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Abstract

We address the problem of automated quantitative evalu-
ation of musculo-skeletal disorders using a 3D sensor. This
enables a non-invasive home monitoring system which ex-
tracts and analyzes the subject’s motion symptoms and pro-
vides clinical feedback. The subject is asked to perform sev-
eral clinically validated standardized tests (e.g. sit-to-stand,
repeated several times) in front of a 3D sensor to generate
a sequence of skeletons (i.e. locations of 3D joints). While
the complete sequence consists of multiple repeated Skele-
tal Action Units (SAU) (e.g. sit-to-stand, one repetition),
we generate a single robust Representative Skeletal Action
Unit (RSAU) which encodes the subject’s most consistent
spatio-temporal motion pattern. Based on the Represen-
tative Skeletal Action Unit (RSAU) we extract a series of
clinical measurements (e.g. step size, swing level of hand)
which are crucial for prescription and rehabilitation plan
design. In this paper, we propose a Temporal Alignment
Spatial Summarization (TASS) method to decouple the com-
plex spatio-temporal information of multiple Skeletal Action
Units (SAU). Experimental results from people with Parkin-
son’s Disease (PD) and people without Parkinson’s Disease
(non-PD) demonstrate the effectiveness of our methodology
which opens the way for many related applications.

1. Introduction

The population of patients with musculo-skeletal disor-
ders (e.g. Parkinson’s Disease, Stroke) has been continu-
ously increasing worldwide over these years, with approxi-
mately 50,000 new cases of Parkinson’s Disease each year.
The musculo-skeletal disorder evaluation plays a key role
in determining the patient’s medication prescription as well
as the rehabilitation plan and it is usually carried out by

(a)

(b)

Figure 1. (a) Traditional patient-clinician evaluation mode (b) New
home-based monitoring and evaluation mode

asking the subject to perform several standardized tests
(e.g. walk back and forth, sit and stand that are compo-
nents of the United Parkinson’s Disease Rating Scale (UP-
DRS) [8]) while the clinicians observe the activity for sta-
bility, smoothness and coordination. Although currently
the patient-clinician interactive evaluation mode shown in
Fig 1(a) dominates, there is clearly room for better, more
effective and efficient approaches due to the following six
reasons. First, the clinician’s evaluation is mostly subjec-
tive instead of quantitative. Though there are clinical scales
such as the UPDRS, these tools suffer from low resolution
and the need for significant training before one can obtain
valid and reliable metrics. Second, some of the evaluation
process is simple and is often repeated providing strong sup-
port for automatization. Third, the entire process can be
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time consuming considering the patient needs to travel to
the appointment, prepare and even take medication in ad-
vance. Fourth, the patients usually prefer to stay at home
instead of travelling to the clinician’s office where the risk
of injury could be higher. Five, the patients may behave dif-
ferently when examined in the outpatient clinics [5]. Six,
there are not enough medical resources to satisfy all pa-
tients’ day-to-day requirements.

A reliable and accurate home monitoring and evaluation
system is an attractive alternative (Fig 1(b)). The system
acquires the subject’s data and processes it to enable mean-
ingful interpretations (e.g. objective measurements). The
processed data is sent to the clinician via network for fur-
ther clinical recommendations. The home monitoring sys-
tem then provides feedback to the user combining the clini-
cian’s and the system’s recommendations. Since the activity
assessment is carried out in the patient’s familiar environ-
ment, the data are more ecologically valid and the inconve-
nience and potential risks associated with a clinic visit are
reduced. More importantly, the recommendations are now
based on both the clinician’s experience and the quantitative
analysis. This enables several types of applications.

Rapid adjustment for more precise medication level. Pa-
tients with musculo-skeletal disorders may need to take
medication everyday to maintain the mobility level. For pa-
tients with PD, excessive anti-Parkinsonian medication can
cause overactivity while insufficient dosage could lead to
Freezing of Gait (FOG). The system recommends a more
precise medication level based on the extracted clinical
measurements compared with the baseline.

Long term evaluation and prediction. The subject’s
functionalities fluctuate over time and inevitably decreases
with disease progression. The system evaluates and predicts
the trend long term by acquiring and analyzing the patients’
data at certain intervals (e.g. once a week). In other words,
the system builds a long term motion profile of the subject.

Rehabiliation. The patient’s long term motion profile
provides the clinician with rich information to adjust and
manage the rehabilitation plan in a customized manner. The
system also helps evaluate the patient’s progress, such as a
response to a specific rehabilitation program.

Several attempts have been made at automating and
quantifying home-based musculo-skeletal disorders evalu-
ation. The Objective Parkinson’s Disease Measurement
(OPDM) System [4] can extract the motor score of a patient
by putting a combination of accelerometers, gyroscopes and
magnetometers on the subject’s sternum, wrists, ankles, and
sacrum. After the subject performs several standardized
tests, all motion data are processed to calculate a single mo-
tion score indicating the subject’s mobility level. Several
similar systems like Kinesia HomeView [1], Motus Move-
ment Monitor [3] also exist.

While these existing systems have been clinically vali-

dated and partially solve the home monitoring challenge,
they are quite intrusive by asking the subject to put on
several sensors each time before use. Also, these systems
provide single measurements instead of detailed analysis,
which is a much richer representation. These incomplete
solutions present an opportunity for developing better tools
using computer vision. While traditional Motion Capture
(MOCAP) systems can accurately track a subject, their cost
and cumbersome set-up prevent wide applications outside
the laboratory environment. The recent release of low-cost
3D sensors which generate depth streams provides a possi-
ble solution.

We acquire the sequential skeletal data of the subject
using a single 3D sensor. The skeletal stream is further
processed to decouple the complex spatio-temporal infor-
mation. Finally we generate a representative skeletal se-
quence which exhibits the subject’s most consistent motion
pattern. Based on this representation, we extract detailed
spatio-temporal objective measurements.

Our main contributions are: 1) A non-invasive home
monitoring and evaluation system for patients with
musculo-skeletal disorders using remote sensor technolo-
gies; 2) A methodology for skeletal data processing to de-
couple the spatio-temporal information; 3) An accurate and
reliable skeletal sequence representation based on which
multiple objective measurements are extracted; 4) Experi-
mental evaluation results of PD people and non-PD people.

Sec 2 presents the relevant literature. Sec 3 describes
our proposed method in details including overview, data ac-
quisition, segmentation, temporal alignment, spatial sum-
marization and TASS validation. Sec 4 demonstrates the
effectiveness of our method by several experiments on the
PD and non-PD subjects. Sec 5 ends with the conclusion
and future work.

2. Related Work
Many works have been proposed to monitor and evaluate

patients with musculo-skeletal disorders. The most prevail-
ing methodology suggests using one or a combination of
intrusive sensors, such as accelerometer, gyroscope, mag-
netometer, pedometer, etc. The clinically meaningful indi-
cators are further extracted by analyzing the pattern of time
series data generated by these sensors. Zijlstra and Hof [25]
attach a triaxial accelerometer to the pelvis of the subject
with Parkinson’s Disease as he/she walks. They differenti-
ate left and right steps and extract measures including the
duration of subsequent stride cycles, step size as well as
walking speed. Weiss et al. [22] use the same setup and
analyze data in the frequency domain instead of the time
domain which is robust to noise. They find the dominant
frequency, amplitude and slope of PD people is lower than
non-PD people indicating a larger gait variability. Others
[9, 20] use a wrist-worn activity monitor to examine the
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Figure 2. General pipeline of the proposed method

mobility patterns in PD patients. Salarian et al. [16, 17]
examined activity patterns in PD patients (e.g. tremor and
bradykinesia) by placing 2 gyroscopes on the forearms and
3 inertial sensors on the shanks and trunk. These methods
are cumbersome by asking the subject to put on and put off
sensors.

A few vision-based methods have also been proposed.
Cho et al. [7] differentiate the PD people and the non-PD
people by analyzing the corresponding gait videos. They
extract the subject’s silhouette in scene and further reduce
the dimensionality using Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). However
their method requires specific setup (e.g. pure color back-
ground for silhouette extraction) and is not feasible for the
home setting. Also their method stays on the stage of dif-
ferentiation instead of quantification.

To the authors’ best knowledge, ours is the first work
proposed for clinical evaluation of patients with musculo-
skeletal disorders using a 3D sensor. Our method relies on
several key computer vision subfields: stereo vision, pose
estimation and temporal alignment. Relevant works of re-
spective subfields are introduced in corresponding sections.

3. Method
3.1. Overview

The general pipeline of our method is shown in Fig 2.
While the outer loop displays the flowchart, the inner square

exhibits the data. The corresponding symbols (i.e. brack-
ets, arrows) visualize our process and intermediate results.
We use the 3D sensor to capture a depth stream of the sub-
ject performing a standardized clinical assessment and fur-
ther extract a skeletal stream (Sec 3.2). While the complete
skeletal stream is cyclical in nature, we segment it into mul-
tiple repeated Skeletal Action Units (SAU) by detecting the
periodicity in a projected feature space (Sec 3.3). Although
all SAUs are motion sequences of the same subject in a short
time period, they differ in both temporal domain and spatial
domain. We propose the key Temporal Alignment Spatial
Summarization (TASS) method to decouple the complex
spatial-temporal information and generate a single robust
representation. First, a SAU is selected as the reference
and all other SAUs are temporally aligned with the refer-
ece (Sec 3.4) to build the temporal correspondences. Then
all SAUs are summarized spatially to generate the Repre-
sentative Skeletal Action Unit (RSAU) (Sec 3.5) which en-
codes the most consistent motion pattern observed among
all SAUs. We validate the choice of TASS method on the
MSR-Action 3D Dataset (Sec 3.6).

3.2. Data Acquisition

The system set-up is easy and convenient. A 3D sensor
is horizontally fixed (e.g. on table, top of TV) and a skeletal
stream is extracted while the subject performs standardized
tests in front of it.

3D sensor and skeleton extraction algorithm. We use
the Kinect sensor which can provide 640×480 depth images
at 30 fps. Skeletons are extracted in real time using [18]
which is implemented in the Microsoft Kinect SDK [2].

Standardized tests. A number of standardized instru-
ments for patients with musculo-skeletal disorders have
been proposed and clinically validated. We list the ones we
use for our experiments.

Walking Test. The subject is asked to walk back and forth
multiple times along a line for a one way distance of four
meters. The test is adapted from a standardized six meters
walking test considering the working range of the 3D sen-
sor.

Walking-with-counting Test. The subject is asked to
count from 1 to 100 while walking. A constant number is
added each time, e.g. 1, 5, 9,...,97. The added cognitive
load of counting is an indicator of automatic control of the
primary walking task.

Sit-to-stand Test. The subject is asked to sit down and
stand up as fast as possible multiple times.

Each test usually consists of five repetitions and can be
carried out by a subject in several minutes.

All tests are cyclical in nature and consist of multiple
simple action units. For the walking-based tests, we define
an action unit to be two steps. For the Sit-to-stand Test, we
define an action unit to be sitting and standing one time. Al-
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though the test is performed by a subject in a short period of
time, we often observe variations between repeated action
units. We analyze and summarize them into two categories.

Large motion variation. For a person with musculo-
skeletal disorders, some action units exhibit extreme pose.
For example, in the Walking Test while the patient is doing
fine with most steps, he/she shows extremely unbalanced
pose during a few steps. On the other hand, for a person
without musculo-skeletal disorders, large variation is rarely
observed and the motion is more consistent.

Small motion variation. No one performs the same task
exactly the same every repetition. For example, each step
actually differs slightly in length while people walk. This
type of variation is generally small and observed for all peo-
ple.

The small motion variation is random, and we regard as
noise. Our purpose is to eliminate it by averaging multiple
repeated action units (Sec 3.5). In other words, we enhance
the consistent motion pattern by removing this noise. On
the other hand, we use a robust method to detect the few ac-
tion units with large motion variation. The action units are
regarded as outliers and should not be taken into account
for averaging. In order to average or reject an action unit,
we must decouple the complex spatio-temporal information
so that frame-to-frame correspondenes are built and com-
paring two skeletons from two different SAUs in Euclidean
Space is meaningful.

3.3. Segmentation

A key observation is that the skeletal stream consists of
multiple repeated Skeletal Action Units (SAU). For exam-
ple, walking two steps is defined as a SAU for walking-
based tests while sitting down and standing up one time
is defined as a SAU for the Sit-to-stand Test. We for-
mulate the segmentation problem of the skeletal stream
as follows. A skeletal stream is represented as X =
[x1,x2, ...,xN] ∈ R3M×N where N is the total num-

Figure 3. Illustration of segmentation based on periodicity of fea-
ture space δ(X)

ber of frames, M is the number of 3D joints per frame,
and xi = [pt

i,1,p
t
i,2, ...,p

t
i,M]T ∈ R3M×1 with pi,j =

(xi,j , yi,j , zi,j)
t ∈ R3×1. We are trying to find the Seg-

mentation Vector

S = [b1, e1, b2, e2, ..., bK , eK ]t ∈ R2K×1 (1)

such that the K segmented SAUs can be represented as
XS = {Xbi:ei−1, i = 1, 2, ...,K}. In other words, (bi, ei)
are the indices of the start frame and the end sentinel frame
of the ith segmented SAU and they must satisfy 1 ≤ b1 <
e1 ≤ b2 < e2 ≤ ... < tK ≤ N .

We define a feature function δ : R3M×1 → R on X such
that δ(X) = [δ(x1), δ(x2), ..., δ(xN)] = [δ1, ..., δN ] ∈
R1×N . While the periodicity of motion is observed in the
R3M×N space, it is projected to the R1×N subspace by a
well designed δ function. To better deal with noise, the fea-
ture subspace is further convoluted with a Gaussian filter

such that δ̃i =
∑i+h
j=i−h

e
− (j−i)2

2σ2√
2πσ

δj and S is finally deter-

mined by detecting the local maximas of [δ̃1, δ̃2, ..., δ̃N ].
For the sit-to-stand test, δ is defined to be the height of
the head joint and an example is shown in Fig 3. For the
walking-based tests, δ is defined to be the signed distance
between two feet.

3.4. Temporal Alignment

Temporal alignment methods. Many temporal align-
ment algorithms have been initially proposed to solve the
video synchronization problem [15], using Dynamic Time
Warping (DTW) or its variant. Recently, Canonical Com-
ponent Analysis (CCA), which is proposed for learning the
shared subspace between two high dimensional features,
has been extended as Canonical Time Warping (CTW) [24]
to address the spatio-temporal alignment between two hu-
man motion sequences. Another work proposed by Gong
and Medioni [10] address the problem using Dynamic Man-
ifold Warping (DMW). They extend previous works on
spatio-temporal alignment by incorporating manifold learn-
ing and employing a novel robust similarity metric. In this
paper, we use their method and give an intuition and brief
introduction. We strongly encourage the interested readers
to read the original paper.

Problem formulation. Given multiple segmented SAUs
XS, we pick one SAU as the reference (as explained later)
and all other SAUs are aligned with the reference in a
pairwise manner. Two simplify the notations, we for-
mulate the problem of temporal alignment between two
SAUs. Given two SAUs X1:Lx ∈ R3M×Lx and Y1:Ly ∈
R3M×Ly , we try to find the Optimal Alignment Path Q =
[q1, q2, ..., qLy ] ∈ R1×Ly that aligns Yi with Xqi . We do
that by minimizing the following loss function (‖‖F is the
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(a) (b)

Figure 4. (a) Linear alignment path between two SAUs (b) Non-
linear alignment path between two SAUs

Frobenius norm operator),

ŁDMTW (F(·),F(·),W)

= ‖F(X1:Lx)−F(Y1:Ly)W
T ‖2F (2)

where F : R3M×1 → RL×1 maps X1:Lx and Y1:Ly to
F(X1:Lx) ∈ RL×Lx and F(Y1:Ly) ∈ RL×Ly in a L di-
mensional subspace. W ∈ {0, 1}Lx×Ly encodes Q such
that when qi = k we have Wi,k = 1, i = 1, 2, ..., Lx.

Completion score. Although each xi in X1:Lx lies in a
high dimensional space, the natural property of human pose
suggests that xi has lower intrinsic number of degrees of
freedom. In other words, X1:Lx can be regarded as travers-
ing along a path Mp on a spatial-manifold M. The geodesic
distance dGeo(xi,xi+1;Mp)in M can be further estimated
using Tensor Voting [13] which is a non-parametric frame-
work proposed to estimate the geometric information of
manifolds. Knowing the geodesic distance between con-
secutive frame, we assign a completion score ζi to frame xi

as

ζi =

∑i−1
s=1 dGeo(xs,xs+1;Mp)∑Lx−1
s=1 dGeo(xs,xs+1;Mp)

. (3)

By defining F(·) as F(xi) = ζxi we can rewrite the loss
term in (2) as ŁDMTW (W) = ‖ζx − ζyW‖2F where ζx =
[ζx1 , ζ

x
2 , ..., ζ

x
Lx

] and ζy = [ζy1 , ζ
y
2 , ..., ζ

y
Ly

].
Algorithm. The key for solving Eq 2 lies in the Tem-

poral Aligning Matrix A = {ai,j}Lx×Ly where ai,j =
‖F(xi)−F(yj)‖2. And in our case ai,j = (ζxi −ζ

y
j )

2. Two
examples are shown in Fig 4. The Optimal Alignment Path
is found by looking for the shortest path traversing from
A1,1 to ALx,Ly (white arrows in Fig 4). Dynamic program-
ming provides an efficient solution inO(LxLy) to obtain Q
after calculating A following the traditional Dynamic Time
Warping (DTW) algorithm.

Temporal Aligning Score η. The Optimal Alignment
Path indicates how two time series match each other tempo-
rally. Fig 4(a) displays a linear path indicating that while
one motion sequence is slower than another the delay is
equally distributed. On the contrary, Fig 4(b) exhibits non-
linear correspondences between two time series. From a
medical perspective, this indicates possible pauses, or even

worsely, Freezing of Gait (FOG) (Sec 4) of the subject dur-
ing specific repetition. While not covered in the original
paper, we introduce η to quantify the non-linearity of the
Optimal Alignment Path. Given X1:Lx , Y1:Ly and the op-
timal alignment path Q ∈ R1×Ly , we define the the Tem-
poral Aligning Score as

η ∝
∑Ly
i=1 |(Lx − 1)(i− 1)− (Ly − 1)(qi − 1)|

Ly((Lx − 1)2 + (Ly − 1)2)
. (4)

η is a normalized scale-invariant score quantifying how
much the alignment path Q deviates from the line y =
Lx−1
Ly−1 (x − 1) + 1. The larger the score, the bigger the
non-linearity among the temporal correspondences between
two SAUs. For Fig 4(a), η = 0.0093 while for Fig 4(b)
η = 0.0355.

Reference selection. The reference SAU must match all
other SAUs as much as possible in the temporal domain. So
we pick one SAU at a time, align it with all remaining SAUs
and calculate the sum of the Temporal Aligning Scores. The
sum of all Temporal Aligning Scores indicates how worse
the current SAUs conform to other SAUs and we pick the
one with the minimum score. In other words, the reference
SAU is

arg min
i

∑
j 6=i

ηi,j (5)

when defining ηi,j as the Temporal Aligning Score between
the ith and the jth SAUs.

3.5. Spatial Summarization

After segmentation and temporal alignment, we have
segmented SAUs XS = {Xbi:ei−1, i = 1, 2, ...,K} as
well as the Optimal Alignment Path for each SAU {Qi ∈
R1×L̃, i = 1, 2, ...,K} where Qi = [qi1, q

i
2, ..., q

i
L̃
] and L̃

is the reference SAU’s total number of frames. In other
words, we have a set of temporally aligned SAUs {XQi , i =
1, 2, ...,K} where XQi = [xqi1 ,xqi2 , ...,xqiL̃

]. As men-
tioned before (Sec 3.2), these SAUs exhibit small and large
motion variations. We regard the small motion variation as
noise and the large motion variation as outlier. We try to
cancel out small variations by averaging over SAUs of con-
sistent motion pattern while detecting the SAUs with large
motion variation.

Problem Formulation. The RSAU is represented as
XR = [xR

1 ,x
R
2 , ...,x

R
L̃
] ∈ R3M×L̃. We find the optimal

RSAU by minimizing

K∑
i=1

L̃∑
j=1

D(xR
j ,xqi

j
) + λ

L̃−1∑
j=1

D(xR
j ,x

R
j+1), (6)

where D : R3M×1 × R3M×1 → R is interpreted as a
distance measure between two skeletal frames. In all
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our experiments, we define D(·, ·) to be D(xi,xj) =∑M
k=1 ‖pi,k − pj,k‖2, i.e. the Euclidean Distance between

xi and xj. Eq 6 has a data term and a smoothness term and
λ is a parameter used to tune the ratio between them.

Data Term.
∑K
i=1

∑L̃
j=1D(xR

j ,xqi
j
) minimizes the dis-

tance between the RSAU with all SAUs. This term forces
RSAU to behave like an average result of multiple SAUs
and is used to remove small motion variations.

Smoothness Term. λ
∑L̃−1
j=1 D(xR

j ,x
R
j+1) minimizes the

distance between two consecutive frames of the RSAU.
While the 3D sensor extracts skeletons at 30fps, the relative
motion between two consecutive frames is small. Hence
this term is useful for rejecting large measurement noise
(e.g. Some joints of the skeleton jumping between consec-
utive frames). λ tunes the ratio between these two terms.
When the input skeleton is very noisy, λ is set larger to en-
force smoothness. In all our experiments, we set λ = 0.1
for the Microsoft Kinect SDK skeletal data (actually this
data has already been smoothed).

Algorithm. Eq 6 is rewritten as a Linear Least Square
problem which is efficiently solved by Gaussian Elimina-
tion. In practice, we combine RANSAC with Eq 6 to help
detect the SAUs with large motion variation. At each it-
eration, we select a subset of SAUs and calculate the cor-
responding RSAU. Then we compare the distance between
the RSAU with all SAUs to find the inliers. The RSAU with
the most number of inliers is output as our final result.

3.6. TASS Validation

TASS is used to capture the most consistent motion pat-
tern among multiple SAUs and incorporate such informa-
tion into a single RSAU. RSAU can be regarded as a rich
and robust representation from which many clinically rele-
vant parameters can be extracted. To validate our choice of
the TASS approach, we apply it on the 3D activity recogni-
tion task and compare its performance on the MSR-Action
3D Dataset [12] with several state-of-the-art 3D activity
recognition algorithms.

MSR-Action 3D Dataset contains 20 actions performed
3 times by each of 10 subjects. We removed some extreme
outliers and used 547 out of the original 567 SAUs. These
SAUs cover various movement of arms, legs and torso.

First we normalized all skeletons to the same size. Then
for each action type we trained a single RSAU using the
TASS method. In this case, RSAU captures the most con-
sistent motion pattern of a specific action type crossing dif-
ferent subjects. At the testing stage, given a SAU, we tem-
porally aligned all 20 RSAUs with it and calculate the Eu-
clidean Distance. The testing SAU is associated with the
action with the minimum Euclidean Distance. We report
accuracy on the cross-subject test setting [12] and compare
our method with other state-of-the-art methods (Tab 1).

If we randomly select a SAU to represent an action type,

Table 1. Recognition Accuracy Comparison on MSR-Action 3D
Dataset

Method Accuracy
Dynamic Temporal Warping [14] 0.540

Random Sampled SAU 0.606
Action Graph on Bag of 3D Points [12] 0.747

View-invariant Histogram of 3D Joints [23] 0.789
RSAU 0.819

Actionlet Ensemble [21] 0.882

we achieve an accuracy of 0.606. After we enhance the rep-
resentation using the TASS method, we boost the accuracy
up to 0.819. Our method reaches competitive performance
even comparing with most fine-tuned 3D activity recogni-
tion algorithms. The result demonstrates the effectiveness
of the TASS method and shows that RSAU is a much richer
representation than single SAU.

4. Experiments

Parkinson’s Disease is a degenerative disorder of the cen-
tral nervous system [11]. The most obvious symptoms of
Parkinson’s Disease are motion related which include slow-
ness of movement (i.e. Bradykinesia), resting tremor, rigid-
ity and postural instability. While some symptoms are con-
sistent, others occur on an episodic basis (e.g. Festination
and Freezing of Gait) [6]. Detecting and quantifying these
symptoms are crucial for deciding exact medicine level, de-
signing rehabilitation plan and preventing falls which are
most risky for PD patients [5]. Two experiments were
conducted and the data was processed using our proposed
TASS method. The RSAU was able to quantify a series of
spatio-temporal clinical measurements which are crucial for
evaluation of the subject’s mobility level.

Walking-based experiment. This experiment was per-
formed by a PD subject and a non-PD subject. These
two subjects were similar in size. The non-PD subject
performed the Walking Test while the PD subject carried
out both the Walking Test and the Walking-with-counting
Test. Three RSAUs were generated from our data. A se-
ries of spatio-temporal indicators were then automatically
extracted.

Step size. We project the joints of two feet to the ground.
The step size is calculated based on the difference between
the start position of the first frame and the end position of
the last frame.

Postural Swing Level. Postural Swing Level (PSL) quan-
tifies how stable the pose is while a person walks. We ex-
tract it by projecting the joint of torso (i.e. Center of Mass)
to the ground. Then we find its Maximum Absolute Devia-
tion along the direction perpendicular to the subject’s mov-
ing direction. The larger the value, the more unstable the
pose is.
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Arm Swing Level. Arm Swing Level (ASL) indicates the
degree of arm motion. We extract it by projecting the hand
joint and the torso joint to the ground and calculating the
signed distance between them for each frame. Again we use
the Maximum Absolute Deviation. The smaller the ASL,
the stiffer the specific arm.

Stepping time. This indicates the most consistent time of
the subject walking two steps.

Table 2. Results of PD and non-PD on walking-based tests

Indicator non-PD W PD W PD W&C
L step size 95.2 96.1 56.7
R step size 91.3 90.2 57.3

PSL 3.05 5.13 8.35
L ASL 12.29 5.49 3.76
R ASL 10.68 10.66 3.28

Stepping time 0.89 1.61 2.14

The experimental results are displayed in Tab 2 with spa-
tial indicators measured in centimeters and temporal indica-
tors measured in seconds. We have the following observa-
tions.
—While the non-PD subject and the PD subject show simi-
lar step sizes during the Walking Test, the PD subject’s step
size decreases dramatically as soon as the dual counting task
is added.
—The PD subject exhibits larger Postural Swing Level than
the non-PD subject and the situation gets worse after adding
the dual task. The result quantifies the PD subject’s Postural
Instability.
—The PD subject has a stiff left arm during the walking test
and both arms become stiff with the dual task added. The
result quantifies the Rigidity of the PD subject’s arms.
—It takes more time for the PD subject to walk two steps
and even more time to walk two steps while counting. The
result quantifies the Bradykinesia of the PD subject.

Sit-to-stand experiment. The same PD subject and
non-PD subject carried out the Sit-to-stand Test. Similar
spatio-temporal measurements were extracted from the re-
spective RSAU which quantified the motion differences be-
tween the PD subject and the non-PD subject. They are not
displayed considering redundancy. The PD subject exhib-
ited pauses during a specific repetition, and we temporally
aligned the corresponding SAU with the RSAU. Fig 5 dis-
plays the corresponding Temporal Aligning Matrix. During
pauses, the Optimal Alignment Path shows sparser points
and this is well captured by the Kernel Density Estimation
[19] method as local minimas. In Fig 5 we picked up two
pauses with one representing the subject leaning against the
chair and the other representing the subject having difficulty
standing up. Detection of pause and/or FOG is important
for the clinician to evaluate the subject’s postural instability
as well as risk of fall.

Applications. Quantifying the PD patients’ musculo-
skeletal disorders has many potential applications.
—Falls prevention and warning. Abnormal pause, oc-
curence of Freezing of Gait, and extreme postural instability
are often strong indicators of falls which are very dangerous
for the PD patients. Hence quantification of them is crucial
for prevention or alerting the patient/clinician of possible
falls.
—More precise medication level. The PD patient usually
takes medicine everyday to maintain their ’on’ state, i.e.
smooth skeletal muscle movements. As the medicine effect
’wears off’, the person becomes very stiff, slow and may
even be unable to move in a few minutes. In some cases of
the PD patients, the ’on-off’ fluctuations are unpredictable.
Our system can recommend them to take medicine at the
exact time with the exact amount by analyzing several ob-
jective measurements, e.g. step size, stepping time.
—Long term monitoring to observe disease progression
and/or treatment effectiveness. The PD patient gradually
lose the motor ability as an inevitable effect of the progres-
sive deterioration of the nervous system. Building a long
term quantified profile for each specific patient is impor-
tant for deterioration evaluation and prediction, rahabilita-
tion plan design and even help the clinicians better under-
stand the underlying mechanism and come up with a more
effective solution.

Discussion. The key idea here is not what medical mea-
surements we can extract from this specific experiment,
but rather we provide a robust methodology to decouple
the complex spatio-temporal information. Instead of pro-
viding single scores, we provide the source (i.e. RSAU)
from which many well-defined medical indicators can be
extracted and used in many related applications. It is worth
noting that, however, our main focus in this paper is not

Figure 5. Detection of Pause/FOG (Top to bottom: Skeletal
stream; Temporal Aligning Matrix; Estimated density)
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clinical validation of these spatio-temporal gait parameters.
This process asks for more experiments on the PD subjects
and close collaboration with experienced clinicians.

5. Conclusion and Future Work
To summarize, we address the following problems: A

non-invasive home monitoring and evaluation system for
patients with musculo-skeletal disorders using a 3D sen-
sor; A methodology to decouple the spatio-temporal in-
formation between multiple skeletal sequences; A com-
pact and robust skeletal sequence representation based on
which multiple medical indicators are extracted; Experi-
mental evaluation results on the PD and non-PD subjects.

For the future work, we plan to focus on studying people
with Parkinson’s Disease and gather more data to refine our
methodology. Also we will work closely with the clinicians
and design the most clinically informative spatio-temporal
measurements.
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