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Abstract

Over the last few years, with the immense popularity of
the Kinect, there has been renewed interest in developing
methods for human gesture and action recognition from 3D
data. A number of approaches have been proposed that ex-
tract representative features from 3D depth data, a recon-
structed 3D surface mesh or more commonly from the re-
covered estimate of the human skeleton. Recent advances
in neuroscience have discovered a neural encoding of static
3D shapes in primate infero-temporal cortex that can be
represented as a hierarchy of medial axis and surface fea-
tures. We hypothesize a similar neural encoding might also
exist for 3D shapes in motion and propose a hierarchy of
dynamic medial axis structures at several spatio-temporal
scales that can be modeled using a set of Linear Dynami-
cal Systems (LDSs). We then propose novel discriminative
metrics for comparing these sets of LDSs for the task of hu-
man activity recognition. Combined with simple classifica-
tion frameworks, our proposed features and corresponding
hierarchical dynamical models provide the highest human
activity recognition rates as compared to state-of-the-art
methods on several skeletal datasets.

1. Introduction

Human activity recognition has been a topic of great re-

search over the last several decades and has immense poten-

tial in applications such as security and surveillance, build-

ing human machine interfaces, sports training, elderly care,

and entertainment.

The earliest works in modeling human motion used

global representations such as skeletons and landmarks on

the human body. Often cited classic work on global human

motion representation is the Moving Lights Display exper-

iment by Johansson [12] where it was shown that humans

are able to recognize actions simply by the motion of the

point-light displays attached to the moving subjects. 2D or

3D joint trajectories either extracted from videos or from

motion capture setups have been used to extract several

kinematic features such as the statistics of joint velocities

or accelerations, joint angles, trajectory curvatures, etc., to

represent actions [5]. Other global body feature-based ap-

proaches use hierarchical cylinders to model human limbs

and torso at different scales [15] and model the 3D motion

of these cylinders in space [16]. Even though approaches

based on skeletal models tend to perform with high recog-

nition rates, extracting skeletal information from 2D videos

is generally very difficult, primarily because of occlusions,

large variations in view-point, distortion of human shape

due to clothing, and other acquisition artifacts. Motion cap-

ture system can be used to provide location of landmarks

placed on the human body with high accuracy; however,

such systems are usually of high complexity and require

users to wear a motion capture suit with markers which can

hinder the movement.

With the introduction of the Microsoft Kinect, however,

a rough skeleton of a person can be easily obtained. This

has resulted in renewed interest towards increased research

on skeletal features for human motion representation. A

number of new datasets have provided researchers with the

opportunity to design novel representations and algorithms

and test them on a much larger number of sequences. Re-

cently the focus has shifted towards modeling the motion of

individual joints or combinations of joints that discriminate

between actions. Ofli et al. [19] proposed the Sequence of

Most Informative Joints (SMIJ) representation, a novel and

highly interpretive feature for human motion representation

for skeletal data based on joint angle time series. Wang et
al. [26] proposed a feature mining approach for computing

discriminative actionlets from a recursively defined tempo-

ral pyramid of joint configurations.

In this paper, we propose building 3D representations of

human shape and motion that are inspired by recent findings

from neuroscience in the work of Yamane et al. [28] and

Hung et al. [11] that attempt to find parametric models for

shape space representation in the primate infero-temporal

(IT) cortex. We extend their work by proposing represen-

tation of human activities as a trajectory through the 3D
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shape space. In particular, we model a human activity us-

ing a hierarchy of 3D skeletal features in motion and learn

the dynamics of these features using Linear Dynamical Sys-

tems (LDSs). Furthermore, instead of modeling the entire

human skeleton using a single feature representation, we

propose a spatio-temporal hierarchy of skeletal configura-

tions, where each configuration represents the motion of a

set of joints at a particular temporal scale. Each of these

skeletal configurations is modeled as an LDS and the entire

human activity is represented as a hierarchical set of LDSs.

To compare different skeletal hierarchies, we develop novel

discriminative metrics. From our extensive experiments we

show 1) that the proposed bio-inspired features modeled us-

ing simple global LDSs already perform at par with most,

if not all, state-of-the-art skeletal approaches for human ac-

tion recognition, and 2) when combining these features with

the proposed discriminative metric learning approach for

a spatio-temporal hierarchy of LDSs, we get the highest

scores for human activity recognition, to date, on several

skeletal datasets.

The rest of the paper is organized as follows. In Section

2, we provide a brief description of the features proposed by

Hung et al. [11] to describe a 3D shape space representation

in primate cortex. We then briefly outline the background

of LDSs and standard metrics used to compare LDSs for

classification of time-series data. In Section 3, we propose a

hierarchy of bio-inspired features to model human skeletal

motion and model these as sets of LDSs. We then show

how to compute a discriminative metric for these sets of

LDSs for the purpose of classification. In Section 4 we test

our proposed features and models on several datasets and

conclude in Section 5.

2. Preliminaries
In this section we provide the background for our pro-

posed bio-inspired features for 3D human action recogni-

tion. We first briefly describe the 3D static shape features

used by Hung et al. [11] to represent the shape space in

primate visual cortex. Since we are interested in moving

3D shapes, we represent a moving skeleton as a time-series

of these 3D shape features and model the dynamics using

a hierarchy of LDSs. We therefore provide a brief primer

on time-series modeling using LDSs and present commonly

used metrics for comparing LDSs.

2.1. 3D Shape Encoding in Primates

In Yamane et al. [28] and Hung et al. [11], a 3D shape

is very briefly shown, by using shading and disparity cues,

to a macaque monkey with their head restrained so that they

cannot move. The electrical activity of several neurons is

then recorded. Certain shape parameters such as surface

curvature and number of medial axis components are then

selectively changed according to the response of the neu-

Figure 1. Various 3D shape lineages (constructed by selectively

deforming the shapes across different parameters) and their corre-

sponding neural responses in rhesus monkey cortex (see [11])

rons on the previously shown shape. This allows to selec-

tively sample the 3D shape space implicitly encoded in pri-

mate cortex by observing the corresponding neuronal activ-

ity. Figure 1 from [11] shows one example of the changes

in spike rate observed from one neuron as the shape space

is explored by changing the parameters of the initial shape

across different variations. To find the relationship between

neuronal activity and 3D shape parameters, the authors in

[11] showed with high confidence that the neural activity

can be modeled as a non-linear function of the combina-

tion of various mathematical properties of the 3D shapes

including medial-axis components such as 3D position and

tangent directions of points sampled along the medial axis,

as well as the properties of surface fragments [28] such as

principal curvatures and 3D orientation. This work pro-

vides an exciting understanding of how primate brains po-

tentially represent 3D shapes internally.

For more details about the experimental procedure and

statistical validation of the authors’ mathematical model of

the neural 3D shape encoding space, we refer the reader to

[11].

2.2. Time-Series Modeling using LDSs

Given a time series, {yt ∈ R
p}Tt=1 = [y1, . . . ,yT ], a

Linear Dynamical System (LDS) models its temporal evo-

lution using the following Gauss-Markov process:

xt+1 = Axt +Bvt+1

yt = μ+ Cxt +wt.
(1)

Here xt ∈ R
n represents the internal (hidden) state of the

LDS at each time instant t, n represents the order of the

LDS, A ∈ R
n×n represents the dynamics matrix that lin-

early relates the states at time instants t and t+1, C ∈ R
p×n

represents the observation matrix that linearly transforms

the internal state to the output yt, μ ∈ R
p represents the
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mean of the output time series. vt ∈ R
n and wt ∈ R

p

correspond to the input and output noise processes usu-

ally assumed to be Gaussian with zero-mean. Specifically,

Bvt ∼ N (0, Q), where Q = BB�, and wt ∼ N (0, R),
where R = σ2I . Given the time series {yt}Tt=1, the task

of computing the system parameters, (x0, μ, A,C,B,R),
is referred to as system identification and several optimal

[21, 23] and sub-optimal, but very efficient [9], methods

have been proposed in literature.

Metrics for dynamical systems. Given a pair of

LDSs, Mi = (x0;i, μi, Ai, Ci, Bi, Ri) for i = 1, 2, exist-

ing recognition algorithms define a metric between them,

d(M1,M2), for the purpose of comparison. Over the

years, several metrics have been proposed e.g. [8, 17, 25, 1,

6]. Of these, the Martin distance has been the most exten-

sively used as it is invariant to the noise statistics as well as

initial state of the dynamical system. The Martin distance

compares only the parameters A and C of the dynamical

models. Let Mi = (Ai, Ci) for i = 1, 2. Assuming that

the systems are stable, i.e., ‖Ai‖2 < 1, the Martin distance

is defined as,

dM (M1,M2)
2 = −ln

n∏
i=1

cos2 θi. (2)

Here, θi is the i-th subspace angle between the range spaces

of the infinite observability matrices O1 and O2 defined as

Oi = [C�i , (CiAi)
�, (CiA

2
i )
�, . . .] for i = 1, 2. (3)

To compute the subspace angles we first solve the Sylvester

equations Pij = A�i PijAj+C�i Cj for i, j = 1, 2. We then

compute the eigenvalues, {λi}2ni=1 of

[
0 P−1

11 P12

P−1
22 P21 0

]
.

The subspace angles, {θi}ni=1 can then be computed as θi =
cos−1(λi).

3. Bio-inspired Human Motion Representation
Inspired by the original work of Yamane et al. [28] and

Hung et al. [11], and the promise that their shape represen-

tations present a biological encoding of shapes, we propose

extracting similar features from a hierarchy of human skele-

tal configurations. Hung et al. [11] proposed a combination

of medial-axis and surface features for shape representation.

Since surface data is either not readily available or not of

sufficient resolution and accuracy in common human activ-

ity datasets, we will focus only on the medial axis features

and extend these to the time-domain for representing hu-

man activities. In the following, we explain in detail, our

proposed hierarchical skeletal feature extraction procedure

from each frame. We then model the dynamics of these

features over the entire sequence as well as over small spa-

tial and temporal windows using a set of LDSs. Finally, to

Table 1. Human body part configurations.

No Name No Name

1 HipJoint [HJ]

2 RightUpLeg [RUL] 3 LeftUpLeg [LUL]

4 RightLeg [RL] 5 LeftLeg [LL]

6 RightFoot [RF] 7 LeftFoot [LF]

8 Spine1 [S1] 9 Spine2 [S2]

10 Neck [N]

11 RightArm [RA] 12 LeftArm [LA]

13 RightForeArm [RFA] 14 LeftForeArm [LFA]

15 RightFullLeg (RUL + RL + RF) [RFuL]

16 LeftFullLeg (LUL + LL + LF) [LFuL]

17 LowerBody (RFL + LFL + HJ) [LB]

18 RightFullArm (RA + RFA) [RFuA]

19 LeftFullArm (LA + LFA) [LFuA]

20 UpperBodyAndArms (S2 + RFuA + LFuA) [UBA]

21 BackAndNeck (HJ + S1 + S2 + N) [N]

22 FullUpperBody (BN + UBA) [FUB]

23 FullBody (FUB + LB) [FB]

compare different human activities for the purpose of classi-

fication, we present a method for computing discriminative

metrics for these sets of LDSs.

3.1. Hierarchical Medial-Axis Template Models for
Human Skeletal Configurations

Figure 2(a) provides an example of the human skele-

ton structure from the Berkeley MHAD [20]. Following

[11], we divide the human skeleton into several topologi-

cal parts such as chains, single X/Y junctions, and double

X/Y junctions. In [11], the authors divided a 3D shape into

all possible topological parts. However the shapes under

investigation in [11] were much simpler and had at most

two to eight axial components. The human skeleton on the

other hand has many more axial components and enumerat-

ing all possible topological parts becomes computationally

prohibitive. We therefore propose using a fixed hierarchy of

semantically meaningful body parts and extract the medial-

axis features proposed in [11] from each of these parts. Fig-

ure 2(b) illustrates the skeletal part hierarchy which is ex-

plicitly defined in Table 1. As we can see, each of these

body parts can be categorized as a chain, an X/Y junction

or a double X/Y junction.

Once the skeletal part hierarchy is defined, we describe

the features extracted from each of these parts. Note that be-

fore extracting any features, all the 3D joint coordinates are

transformed from the world coordinate system to a person-

centric coordinate system by placing the hip joint at the

origin. Another alignment step could potentially be per-

formed to rotate the world coordinate frame to a person-

centric frame; however, in general the sequences in most

datasets are taken from the same viewpoint. This is espe-

cially true for the Kinect where a single camera is used to

acquire data for skeletal feature extraction.

We first describe the process of extracting features from
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(a) (b)

Figure 2. (a) Joint locations and connectivity for the Berkeley MHAD. (b) Different skeletal part configurations as presented in Table 1.

a chain which is also the building block for X/Y and dou-

ble X/Y junctions. Given the transformed 3D coordinates

of a chain, following [11], we sample 21 equi-distant points

along the chain and compute the tangent direction at each

of these points. We also compute a simple 3D extension

of the shape context feature [4] using these points. There

have been several works in extending the shape context to

3D, e.g., [13, 10, 27]. However we use a very simple his-

togram binning procedure, whereby we divide the sphere

into 4 equally spaced longitudinal sections and 8 equally-

spaced latitudinal sections for a total of 32 quantized direc-

tions. At each of the 21 equally spaced points, we compute

the normalized histogram of directions to all other points in

the chain. This results in a 21 × 32 = 672 dimensional 3D

shape-context feature for the entire chain. Therefore, from

each chain, we extract a 21 × 3 = 63-dimensional feature

for 3D position, a 21 × 3 = 63-dimensional feature for 3D

tangent direction and a 672-dimensional shape context fea-

ture. The full 798-dimensional feature represents the spa-

tial configuration of the skeletal part at each time-instant.

Figure 3 illustrates these points for a chain with two links

and the extracted features. For X- and Y-junctions and dou-

ble X/Y junctions, we compute 21 equidistant points along

each chain constituting the junctions. Similarly, we com-

pute the 3D positions and tangent directions at each point.

The shape context features at each sampled point, however,

are computed by using all the points of the entire junction.

A note about shape context features. In general, shape

Figure 3. Skeletal feature extraction procedure for a chain illustrat-

ing equi-distant point sampling, tangents and 3D direction quanti-

zation for shape context computation.

context is used for shape matching and computing the best

alignment of two similar shapes when point correspon-

dences are unknown. In the case of skeletal configurations,

we know exactly the correspondences between the points

on any two skeletons and hence, to compare two shape con-

text features, we do not need to find the configuration that
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minimizes an alignment distance. Instead we treat shape

context features as simple Euclidean vectors and compute

the difference between two shape context features by sim-

ple Euclidean subtraction.

A skeletal action sequence, therefore, is represented as

several time series of skeletal medial axis features (posi-

tion, tangents and shape context features). Each time se-

ries corresponds to features extracted from the part de-

scriptions in Table 1. We further sub-divide the time se-

ries into several temporal scales starting from the entire

time-series data in a particular sequence to smaller and

smaller equal-sized temporal parts. This results in a fixed

number of individual time series corresponding to different

body part configurations and different temporal extents. We

denote by Y(k,t,h), the feature time series extracted from

body part configuration k ∈ {1, . . . ,K} and the h-th tem-

poral window at normalized temporal scale τ−1, where

τ = 2t, t ∈ {0, 1, 2, . . . T} and h ∈ {1, . . . , 2t}. We

then model each individual feature time series using an LDS

and learn the corresponding system parameters M(k,t,h) as

outlined in Section 2.2. Hence, the set of feature time se-

ries extracted from a skeletal sequence is represented as the

set of LDSs, {M(k,t,h)}t=0,...,T, h=1,...,2t

k=1,...,K . Out of these

K × (
2T+1 − 1

)
sets of LDS parameters, M(k=K,t=0,h=1)

corresponds to the parameters of the full global feature time

series extracted from the full body (which corresponds to

a double X/Y junction) for the entire length of the skeletal

sequence.

3.2. Discriminative Metric Learning for Sets of
LDSs

In the previous section, we proposed modeling human

actions recorded by motion capture data by using a set

of medial-axis feature time series. We can compare two

global medial-axis feature time series by computing the

metric between their corresponding system parameters as

outlined in Section 2.2. In a similar fashion, we can com-

pute the metrics between all corresponding (k, t, h) pairs

of system parameters and define a new similarity metric

between two sets of LDSs, {M1
(k,t,h)}t=0,...,T, h=1,...,2t

k=1,...,K

and {M2
(k,t,h)}t=0,...,T, h=1,...,2t

k=1,...,K by combining the val-

ues of the metrics computed between each M1
(k,t,h) and

M2
(k,t,h). We propose using Multiple Kernel Learning

(MKL) [3, 24] to learn a set of optimal weights, α(k,t,h), in

a supervised fashion such that the weighted linear combina-

tion of kernels computed individually from each part con-

figuration and temporal extent gives the best action recog-

nition performance. For conciseness, we define Mi .
=

{Mi
(k,t,h)}t=0,...,T, h=1,...2t

k=1,...,K .

For a two-class problem, the kernel between the set of

system parameters from two skeletal sequences can then be

written as,

k(Mi,Mj) =

K∑
k=1

T∑
t=0

2t∑
h=1

α(k,t,h)kLDS(M
i
(k,t,h),M

j
(k,t,h)).

(4)

Given the class labels, Li for each Mi in the training set,

MKL learns the optimal values of α for the best classifi-

cation performance on the training set. Using these values

of α, a full Kernel-SVM classifier is trained on the training

set and used to classify a new sequence with the weighted

kernel. Several variations of the MKL algorithm have been

proposed with various regularization choices for the weight

vector α (See [2] for a review). Furthermore, there are sev-

eral extensions to the multi-class case. We will use Sim-

pleMKL [22] that simultaneously optimizes over the sum

of all one-vs-all or one-vs-one classifiers and uses the same

set of α weights in all classifiers.

MKL has generally been shown in practice to provide

excellent classification rates when using different types of

features to model the same phenomenon. Furthermore, the

weights can be used to reason about the relative importance

of some features for the purpose of classification. As we

show in Section 4, we get superior human activity recogni-

tion performance when combining multiple body part con-

figurations across several temporal scales as opposed to

only using the medial-axis features extracted from the full

body and learning the dynamics over the entire time series.

4. Experiments
We now show experimental results for human activ-

ity recognition in skeletal data using our proposed dy-

namic medial-axis features. We evaluate the perfor-

mance of our approach when using only one global LDS,

M(k=K,t=0,h=1), for the entire medial-axis feature time se-

ries for the full human body as well as when combining the

features across several body configurations and several tem-

poral scales.

4.1. Datasets

We report action recognition results on the Berke-

ley MHAD [20], HDM05 [18] and MSR Action3D [14]

datasets. A brief description of these datasets follows:

Berkeley Multimodal Human Action Database (Berke-
ley MHAD). This dataset contains 11 actions performed

by 12 subjects with 5 repetitions of each action, yielding a

total of 659 action sequences (after excluding an erroneous

sequence). The motion capture data was recorded at 480

fps and the action lengths vary from 773 to 14565 frames

(corresponding to approximately 1.6 to 30.3 seconds). In

our experiments, we used 7 subjects (384 action sequences)

for training and 5 subjects (275 action sequences) for test-

ing. The set of actions consisted of jump, jumping jacks,
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bend, punch, wave one hand, wave two hands, clap, throw,
sit down, stand up, and sit down/stand up.

Motion Capture Database HDM05. From the popu-

lar HDM05 database [18] we arbitrarily selected 11 actions

performed by 5 subjects. In this dataset, subjects performed

each action with various number of repetitions, resulting

in 251 action sequences in total. The motion capture data,

which was captured with the frequency of 120 Hz, also in-

cludes the corresponding skeleton data. The duration of

the action sequences ranges from 121 to 901 frames (cor-

responding to approximately 1 to 7.5 seconds). In our ex-

periments, we used 3 subjects (142 action sequences) for

training and 2 subjects (109 action sequences) for testing.

The set of actions consisted of deposit floor, elbow to knee,
grab high, hop both legs, jog, kick forward, lie down floor,
rotate both arms backward, sneak, squat, and throw basket-
ball.
MSR Action3D Database. Finally, we also evaluated

the action recognition performance on the MSR Action3D

dataset [14] consisting of the skeleton data obtained from

a depth sensor similar to the Microsoft Kinect with 15 Hz.

Due to missing or corrupted skeleton data in some of the ac-

tion sequences available, we selected a subset of 17 actions

performed by 8 subjects, with 3 repetitions of each action.

The subset consisted of 379 action sequences in total, with

the duration of the sequences ranging from 14 to 76 frames

(corresponding to approximately 1 to 5 seconds). We used 5

subjects (226 action sequences) for training and 3 subjects

(153 action sequences) for testing. The set of actions in-

cluded high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw
circle, hand clap, two hand wave, side-boxing, forward kick,
side kick, jogging, tennis swing, and tennis serve.

4.2. Global LDS Models

We first perform several baseline experiments using fea-

tures extracted using the entire skeleton across the full tem-

poral extent. This allows us to compare how well each of

the features - position, tangents and shape context as well

as their combination - performs on the entire skeleton. For

each of the datasets above, we compute the global medial-

axis feature time series and identify the parameters of an

order n = 5 system to model the linear dynamics. We sep-

arately compute the LDS parameters of only the 3D coor-

dinates, the 3D tangent directions and the 3D shape context

features as well as their concatenation to determine which

feature is the most discriminative. We then use the hybrid

Martin metric for comparing LDSs. The hybrid Martin met-

ric is a weighted combination (we use equal weights) of the

Martin distance as defined in Section 2 and the Euclidean

difference of the temporal means and is generally shown to

perform much better than the Martin distance alone (See [7]

for more details).

Table 2. Activity recognition rates for global LDS models for dif-

ferent medial-axis features.
Berkeley MHAD HDM05 MSR Action3D

Method 1-NN SVM 1-NN SVM 1-NN SVM

3D position 96.73 99.27 93.58 91.74 73.33 80.00

Tangents 95.64 98.91 91.74 88.07 76.67 84.44

Shape 87.27 93.09 88.99 82.57 75.56 83.33

All 97.09 99.27 82.66 90.83 78.33 83.89

Table 3. Classification results for several baseline representations

described in [19]. SMIJ - Sequence of the Most Informative Joints,

HMIJ - Histograms of the Most Informative Joints, HMW - His-

togram of Motion Words, LDS - Linear Dynamical System mod-

eling of joint angle trajectories.
Berkeley MHAD HDM05 MSR Action3D

1-NN SVM 1-NN SVM 1-NN SVM

SMIJ 78.91 94.18 80.73 84.40 24.18 29.41

HMIJ 72.73 82.91 80.73 82.57 26.14 29.41

HMW 70.91 81.09 78.90 78.90 21.57 32.68

LDS 69.45 82.18 72.48 76.15 43.14 47.06

Table 2 shows the recognition rate when using 1-NN and

SVM for classification on all three datasets. We can ob-

serve that although 3D position alone also performs the best

in some cases, overall, using all three types of features per-

forms better than using each feature separately. As a result,

we get almost perfect activity recognition on the Berkeley

MHAD by using our full body medial-axis features when

modeled using LDS.

To compare these results with the state-of-the-art algo-

rithms on these datasets, in Table 3, we have reproduced

the results in [19] for modeling joint angle variations of

the human skeleton as the person performs different activ-

ities. The results in the last row of Table 3 correspond to

modeling the global dynamics of joint angle trajectories for

each dataset. Joint angle trajectories have traditionally been

modeled using dynamical systems and HMMs to represent

human activities. We can see that joint angle trajectories

alone do not capture adequate information to be discrimi-

native enough about the activity being performed, whereas

due to the sampling of points along the human skeleton, our

medial-axis feature representation captures much more in-

formation and provides much higher recognition rates on all

three datasets.

For further comparison to state-of-the-art methods on the

MSR Action3D dataset, we have also reproduced the results

in [26] in Table 4. All the methods except for the one pro-

posed in [26] performed worse than our global LDS model

on the skeletal features. These comparisons provide strong

support in favor of our proposed features for human skeletal

action recognition.

4.3. Discriminative Hierarchy of LDSs

As proposed in Section 3.2, we now use MKL to learn

the optimally discriminative weights for the entire set of

body part configurations across several temporal scales in-

stead of only using the entire human body and all the frames
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Table 4. Performance of state-of-the-art methods on the MSR Ac-

tion 3D dataset as shown in [26].

Method Accuracy

Recurrent Neural Network 42.5

Dynamic Temporal Warping 54

Hidden Markov Model 63

Action Graph on Bag of 3D Points 74.7

Actionlet Ensemble [26] 88.2

per sequence. For the Berkeley MHAD dataset, we di-

vide the skeleton into a hierarchy of 23 body parts as pro-

posed in Table 1. We use 5 different temporal scales by

dividing each video equally into 2t temporal parts, where

t ∈ {0, 1, 2, 3, 4}. This gives a total of 31 temporal win-

dows of different sizes spanning a range of frames from the

entire video to 1
16 of the video. According to the formula-

tion in Section 3.2, this results in a total of 31 × 23 = 713
different body part feature time series. We learn the sys-

tem parameters of an order n = 5 LDS for each of these

time series and represent an action sequence by the set of

LDS parameters. Given training labels, we then use MKL

to learn the optimal weights for an RBF kernel constructed

using the hybrid Martin distance between the LDS parame-

ters of corresponding body-parts at the same temporal scale.

Once these weights are learnt, we use them in a regular ker-

nel SVM for classification on the test set.

Figure 4 shows the weights computed using SimpleMKL

[22] for different body-part configurations and temporal lo-

cations for the Berkeley MHAD dataset. As we can see,

the highest number of positive weights are associated to the

features extracted from the full body (index 23) which is

consistent with the good performance of the full body fea-

tures in the previous section. However, the largest weight is

associated to the lower body (index 17) feature at a tempo-

ral scale of 1
2 and the LeftForeArm (index 14) at a temporal

scale of 1
4 . Having observed that, it remains difficult to asso-

ciate a non-qualitative reason as to why a certain body-part

configuration at a particular temporal scale and temporal lo-

cation is discriminative. However when these learned fea-

ture weights are used to perform classification using kernel

SVM on the test data, we get 100% correct classification on

the Berkeley MHAD as can be seen from Table 5.

We similarly tested our proposed approach on the

HDM05 and MSR Action3D datasets. The recognition re-

sults are provided in Table 5. Since the frame rate of the

MSR Action 3D dataset is only 15 frames/sec and some

videos have fewer than 15 frames, it is not possible to ex-

tract sufficient time-series data for LDS parameter estima-

tion for smaller temporal extent sub-sequences. We there-

fore up-sample the skeleton data to 120 Hz (equal to that

of HDM05) before extracting medial axis features from this

dataset. As we can see, compared to Tables 3,4, and the

global LDS approach in Table 2, we achieve the best pos-

sible results using our proposed discriminative LDS parts
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Figure 4. MKL weights corresponding to body part configurations

and temporal extents for the Berkeley MHAD dataset. Top: scaled

image of weight matrix. Bottom: 3D bar plot of weight matrix.

The x-axis corresponds to the part numbers from Table 1 and the

y-axis corresponds to the temporal scale and the particular tem-

poral window number. For example, when dividing the sequence

into 2 parts, there are 2 temporal windows and the figures show the

weight corresponding to each of these windows. The correspond-

ing recognition rate is 100%.

Table 5. Action recognition performance for all three datasets

when learning our proposed discriminative LDSs for all body-part

configurations and temporal scales.

Dataset Accuracy

Berkeley MHAD 100

HDM05 98.17

MSR Action3D 90.00

approach. We also get better results on the MSR Action3D

dataset than those in the state-of-the-art Actionlet Ensemble

method in [26].

5. Conclusions
In this paper, we have leveraged the recent advances in

the area of static shape encoding in the neural pathway of

primate cortex, and proposed new bio-inspired features for

human activity recognition in skeletal data. We have ex-

tended the neural static shape encoding features to represent

moving shapes such as humans by using a discriminative

set of LDSs. Our experiments on several human activity

skeletal datasets have shown very successful results. This

477477477477



provides strong evidence in favor of the efficacy of these

features in general, and combined with our proposed hierar-

chical extension to the spatio-temporal domain along with

the dynamical modeling as sets of LDSs, as excellent rep-

resentations for shapes in motion. Apart from being very

useful for human activity recognition in 3D data sources

such as the Kinect, our study might also provide some im-

petus to the neuroscience community where our proposed

dynamical models could be used to determine neurological

models for moving shapes.
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