’t

403403403403

Table 3. Activity type: locality and the number of actors.

Types Single actor Multiple actors

local U-turn, 2/3 point turn, source, sink,

on-road-X, Speeding, following, convoy,

Stop-violation, Brushpass, Dead drop,

Entry, Visit, Stay Coordinated movement

global Loop, double meeting

Traveling A to B

slow down real time online tracking, but once it’s done, the

results can be integrated into the tracking module.

2.3. Large-Scale Aerial Activity Recognition

Our activity inference method is simple but very efficient

[5]. Activities are defined as vehicular tracks associated

with certain properties (e.g., U-turn, 3-point turn, loop, con-

voy, following, speeding). We extract a set of atomic por-

tions of a track (we call it tracklets) from video input, along

with physical attributes, and store to a standard RDBMS

(Relational Database Management System). To infer activ-

ities, we define temporal and geo-spatial relationships be-

tween the database entities (tracklets, roads, etc.), and query

the database. The relational model allows us to represent hi-

erarchical structures, multiple actor activities, and context

information. We use SQL (Structured Query Language) to

define and infer activities. Table 3 shows typical geo-spatial

activities.

Clearly, our system should be able to handle a large num-

ber of tracklets since the number of tracklets increases as the

volume of 3-D+time region-of-interest increases. For in-

stance, if we collect, process physical attributes (e.g., geo-

tag, time-tag), and store tracklets into a RDBMS system

from 1 hour long video, we might have 6,000,000 rows in

the table.

Inherently, the scalability of our activity recognition sys-

tem is equivalent to the scalability of traditional relational

database systems. The most expensive operation in SQL

is the outer join operator (or JOIN for short) whose com-

plexity is O(N1N2 · · ·Nj · · ·Nr) in the worst case, where

Nj is the number of data rows (e.g. tracklets) in the j-th

table and r is the number of tables [8]. It is a basic opera-

tion because we often need to integrate more than one table

to utilize the available information from independent data

sources and this integration of two relations can be done us-

ing the JOIN operator. Most of the activities can be found

using the JOIN operators on two relations. Even if some

complex queries need more than two relations for the JOIN

operations, an efficient algorithm can be applied to reduce

the computational complexity of the JOIN operation [8].

2.3.1 Leveraging Scalable Relational Systems

One of the benefits of using an ERM model for activity

recognition is that there exist highly optimized RDMBS

commercial implementations such as [2]. Furthermore,

there has been serious effort in making RDBMS perform

equally well in distributed environments, under high load,

and with limited downtime. Therefore, by expressing activ-

ity definitions in SQL, we can take advantage of existing,

distributed, industrial parsers, making our proposed system

very scalable.

Some of the ways that RDBMS achieve high efficiency

is through the use of indexing and data slicing. We take

advantage of both of these strategies.

An index structure organizes each row of tables based on

common axises across all data. For example, when a query

requires joining of several tables on “id” attribute, an index

is built on this attribute in any (temporary) tables taking part

in the join. Moreover, many of the properties can be indexed

using typical spatial data formats (points, lines) and we can

leverage the spatiotemporal index structures [17].

Similarly, when recognizing an activity happening over a

relatively short time interval, we first slice the database into

multiple time intervals (with overlap), and then query each

interval in turn for this activity. This is much faster than

querying the whole database at once (Sec. 2.3.3). Clearly,

all known query optimization strategies can be adopted

here.

Novel relational DBMSs can show excellent scaling

properties on distribute systems as long as applications

avoid cross-node operations [4]. Indeed, our activity recog-

nition relies on read-only operations so that our system, in

theory, can operate on hundreds of machines as a single

database system where performance scales linearly with the

number of machines.

2.3.2 Distributed computation

It has been shown that simple activities can be inferred by a

standard RDBMS and standard techniques such as indexing

and SQL optimization. However, using a standard method

might not be sufficient when we need fast activity recogni-

tion from a large data set or when we infer complex activi-

ties that cannot be defined by a small number of JOIN oper-

ations. In this case, the strategy for distributed computation

depends on the type of activities, because different activi-

ties require different spatial, temporal, inter/intra-track de-

pendencies.

Our activities can be classified into “local” spatio-

temporal and “global” spatio-temporal activities in term

of that whether we have to gather information across dis-

tributed tiles or not. A local activity is defined in a

bounded spatial and temporal volume. “U-TURN”, “2-

point-TURN”, “Stop-violation”, are defined with a “point”

404404404404

Table 4. Activity type and strategy.

Types Single actor Multiple actors

local indexing spatial - temporal partitioning

global track clustering hierarchical inference

(a single geo-spot) by definition, in which considering a

limited area is sufficient. The locality of an activity is im-

portant because many local activities can be efficiently in-

ferred using simple partitioning methods.

Similarly, some activities require a “length” or “small

area” between tracklets. “Following” is defined between

two tracks that maintain a distance. Since these “length”

or “area” can be small compared to the processing image

tile, only the overlapping regions between tiles should be

taken into account and the entire process can be parallelized

well like a simple image processing algorithm that uses only

local operations.

While a local activity can be inferred by simple spa-

tial and temporal partitioning, in contrast, a global activity

might not be inferred from an isolated tile. For instance,

“double meeting” can be defined as an interesting activity

where two cars meet a location A, move to other locations,

and meet again in a new location B. In this case, a simple

temporal or spatial division is not possible to infer a global

activity. Similarly, “Loop” and “Traveling from A to B” are

classified as global activities and may not be inferred from

a single tile.

Even in case of global activities, single actor activities

can be distributed easily because each track has its own

identity. For example, traveling from A to B, a global and

single-actor activity can appear across multiple tiles. How-

ever, because our tracker connects the identities, we can

group long-range tracks, distribute into multiple processors,

and infer the global activity in independent clusters.

Many of multiple actor activities, which need more than

two relationships in the inference, can be efficiently decom-

posed into a series of 2-actor activities [5]. For instance, N-

vehicle convoy can be decomposed to a series of 2-vehicle

convoy and the computation scales linearly with the num-

ber of vehicles. However, if we use a distributed database,

we might need a more complex strategy, because we cannot

use simple grouping and some tracks across tiles might be

related.

While considering all possible pairs of tracks requires

C(N, 2), we use hierarchical inference for global multiple

actor activities. For instance, an activity “double meeting”

requires to connect information across tiles. We can divide

the query into two steps: the first step collects a set of meet-

ing events in each tile and the second step infers “double

meeting” by considering the spatial relationship.

First, we can identify all meetings in each tile as:

meet(i) := {(x1, x2) ∈ Ti)|
x1.id �= x2.id,

||x1.pos− x2.pos|| < θ1,
|x1.t− x2.t| < θ2},

(2)

where (x1, x2) is a pair of tracklets in i-th tile (Ti), x.id is

the identity number of the tracklet x, ||x1.pos − x2.pos||
represents the Euclidean distance between two tracklets,

|x1.t − x2.t| is the absolute time difference, and theta is

a threshold.

Second, we can connect individual meetings to infer

“double meeting” from the result of the first step as:

Nmeetings(i) := {(x1, x2) ∈ Ti, (x3, x4) ∈ Tj)|
x1.id = x3.id, x2.id = x4.id,

Ti �= Tj},
(3)

where we just need to find a corresponding pair of meetings

((x1, x2), (x3, x4)) from different tiles (Ti �= Tj).

2.3.3 Quantitative Analysis

Data. We were able to acquire a proprietary GPS trajec-

tory dataset. This dataset was collected over 7 hours, and

contains about 50 tracks. These tracks were generated by

directing several groups of vehicles to execute various types

of activities over the data collection period. We defined

three real-world activities. Brushpass is an activity where

two cars meet for less than 1 minute and then go their sepa-

rate ways. Coordinated movement is an activity where two

cars move together for a long time. Dead drop is an activ-

ity where one car briefly stops at a location, goes away, and

then sometime later, a different car goes to the same loca-

tion, briefly stops there, and moves on.

Method. Tracklets were estimated from GPS trajectories

and stored in a database.

To verify the scalability of our proposed system, and ex-

amine its behavior with respect to data slicing, we used a

“brushpass” activity for the purpose of evaluation. This ac-

tivity requires the join of two tables, twice, so it is a good

candidate for evaluation.

The scalability of our system can be evaluated by mea-

suring query completion time with respect to the number

of tracklet rows. We varied the number of rows by tempo-

rally dividing the dataset into a various number of intervals

(28, 14, 7, 3, 1). Query completion time was then measured

in each such time interval. This experiment was performed

twice, each time with a different group of vehicles.

To evaluate the recognition performance, we executed a

query for each activity, and measured (automatically) the

precision and recall using the supplied ground truth. The

best performance is obtained for brushpass that shows 0.44
and 0.65 for the precision and recall, respectively.

405405405405

Figure 5. Query completion time rises slowly with the size of the

dataset.

Table 5. Data slicing reduces the query completion time.

Intervals Avg. Query Time (sec)

28 233.25

14 279.95

7 499.02

3 897.65

1 2010.95

Results. The query completion times with intervals are

shown in Table 5. It shows that query time increases

quadratically with the number of rows in the worst case, but

the growth is linear for smaller database sizes. This kind of

low-order polynomial growth allows the ERM framework

to scale to large database sizes which appear in practice.

To understand the effects of data slicing on query com-

pletion time, we use the same data as in the previous ex-

periment. We measure query completion time as the sum

of all interval query completion times. These are averaged

for the two groups of vehicles. The results are shown in

Figure 5. It is clear that data slicing reduces the total query

completion time. Therefore, when recognizing activities us-

ing ERM, it is more efficient to temporally divide the data

into intervals (even with overlap) and run the query within

each interval than to run the query on the entire database at

once. Note that most of the activities described in Table 3

can be inferred in low order polynomial time with respect to

the number of tracklets. Creating the necessary tables and

indices takes negligible (amortized) time. Furthermore, this

process only happens once, and thus its computational cost

is not as important as that of activity inference.

3. Conclusion

We have presented a scalable system to process WAAS

imagery. Three key modules have been considered in this

paper, tracking, motion pattern estimation, and activity

recognition, and we have demonstrated real-time and scal-

able processing of each. We have transferred the technology

to a national lab for deployment. More problems need to be

studied, including data compression and 3D modeling.

References
[1] CLIF 2006. https://www.sdms.afrl.af.mil/. 5

[2] http://www.mysql.com. 6

[3] WPAFB-21Oct2009. https://www.sdms.afrl.af.mil/. 3

[4] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39(4):12–27, 2011. 6

[5] J. Choi, Y. Dumortier, J. Prokaj, and G. Medioni. Activity

recognition in wide aerial video surveillance using entity re-

lationship models. In International Conference on Advances
in GIS, SIGSPATIAL, pages 466–469, 2012. 1, 6, 7

[6] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,

2003. 2

[7] C. S. Mark Keck, Luis Galup. Real-time tracking of low-

resolution vehicles for wide-area persistent surveillance. In

Workshop on Applications of Computer Vision, 2013. 1

[8] P. Mishra and M. H. Eich. Join processing in relational

databases. ACM Comput. Surv., 24(1):63–113, 1992. 6

[9] P. Mordohai and G. Medioni. Tensor voting: A perceptual or-

ganization approach to computer vision and machine learn-

ing. Morgan and Claypool Publishers, 2008. 4

[10] P. Mordohai and G. Medioni. Dimensionality estimation,

manifold learning and function approximation using tensor

voting. JMLR, 11:411–450, 2010. 4

[11] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu.

Multi-object tracking through simultaneous long occlusions

and split-merge conditions. In IEEE Conference on CVPR,

volume 1, pages 666–673, 2006. 1

[12] J. Prokaj, M. Duchaineau, and G. Medioni. Inferring track-

lets for multi-object tracking. In IEEE Conference on
CVPRW (WAVP), pages 37–44, 2011. 1, 2, 4

[13] J. Prokaj and G. Medioni. Accurate efficient mosaicking for

wide area aerial surveillance. In IEEE WACV, pages 273–

280, 2012. 3

[14] J. Prokaj, X. Zhao, and G. Medioni. Tracking many vehi-

cles in wide area aerial surveillance. In IEEE Conference on
CVPRW (WCNWASA), pages 37–43, 2012. 2

[15] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of

large number of targets in wide area surveillance. In ECCV,

volume 6313 of LNCS, pages 186–199. 2010. 1

[16] R. L. Rothrock and O. E. Drummond. Performance metrics

for multiple-sensor multiple-target tracking. In Proceedings
of SPIE, volume 4048, pages 521–531, 2000. 3

[17] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann, 2006. 6

[18] J. Xiao, H. Cheng, H. Sawhney, and F. Han. Vehicle detec-

tion and tracking in wide field-of-view aerial video. In IEEE
CVPR, pages 679 –684, 2010. 1

[19] Q. Yu and G. Medioni. Motion pattern interpretation and

detection for tracking moving vehicles in airborne video. In

IEEE CVPR, pages 2671 –2678, 2009. 4

[20] X. Zhao and G. Medioni. Robust unsupervised motion pat-

tern inference from video and applications. In IEEE ICCV,

pages 715 –722, 2011. 4

406406406406

