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Abstract

We present a GPU-accelerated, real-time and practi-
cal, pedestrian detection system, which efficiently computes
pedestrian-specific shape and motion cues and combines
them in a probabilistic manner to infer the location and oc-
clusion status of pedestrians viewed by a stationary cam-
era. The articulated pedestrian shape is approximated by
a mean contour template, where template matching against
an incoming image is carried out using line integral based,
Fast Directional Chamfer Matching, employing variable
scale templates (hybrid CPU-GPU). The motion cue is ob-
tained by employing a compressed non-parametric back-
ground model (GPU). Given the probabilistic output from
the two cues, the spatial configuration of hypothesized hu-
man body locations is obtained by an iterative optimization
scheme taking into account the depth ordering and occlu-
sion status of individual hypotheses. The method achieves
fast computation times (32 fps) even in complex scenarios
with a high pedestrian density. Employed computational
schemes are described in detail and the validity of the ap-
proach is demonstrated on three PETS2009 datasets depict-
ing increasing pedestrian density.

1. Introduction

The human detection task is a core issue in many ap-
plied fields of computer vision such as video surveillance,
automotive safety and human-computer interaction. During
the last two decades, the pedestrian detection problem has
received a great amount of interest and various representa-
tions and detection schemes have been proposed. Despite
the significant scientific achievements, the human detection
task still remains a challenge. Its main complexity stems
from the fact that image content comprises a daunting vari-
ability and it is ambiguous by objective measures. Images
might contain a large number of humans, with possible in-
teractions, occlusions and additional photometric and ge-
ometric variations. Variability also implies a large search
space (position, scale, pose, etc.) typically leading to a high
computational complexity. However, most practical appli-

cations require real-time performance thus calling for com-
putationally powerful hardware, optimized implementation
and novel insights.

Motivated by these challenges, we present a human de-
tection framework which is capable of detecting humans in
moderately crowded scenarios in real-time by computing
shape and motion cues and estimating the spatial configu-
ration of humans in the image in a Bayesian framework.
Both cues are computed by algorithmic concepts having in-
herent parallelism, thus being good candidates for GPU im-
plementation. The paper presents implementation details
how shape and motion cues are used to build a pedestrian-
specific detection scheme, utilizing concepts of shape-based
representation [3, 4], shape-based matching [19], and com-
pressed non-parametric background subtraction [21]. This
paper extends previous work [3, 4], by replacing the ori-
ented filters approach to contour-based template matching
with the variable scale Fast Directional Chamfer Matching
algorithm [19]. Detection results are presented for several
publically available benchmark videos and demonstrated
results exhibit state-of-the art performance at computation
speeds reaching and even exceeding real-time.

The paper is organized as follows: Section 2 gives a con-
cise overview on the most important human detection con-
cepts, especially focusing on representations of shape and
motion. Section 3 describes the overall concept of the pro-
posed human detection method and provides details on the
shape and motion-based detection modalities and their com-
putation. Section 4 presents and discusses experimental re-
sults and their evaluation. Finally the paper is concluded in
Section 5.

2. Related work

Due to the great practical interest in the human detection
problem, significant amount of work has been published
over the last decades, especially in recent years. Detailed
reviews on various detection schemes, representations and
evaluations can be found in [10], [8] and [12]. Proposed ap-
proaches target different sub-tasks, such as generic human
detection, pedestrian detection in street-level scenarios, de-
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tection and pose estimation and visual surveillance. In our
case we focus on the visual surveillance scenario where a
single stationary camera observes a scene containing a vary-
ing number of humans.

Detection approaches can be grouped with respect to the
spatial extent of the employed representation as monolithic
(full-body) and part-based detectors. Monolithic detectors
such as the popular HOG detector [6] and the Region Co-
variance detector [18] has produced promising results on
challenging datasets, while significant occlusions, strong ar-
ticulation still pose a problem. Part-based approaches or lo-
cal representations, e.g. [14], avoid some of these problems
by decomposing variable structure into simpler parts.

2.1. Shape-based matching and detection

Shape based matching makes use of the object’s contour,
rather than its appearance. Although proposed decades ago,
Chamfer matching using Distance Transform [2] remains
the preferred method for shape matching concerning speed
and accuracy. There exist several new variants of Chamfer
matching mainly to improve the cost function using orien-
tation information [24]. Recently, [16] reported improving
the accuracy of Chamfer matching while reducing its com-
putational cost. They represent the edge image as a col-
lection of line segments, and use line integral images to
speedup matching of segments, namely achieving a sub-
linear complexity (linear in the number of line segments)
for the matching part.

Most of the attempts so far to implement image match-
ing on a Graphics Processing Unit followed the appearance
based approach, e.g. template matching based on 2D corre-
lation, or key-point matching (see [19] for a survey). In
contrast, [19] was the first work to present a full imple-
mentation of a shape-based matching algorithm on a GPU.
In particular, they have implemented a variant of the Fast
Directional Chamfer Matching algorithm (FDCM) of [16].
While the algorithm of [16] employs model templates of
fixed size, [19] extends the algorithm to handle templates
with variable size, to account for perspective effects.

Shape-based models mostly rely on image features in
form of gradients, edges, or use a computed segmenta-
tion (blob, color-based) to derive or validate a shape hy-
pothesis. [11] uses a hierarchically structured human tem-
plate tree to capture human shape variations and efficiently
guide a chamfer distance based matching step. [29] also
employ chamfer matching of a structured template set and
tightly couple with a color-based foreground-background
segmentation algorithm to form an iterative joint segmenta-
tion and detection procedure. [30] use a parametric human
body model composed of elliptic shapes and probabilisti-
cally infer the most likely human configuration in the image
using a computed motion segmentation. Blob-based mo-
tion segmentation is also used by [20] to implicitly capture

local shape variations by learning a codebook of local de-
scriptors. [15] decomposes the human body into parametric
parallelogram-shaped parts and generate a compact shape
tree for efficient model evaluation.

Shape-specific low-level image features are also used
in discriminatively learned models. [28] introduce short
straight and curved edge segments or edgelets which are
selected in a boosted feature selection step to train several
body part detectors. The individual part detector outputs are
considered jointly to infer the most probable human config-
uration and occlusion status within the observed scene.

2.2. Motion-based detection

Motion is a strong cue for the pedestrian detection task.
In the visual surveillance context, background subtraction
plays an important role since it is capable of generating a
coarse motion segmentation at a low computational cost.
Most background modeling techniques build a pixel-based
model. However, the temporal evolution of a given pixel’s
intensity values typically does not follow a single uni-
modal distribution. Irregular lighting changes, repetitive
background motion or scene changes generate more com-
plex distributions requiring statistical models with more de-
tail. The Mixture of Gaussians (MoG) approach was intro-
duced [23] to model a distribution by a fixed set of Gaus-
sians. However, MoG exhibits certain disadvantages due
to its parametric nature. Kernel density estimation [9] as a
non-parametric technique can deal with multi-modality in
the distribution of background intensities, nevertheless, the
method is very memory and time consuming. To overcome
computational limitation of this technique, [13] proposed
a compressed non-parametric representation using a code-
book model. Samples at each pixel are clustered into a set
of code-words based on a color distortion metric together
with brightness bounds. In [21], a background modeling al-
gorithm for a practical surveillance system was proposed. It
utilizes a compressed non-parametric representation, signif-
icantly simplifying the work of [13]. It was conceived such
that a GPU implementation becomes rather straightforward,
achieving ultra real-time performance.

3. The detection approach

3.1. Outline of the method

Given a digital image we would like to estimate the spa-
tial configuration of humans (c∗) such that the hypothesized
configuration best describes the observed image features I .
Hence the detection task is postulated as a maximum a pos-
terior (MAP) estimation problem:

c∗ = argmax
c

P (c|I), (1)

A configuration encompasses a set of human hypotheses
c = {h1, h2, . . . , hn}, where n denotes the number of hu-
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Figure 1. Illustration showing the overall scheme of our human
detection approach. Processing steps performed off-line, on the
GPU and CPU are indicated as an overlay. All intermediate result
images are inverted for better visibility.

mans forming the configuration. A given human hypothesis
hi is characterized by a foot position xi = (xi, yi) in the
image and a corresponding shape Ci represented by a con-
tour template: hi = {xi,Ci}. According to Bayes theorem
the posterior probability is proportional to:

P (c|I) ∝ P (I|c)P (c), (2)

where P (I|c) is the joint image-based likelihood and
P (I|c) denotes the prior probability of a configuration. All
spatial arrangements of individual human models are con-
sidered equally probable, therefore the prior depends on in-
dividual human model parameters (C) only. We assume
that pedestrians stand upright on a common ground plane.
We perform an off-line calibration step estimating a linear
model H(y) of the projected 2D human height in the scene,
as a function of the vertical position y. The human shape is
represented by a mean shape consisting of 13 line segments,
generated from 120 pedestrian images (plus their mirror im-
ages) of the INRIA dataset [6], annotated manually.

The employed cues are shape and motion. Shape mod-
els are matched against the obserevd directional Distance
Transform images, and motion probabilities are computed
from a binary foreground/background segmentation gener-
ated by the codebook-based background model. Assuming
independence between the two cues, the image-based like-
lihood can be written as :

P (I|c) = P (Ic|c) P (Im|c), (3)

where P (Ic|c) and P (Im|c) denote the shape-based and
motion-based likelihoods, respectively.

Figure 2. Illustration showing the construction of integral images
by oriented string scans for different orientations. Dots represent
starting locations of individual string scans. The bottom right im-
age depicts an example contour template consisting of five line
segments, where line integrals (sum of values at pixels color-coded
according to orientation) can be efficiently computed based on the
integral images.

The overall human detection scheme can be concisely
described as follows: Both cues are computed on the GPU
in separate stages (shape cue computed on a hybrid CPU-
GPU). A final joint optimization step (computed on the
CPU) estimates the configuration maximizing the posterior
given the computed shape and motion-based probabilities.
Figure 1 illustrates the overall human detection concept
with the required inputs and generated intermediate and fi-
nal outputs.

3.2. Shape-based detection

The integral image concept [5, 22] has been widely used
to speed up the computation of region-based statistical mea-
sures, such as area sums [26], covariance [25] and co-
occurrence [27]. [3] describes the construction of multiple
integral images by oriented string scans over the entire im-
age in order to efficiently compute integrals along oriented
linear contour segments. Efficient integration permits fast
evaluation of contour-based features. Figure 2 shows the
rasterization of scanlines for some orientations. The bot-
tom image shows an example for a contour-based template
consisting of five line segments. Using the precomputed
integral images, the sum of pixel values along each of the
line segments can be computed using a single arithmetic op-
eration, independent of location and scale, by simply sub-
tracting the value of the start-point from the value of the
end-point, of the corresponding line integral image.

To detect human shapes, we follow [19] and use a variant
of the Fast Directional Chamfer Matching algorithm [16],
which is an extension of the Distance Transform algorithm
incorporating the line-integral approach [3] to speed up
computation time. [19] extends the method of [16] to incor-
porate the scale variation of objects in the image. The algo-
rithm first computes 8 directional gradient images. The next
step is to compute the Distance Transform for each direc-
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tion. Unlike the original implementation proposed in [16],
they propagate costs only in 2D (image plane) but not in
a third dimension (quantized edge orientations), since they
have found that this does not give any substantial improve-
ment, and the additional computational costs may be saved.
The distance values are limited by a threshold which de-
pends on the size of the human template as follows. Denot-
ing the linear dependence of a persons height on its foot-
point vertical position y as (see [19]):

cos (θ) ·H(y)− sin (θ) · y − ρ = 0, (4)

the maximal distance value, as a function of the vertical po-
sition, is defined by (a, b and k are additional parameters):

f(y) =

⎧⎪⎨
⎪⎩

a, y ≤ 1
tan θ

(
a
k − ρ

cos θ

)
H(y) · k, 1

tan θ

(
a
k − ρ

cos θ

)
< y < 1

tan θ

(
b
k − ρ

cos θ

)
b, y ≥ 1

tan θ

(
b
k − ρ

cos θ

)

(5)
Next, they compute the line integral images out of the dis-

tance images. Matching is done by computing products of
line segments of the human model with the corresponding
line integral images, for each pixel of the incoming image.
To compensate for the change of scale of the model over
the image, the distance values are normalized with respect
to the maximal distance values, defined by Eq. 5. Figure 3
illustrates the overall FDCM algorithm concept.

In this work we use an identical GPU implementation as
in [19]. However, our full human model consists of 13 line
segments instead of 16. In addition, in order to handle oc-
clusions, the contour-based likelihood at a given image lo-
cation x is computed by matching both head-shoulder (HS)
and full-body (FB) templates in a dense scan:

P (Ic |x ) =w1PHS (Ie |x, T ∗HS(x) ) +

w2PFB (Ie |x, T ∗FB(x) ) , (6)

where T ∗HS(x) and T ∗FB(x) denote the locally best match-
ing head-shoulder and full-body templates, w1 and w2 are
importance weights.

3.3. Motion detection

In this section we briefly describe the computation of
the motion cue given by a binary foreground/background
segmentation map. The background subtraction algorithm
is based on a pixel-based codebook model, as in [21].
The distribution of temporally aggregated pixel intensities
is captured by a compressed non-parametric representa-
tion, namely a few codewords. A pixel-specific codebook
CB = {c1, c2, . . . , cN} of a given pixel contains N code-
words, where the ith codeword is denoted by ci. A code-
word ci =

{
vi = (Ȳi, C̄bi, C̄ri), Si

}
i=1...N

consists of a
vector of three color channels Y CbCr. Si is a counter
representing the significance of the codeword ci. For effi-
ciency’s sake, the codewords are sorted in descending order

with respect to Si. The sorted order is maintained whenever
adding or deleting a codeword.

Initially, each pixel of the background model is initial-
ized with a codeword corresponding to the pixel’s Y CbCr
intensities and the significance value is set to a small value
(the learning rate parameter γ+). During the next frames,
intensities of an incoming pixel u = {Y,Cb, Cr} are
matched against all codebook entries using the following
rule,

|u(1)− vi(1)|+ |u(2)− vi(2)|+ |u(3)− vi(3)| ≤ d, (7)

where d is a sensitivity threshold. If a match is found, the
codeword is updated using an update factor α according to:

vi(k) = (1− α)vi(k) + αu(k), k = 1, 2, 3. (8)

For matching codewords, the significance value Si is incre-
mented by γ+, otherwise it is decremented by γ− (forget-
ting rate parameter).

The foreground map is generated according to the folow-
ing criterion (see [21]):

FG(x) =

⎧⎪⎨
⎪⎩

foreground if
N∑

i=im

Si < T ·
N∑
i=1

Si

background otherwise
(9)

where T is a parameter defining the width of the distribu-
tion’s tail. If none of the codewords from a pixel’s codebook
matches the current RGB triplet of the incoming pixel, a
new codeword is added to the codebook. If the number of
codewords N exceeds a predefined maximum Nmax, the
codeword with the smallest significance is removed from
the codebook to make room for a new codeword. As in [21],
the maximal number of allowed codewords per codebook is
Nmax = 6, which is sufficient to model outdoor videos.

3.4. Cue computation on the GPU using CUDA

CUDA was used to implement core functions of the
contour-based detection scheme and the background sub-
traction algorithm. GPU with CUDA exhibits performance
strength for algorithms or algorithmic parts which can be
highly parallelized. Such parts are implemented in a so
called computation kernel. Parallel computation kernels
were implemented for the shape-based detection carrying
out gradient computation and line integral based matching,
while kernels for motion detection involved image conver-
sion, computation of the foreground image and the back-
ground model update. In general, CUDA takes care of
the parallel execution of a thread (an instance of the ker-
nel), where the only thing to be predefined is the number of
threads to be processed, split into a block of threads and a
grid of blocks. By careful implementation one minimizes
data access to global device memory as much as possible,
thus avoiding time-costly data transfer.
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input image gradient information

directional gradient images

Distance Transform images line integral images matching output

Figure 3. FDCM algorithm overview

Hardware setup: Our test system used for all compu-
tations and timing measurements consists of an Intel Xeon
CPU with 4 physical and 4 virtual cores @ 2.93 GHz, 12
GB RAM and a NVIDIA GeForce GTX 460 running on
Windows7 64-bit.

Cue computation:

The GPU-based parallelization of the Fast Directional
Chamfer Matching algorithm was done in [19] for all the al-
gorithmic steps, namely: computation of 8 directional gra-
dient images, computation of the corresponding 8 Distance
Transform images, computation of 8 line integral images
and the line-based template matching using a variable size
human templates. They have also implemented a highly op-
timized CPU version (via handwritten multi-threading and
SSE2), as well as a hybrid CPU-GPU version. Eventually,
for typical PC architecture and image resolution used, the
hybrid CPU-GPU implementation version turned out to be
the fastest. In the hybrid version, the Distance Transform
computation on CPU was optimized using multi-threading
and inclusion of IPP functions; the line integral computa-
tion on CPU was optimized by partly using OpenMP and
partly by using hand-written multi-threading.

Gradient computation on GPU: All pixels can be pro-
cessed independently from each other, leading to a great

parallelization potential. However, memory access to global
GPU memory is expensive. Therefore, one needs to com-
pute as many arithmetic operations involved in the gradient
computation as possible on the fly, and to avoid storing in-
termediate results in global device memory. Since every
CUDA thread has its own set of private registers, all inter-
mediate results are stored in GPU registers.

Line-based matching on GPU: The line-based template
matching is well suited for parallelization. By using shared
memory, memory access time is minimized, since shared
memory has much lower latency than global GPU memory.
The shared memory is used to store the line-based variable
size model templates. This data is shared between threads,
since every pixel needs its own copy of model data for the
computation of its matching costs. Every thread is loading
its slice from the entire model data. Such fraction is com-
monly the size of a few bytes. By using shared memory,
loading times of the model data is reduced. Texture mem-
ory is used for the look-ups in the line integral images. This
gives a performance increase as long as the scaled line seg-
ment models are reasonable small. When line segments are
small, the corresponding lookup positions of the line seg-
ment’s start- and end-point are spatially near. This results
in texture memory cache hits giving one lower latency and
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thus better performance.
Background subtraction on GPU: For the background

subtraction algorithm used, kernels are the image conver-
sion, computation of the foreground image and the back-
ground model update. First, image data is transferred from
CPU/main memory to GPU. Next, the Y CbCr 4:2:0 pla-
nar image is converted to Y CbCr 4:4:4 interleaved image.
The interleaved image has the advantage that data fragments
prcessed in successive time steps lie locally near to each
other and can be loaded faster. Data access to global device
memory for background model data is minimized by load-
ing and storing only the number of currently used codes per
pixel. Additional steps performed in the CUDA kernel in-
clude loading the current pixel of the background model to
shared memory (fastest but limited GPU memory which can
contain only part of the image at once), and loading the up-
dated pixel of the background model from shared to global
memory. Finally, the foreground image is transferred back
to the host from the device. We use an identical GPU im-
plementation as in [21].

3.5. Joint optimization
Following the computation of shape-based and motion-

based likelihood images, a joint optimization step is per-
formed, estimating the spatial configuration of humans.
This optimization step is performed in a greedy manner,
considering the observation likelihoods and the occlusion
status of individual hypotheses at the same time.

First we perform non-maxima suppression on the shape-
based likelihood image to generate a set of human hypothe-
ses h = {(xi,Ci)i=1...K} characterized by their foot lo-
cation and the appropriately scaled contour model. Our
optimized non-maxima suppression algorithm is an exten-
sion of a recent work reported in [17], presenting two so-
lutions for the non-maxima suppression problem that use
fewer than 2 comparisons per pixel with little memory over-
head. The first algorithm locates 1-D peaks along the im-
ages scan-line and compares each of these peaks against its
2-D neighborhood in a spiral scan order. The second al-
gorithm selects local maximum candidates from the max-
ima of non-overlapping blocks of one-fourth the neighbor-
hood size. Both algorithms are reported to run considerably
faster than previous best methods in the literature when ap-
plied to feature point detection. We extend the first solution
of [17] by, first, using a rectangular object window rather
than a squared one; second, we enable a variable scale ob-
ject window (due to perspective effects); finally, we de-
tect plateaus in addition to regular peaks. Hypotheses are
sorted according to their vertical coordinate component in
the image, to generate a plausible depth ordering. Starting
with an empty configuration, individual human hypotheses
are added incrementally while evaluating shape-based and
motion-based likelihoods jointly after each addition step.
Given the depth ordering estimate and occlusion status, in-

Figure 4. Sample detection results for the most challenging S2-L3
PETS’09 scenario.

dividual human hypotheses can be evaluated independently.
Shape-based likelihoods are evaluated by computing match-
ing probabilities along unoccluded contour segments. Next,
these likelihoods are multiplied by motion-based probabili-
ties, computed by measuring the amount of foreground re-
gions covered by human hypotheses forming the configura-
tion. The final configuration estimate is typically reached
efficiently given the greedy nature of approximation.

4. Experiments and discussion

The proposed contour-based human detection frame-
work employing the Fast Directional Chamfer Matching
algorithm was compared to previously published frame-
work [3] using oriented gradient images as cues for shape-
based matching. We annotated three sequences (S2-L1, S2-
L2, S2-L3) of the PETS 2009 dataset [1], which depict sce-
narios with an increasing pedestrian density. The annotation
consists of the bounding box coordinates of each individual
for the entire length of the sequence. Persons at the image
borders are annotated when they fully enter the scene.

Evaluation procedure: We denote our proposed de-
tection framework using Chamfer Matching by CM , and
the previous work [3] based on Oriented gradient Filters
by OF . An examplary video frame with detection results
by the CM framework is shown in Figure 4 for the S2-
L3 sequence. Spatial bounding box coordinates generated
by the CM and OF methods are compared separately to
the ground truth data based on an overlap criterion. If two
bounding boxes - one generated by the detector, one given
by ground truth - have an overlap of more than 50% with
respect to their joint area (union), then a potential match
is declared. To eliminate multiple matches, a one-to-one
match is enforced between all ground truth and detection
instances. This latter constraint is especially relevant in
crowded scenarios where typically many detection results
exhibit an overlap to a given ground truth region at the
same time. Based on the bounding box associations, we de-
rive quality measures of detection rate and false alarm rate,
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Figure 5. Detection and false alarm rates obtained on three PETS
2009 [1] sequences by comparing the current human detector em-
ploying chamfer matching (CM) to previous work [3] which used a
set of oriented high-pass filters (OF) for performing shape match-
ing.

Figure 6. False alarm rates per frame, obtained on three PETS
2009 [1] sequences by comparing the current human detector em-
ploying chamfer matching (CM) to [3] which used a set of oriented
high-pass filters (OF) for performing shape matching.

equivalent to the measures of true positive and false positive
rates when detection is based on discriminative classifica-
tion.

Results and evaluation: Results obtained for the three
sequences are depicted in Figure 5. As can be seen from
the plot, the increasing pedestrian density leads to a drop
in detection rates and to an increase in false alarm rates.
This is due to the increasing partial occlusion rate between
the humans in the scene, where the shape matching fails to
recover the correct human locations from partially visible
contours. The partial visibility of humans was quantified
by the ground truth bounding boxes: in the three scenes,

Algorithmic step Scene S2-L1 Scene S2-L2 Scene S2-L3

Shape matching 23.8 ms 25.6 ms 25.7 ms
Non-maxima suppression 1.5 ms 1.6 ms 1.7 ms
Occlusion analysis 0.1 ms 0.3 ms 0.4 ms
Background model 2.0 ms 2.3 ms 3.3 ms
Motion-based validation 0.1 ms 0.6 ms 0.8 ms
Total 27.5 ms 30.4 ms 31.9 ms

Table 1. Computation time of the individual algorithmic steps, tab-
ulated for our three testing scenarios S2-L1, S2-L2 and S2-L3 of
the PETS’09 dataset [1].

3.7%, 17.8% and 41.7% of the body (bounding box) area
are occluded, respectively.

When comparing the detection frameworks CM and OF
against each other, it becomes apparent that the Chamfer
Matching based shape detection can better detect partially
occluded persons (red vs. green in Figure 5). Moreover,
false alarm rates slightly improve when facing high pedes-
trian densities (blue vs. yellow in Figure 5). This better
sensitivity likely arises from the distance transform’s nature,
where an oriented segment has a larger spatial spread than
a gradient filter response, while well preserving orientation
information. Therefore, smaller sets of contour fragments
can be matched with a greater precision.

In order to convey a meaningful measure for the amount
of false alarms, we compute the amount of false alarms per
image by dividing the total number of false alarms by the
number of frames in the sequence. As can be seen from Fig-
ure 6, the per-image false alarm rates are sufficiently low for
practical applications (tracking, counting) and comparable
to those of competing approaches [7].

In order to assess the computational performance of the
proposed CM -based detection scheme, we analyzed the
run-times of the individual algorithmic components on the
three sequences, as shown in Table 1. The run-times were
obtained by averaging over 1000 frames for each sequence.
As can be seen from the table, there is only a slight increase
in computation time with growing human density. An in-
creasing pedestrian density affects mostly the computation
of the distance map due to more gradient structure, while
the computational cost of contour integral evaluation re-
mains constant. The other density-sensitive component is
the background model computation due to more complex
models with increasing density. The overall computation
times remain highly competitive, corresponding to approx-
imately 32 fps on this dataset.

5. Conclusions

In this paper we presented a GPU-accelerated human
detection framework which proposes an efficient computa-
tional scheme on CPU-GPU for shape and motion cues, and
allows for real-time human detection in challenging scenar-
ios. The detection framework improves a previous frame-
work by performing shape-based matching using the vari-
able scale FDCM algorithm, instead of using oriented high-
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pass filters. A comparison between the previous and the
current frameworks shows an increase in detection rate as
well as a decrease in false alarm rate, especialy in crowded
scenarios. Experimental results show that the method is ca-
pable of reliably detecting humans in moderately crowded
scenarios and it exhibits a slow degradation of detection per-
formance at higher human densities.
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