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Abstract

In this paper we present a new approach for the eval-
uation of event-based Silicon Retina stereo matching re-
sults. The evaluation of stereo matching algorithm re-
sults is a necessary task for the development, comparison,
and improvement of depth generating camera systems. In
contrast to conventional frame-based cameras, the silicon
retina sensors delivers asynchronous events instead of syn-
chronous intensity or color images. The polarity of the
events represents either an increase (on-event) or a de-
crease (off-event) of the brightness of the projected scene
point. This is the reason why existing ground truth data
and evaluation platforms are not suitable for testing sili-
con retina stereo camera systems. For the analysis of the
introduced novel evaluation method, we use an area-based
(sum of absolute difference) algorithm for the event-driven
sensor system. A conventional video camera stereo vision
system is used to produce reference data. The results show
that the presented method offers new opportunities for the
evaluation of stereo matching results computed from silicon
retina stereo data.

1. Introduction
Automation, especially the therefore required embed-

ded systems, makes our daily life activities easier and will

not be missed any more. The car we drive is assembled

nearly complete autonomously, driver assistance systems

improve safety in traffic, our food and other articles of daily

use come from large factories where production is done by

robotic systems, and even some transport systems, such as

rail shuttles on airports, drive completely autonomous with-

out human interaction (to date in protected and closed areas

only). Also embedded systems for self-driving cars are a

topic of remarkable interest. The leading car manufacturers

and technology providers world wide work hard on tackling

this challenge.

Another application is health care, e.g. fall detection in

nursing or private homes, to extend the time of independent

living for elderly or sick people. Most of the autonomous

systems which can accomplish the mentioned applications

need 3D data of the environment to operate precisely and

reliably.

State-of-the-art ranging sensors and technologies com-

prise active sensors, such as laser range finders, laser scan-

ners, time-of-flight (TOF) cameras, ultrasonic detectors,

radar, light-section, and structured light as well as passive

technologies, such as structure from motion, optical flow,

and stereo vision. Active sensors are based on emission

and reception of light or radiation, while passive sensors

try to reconstruct their environment by acquisition of the

scene only. For the evaluation of the applicability of a sen-

sor technology, it is essential to test the depth accuracy of

the sensor itself. While it is pretty well known under which

circumstances active sensors work best, there is still a gap

in research for passive technologies.

Stereo vision, e.g., is based on capturing the area to ob-

serve from at least two different angles by digital cameras
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and estimating the correspondences between these two im-

ages. Each visible scene point is projected onto the cam-

era’s image planes and represented by a pixel in the image

frame. The horizontal displacement between the left cam-

era’s projection and the right camera’s projection, represent-

ing the same scene point, is called disparity. A pixel’s dis-

parity is inversely proportional to the scene point’s depth.

The geometry between the calibrated cameras is known,

which enables the determination of the 3D point in cam-

era coordinates with the origin in the center of one of the

cameras. Of course, only scene points visible in both im-

ages can be processed this way. The result of stereo vision

based 3D measurement is a depth map and a 3D point cloud

of the observed scene, which can then be used for further

processing.

The crucial part of stereo vision is solving the so-called

correspondence problem, also called stereo matching. Am-

biguity and uncertainty associated with visual processing

make this a challenging task. In particular, for embed-

ded systems with restricted resources, used within the men-

tioned real-time applications, the computational expensive

nature of stereo vision algorithms is a very sophisticated is-

sue. Especially textureless areas are a significant problem

because it is not possible to assign corresponding pixels to

each other if all pixels have the same color and neighbor-

hood.

Stereo matching is a well-known research topic, so lots

of different approaches (varying in, e.g., feature or area

analysis, processing time, and processing platforms) to

solve the correspondence problem exist. A good compar-

ison of different approaches as well as more basic infor-

mation about stereo vision can be found in the work of

Brown et al. [1] as well as in Scharstein and Szeliski [14].

1.1. Event-based Stereo Vision

A different approach of stereo vision is using two Silicon
Retina sensors instead of conventional digital frame-based

camera chips. In 1988, Mead and Mahowald [10] developed

an electronic silicon model which reproduces the basic steps

of human visual processing. One year later, Mahowald and

Mead [9] implemented the first bio-inspired sensor based on

silicon. Further developments of the silicon retina sensors

are described in the work of Lichtsteiner et al. [6, 7].

By contrast to conventional frame-based image sensors,

which generate frames of intensity or color values repre-

senting the observed area, these kinds of event-based neu-

romorphic visual sensors only deliver events on intensity

changes caused by the dynamic parts of a scene. Hence,

all static regions of a scene, e.g., the background, are sup-

pressed, and therefore the transmitted event stream contains

no redundant data, but only information of moving struc-

tures.

An event encodes the pixel’s location on the chip, the

timestamp when the event occurred, and the polarity. The

polarity of the produced events can be either 1 (on-event)

or −1 (off-event), when a positive or a negative change of

illumination was detected, respectively. Each pixel of the

sensor measures the changes of illumination in a logarith-

mic way and works asynchronously and time-continuously.

The data format is called Address-Event-Representation
(AER) protocol, which has been introduced by Sivilotti [16]

and Mahowald [8] in order to model the transmission of

neural information within biological systems. The data

transmission is completely frame-free and asynchronous,

which means that events are transmitted without a fixed rate.

These characteristics and the efficient event generation

yield to a very fast vision sensor system with a high tempo-

ral resolution and a high dynamic range. Hence, this kind

of sensor technology is very suitable for high-speed real-

time applications in uncontrolled environments with vary-

ing lighting conditions implemented on embedded systems

with limited resources.

In terms of stereo vision, the same rules and challenges

apply for event-based systems as apply for conventional

frame-based systems. Here, as well, the solving of the cor-

respondence problem is the major issue.

For evaluation of stereo matching results, consequently

the accuracy of the stereo vision system, exact refer-

ence data of the 3D geometry of the observed scene is

needed. This reference data or reference depth map (also

called Ground Truth) usually consists of dense disparity

data, or depth information of the scene, respectively, which

allows a pixel-based evaluation of stereo matching results.

Unfortunately, event-based vision sensors make matters

worse because a dynamic scene or moving structures are

needed for event generation. However, this demands an ad-

ditional stereoscopic survey of the dynamic scene to gather

the 3D depth information which can be used as reference

data.

Due to the lack of evaluation methods for event-driven

stereo systems, we propose in this paper a novel approach

for testing event-based stereo matching algorithms. To do

this, we combine a silicon retina stereo sensor with a con-

ventional frame-based stereo vision camera and use the

stereo matching results of the conventional camera system

as reference information for the event-based stereo sensor.

In this way, we can create our own datasets and evaluate

the characteristics of different sensor settings and their in-

fluence on stereo matching in detail.

The remainder of the paper is organized as follows. In

section 2 the related work of testing stereo matching re-

sults with ground truth data is discussed. Section 3 gives an

overview of the ground truth setup evaluated in this work.

In section 4 we evaluate the introduced approach with real

world data, and in the final section 5 a conclusion with an

outlook of future work is given.
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2. Related Work
As a matter of fact, evaluation data for silicon retina

based stereo vision algorithms with pixel-based reference

data is rarely available. Contrary, stereo vision with con-

ventional frame-based cameras is a well investigated re-

search topic, thus, also evaluation methods of stereo match-

ing approaches came up in the last ten years. In the next

section, representative methods will be briefly described,

which build the basics of the new approach presented in

this paper. We appreciate all the excellent work that has

been done in this research field, but here, we will focus on

selected approaches.

2.1. Stereo Matching Evaluation

The most popular stereo matching evaluation platform

is the Middlebury stereo database 1. Scharstein and

Szeliski [14] developed an online evaluation platform which

provides a large number of stereo image datasets consisting

of the stereo image pair and the appropriate ground truth

data. The datasets represent static scenes and are created

with a structured light approach [15]. To evaluate an al-

gorithm on this website, disparity maps of all four datasets

have to be generated and uploaded. The evaluation engine

calculates the percentage of badly matched pixels (false

positives), within a certain error threshold, by pixel-wise

comparison with the reference image. Many stereo algo-

rithm developers, approximately 145 entries to date, have

used this platform for evaluation. This gives a significant

overview of how the developed algorithm performs in com-

parison to other algorithms. The platform is up-to-date and

constantly growing.

The disadvantage of the Middlebury platform is that the

datasets do not realistically represent real-world scenarios

stereo matching algorithms have to deal with in real ap-

plications. Especially in driver assistance systems, for au-

tonomous robotics as well as consumer vehicles, the usage

of stereo vision as 3D sensor technology has been growing

over the last couple of years. To provide a suitable evalua-

tion platform for especially this kind of application, KITTI 2

was introduced by Geiger et al. [2].

Similar to Middlebury, this platform provides datasets to

evaluate stereo vision algorithms (as well as optical flow,

tracking, odometry, and object detection) online. Contrary

to Middlebury, these datasets are recorded from the roof of

a car, driving on regular roads, with a front pointing stereo

camera. The reference 3D data is determined with a laser

scanner calibrated onto the stereo camera. Another remark-

able difference to the Middlebury database is that at KITTI

the processing time of the algorithm is also a part of the

evaluation. This platform is rather new in the stereo vi-

1http://vision.middlebury.edu/stereo/
2http://www.cvlibs.net/datasets/kitti/index.php

sion community, thus, fewer algorithms are available than

at Middlebury.

The Auckland Image Sequence Analysis Test Site

(EISATS)3 provides several datasets of, e.g., dangerous sit-

uations in traffic. These datasets include also challenging

scenes for the camera hardware, such as direct sunlight,

shadows, and fluctuating light. Unfortunately, no reference

data is available which makes no direct statistical evalua-

tion and comparison of different algorithms possible. To

overcome this limitation, EISATS also provides synthetic

sequences of automotive scenes [18].

A further stereo vision evaluation method was presented

by Meister et al. [11]. The provided datasets show a huge

variety of different weather conditions, motion, and depth

layers. City as well as countryside situations were acquired

at night and at day 4. The provided reference stereo data is

determined with a semi-global matching approach and is a

feasible method to evaluate stereo matching algorithms.

A first evaluation platform for event-driven stereo vision

algorithms was introduced by Sulzbachner et al. [17]. The

test suite generates both, synthetic event data streams for

the stereo matching algorithms, as well as the ground truth

data for the subsequent evaluation step. For the event data

generation no exact model of the behavior of a silicon retina

is used and therefore, the asynchronous characteristics are

not considered and algorithms can not be tested under real

world conditions.

All the presented evaluation methods and platforms well

contributed to make progress in stereo vision for scientific

as well as industrial purposes. However, none of them can

be used for evaluating silicon retina stereo systems under

real conditions because of the following reasons. First,

many datasets are static, so no events can be created and,

thus, no silicon retina output is available.

However, second (and this describes why it does

not work for us) all datasets acquired with conventional

video cameras do not represent the asynchronous, time-

continuous, event-driven spiking output of the silicon retina

chip properly. Challenging lighting conditions and fast

moving objects can be well handled by a silicon retina sen-

sor and are a less significant limitation than for conventional

video cameras. That is why we had to develop an approach

which uses real silicon retina output data for evaluation.

All these reasons motivated us to develop a new evalua-

tion approach for event-based stereo vision algorithms. The

usage of a highly sophisticated stereo matching algorithm

for reference data generation is a promising approach and

leads us towards our novel solution presented in this paper.

3http://www.mi.auckland.ac.nz/EISATS
4 http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging

Data for Stereo and Optical Flow/
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3. Ground Truth System Setup
The ground truth generation for the event-driven stereo

vision system is based on a conventional stereoscopic vision

system with two grayscale cameras. For this reason the used

grayscale camera system has to achieve at least twice of the

accuracy of the retina system, in order to use the generated

disparity information as a reference for the event-based sys-

tems under test. In the following figure 1, the stereo system

in the white box represents the silicon retina stereo system,

which is under test. This system has a rigid connection to

the grayscale reference stereo vision system above, which

is shown in the dashed bounding box.

Reference Stereo System

Silicon Retina Stereo System

Figure 1. Camera setup for ground truth generation. The white

box holds the embedded silicon retina stereo system which has a

rigid connection to the stereo system in the dashed bounding box

above, which acts as the reference stereo camera system.

3.1. Silicon Retina Stereo Sensor

As already mentioned above, a silicon retina sensor gen-

erates events if the intensity in the observed scene changes,

whereby an event encodes the pixel’s location, the time of

origin of the detected change, and the polarity. The sensor

system we used in this work features a spatial resolution of

304x240 pixels, a temporal resolution up to 10ns, and a dy-

namic range of 143dB. Further, and more detailed technical

information can be found in the work of Posch et al. [12].

An event is given as [13]: e(p, t), where t is the time of

occurrence and p = (x, y)T the spatial location of the pixel

which fires the event. However, an event can be set to the

following values

e(p, t) =

{
+1 I(p, t) > I(p, t−Δt)

−1 I(p, t) < I(p, t−Δt)
, (1)

depending on whether a positive or negative change of

illumination I over a period of time Δt was detected.

Each pixel of the sensor measures the intensity in an asyn-

chronous, time-continuous, and logarithmic way as follow-

ing [5]

d

dt
logI =

dI
dt

I
. (2)

If no change of intensity was detected, no events are gener-

ated and therefore no event data is transmitted. Thus, static

parts of the scene, e.g., background information, are com-

pletely suppressed by the sensor.

Before the depth map used in the test section can be cal-

culated by the stereo vision algorithm, the events transmit-

ted from the silicon retina cameras have to be converted into

grayscale images. Since events represent intensity changes

over time, they can easily be transformed into an grayscale

image by using the timing information for accumulating

them to frames, and the polarity to gather a gray value for

each pixel. Figure 2 shows the dataflow which generates the

grayscale images used in this work.

OFF-event
ON-event

timestamp

t0

tN

x-y coordinate
polarity

events firing
over time

data
transmitted for
each event

grayscale image build with
sent ON- and OFF events

}

Figure 2. Grayscale image generation: Events send time, coordi-

nates and polarity. Each event contributes to a grayscale value in

the grayscale image which collects all events within a certain time

(history).

For computing depth information from the generated

grayscale images, we use an area-based stereo matching

algorithm, which applies the Sum of Absolute Differences
(SAD) as cost function. The time used for generating

grayscale images is called history, and is, besides the win-

dow size of the matching kernel, the second configurable

parameter for the cost aggregation. The output of the al-

gorithm is a sparse disparity map, containing depth values

achieved from the input data. A more detailed information

of the used stereo matching approach can be found in the

work of Kogler et al. [4].

3.2. Grayscale Stereo Sensor (reference stereo)

The reference system used in this paper is based on

two Imaging Development Systems 5 (IDS) cameras (model

UI-1220SE-M-GL Rev.2) which are mounted on a rigid

baseline of 0.12m. The cameras transmit their images to

the PC, where the further processing takes place. The rec-

tified images are processed with an accurate and reliable

5http://en.ids-imaging.com/
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distance avg err error

1.0m 0.012m 1.20%

1.5m 0.017m 1.13%

2.0m 0.027m 1.35%

2.5m 0.040m 1.60%

3.0m 0.081m 2.69%

3.5m 0.117m 3.35%

4.0m 0.220m 5.48%

Table 1. Evaluation of the distance accuracy calculated from the

reference stereo vision system. In the testing range, the depth al-

gorithm output is compared with the real distance measured by a

laser distance meter.

census-based stereo matching algorithm. Details about the

stereo matching engine can be found in the work of Humen-

berger et al. [3].

For the measurement of the reference system’s accuracy,

objects were placed at different distances. All distances

were measured with a laser measurement device and com-

pared with the depth output of the stereo algorithm. The

accuracy was evaluated in the range where the tests took

place. In the experimental results section, test data in the

range of 1m to 4m was used, which is the range where the

accuracy of the reference system was also measured. The

average distance error in the range of interest is shown in

table 1. The results show that the reference system has in

close distances till 2.5m an error of less than 1.6%, and up

to 4m less than 5.48%.

3.3. Configuration of the Stereo Heads

For our purpose both stereo camera systems need to be

calibrated and registered onto each other, in a way that they

have a pixel congruent representation of the scene in front

of them.

3.3.1 Calibration

Before the stereo vision systems are ready to use, the stereo

heads are calibrated separately to each other. The refer-

ence system as well as the silicon retina stereo system use

the same calibration procedure as described in the work of

Zhang [19]. The only difference is the pattern used. For the

reference system the classic checkerboard calibration pat-

tern is captured in different positions to provide necessary

feature points. In contrast, the silicon retina system uses

a circle pattern flashing on a computer display to generate

stimuli for the retina sensors and later to extract the feature

points for the calibration step. In this case the computer

display or the silicon retina stereo camera can be moved to

capture the necessary different views. After the calibration

step, for both stereo heads all calibration and rectification

parameters are available, which are further used in the reg-

istration process.

3.3.2 Registration

For the registration of both cameras onto each other and the

achievement of a common understanding of the scene, the

left image is used as reference for the depth map. Therefore,

the registration will take place for the left view of the stereo

systems.

In a first setup we tried to register both camera systems

to a common world coordinate system. The results have

shown that the accuracy depends on the exact calculation of

the origin point and orientation of the world coordinate sys-

tem. This lack of accuracy leaded us to another approach

with more promising results. The approach introduced in

this work is based on homographs, which represent the pro-

jective transformation between two planar spaces. Due to

this fact, we use a homography H

pref = H · psr (3)

with psr, pref ∈ R
2 to connect both camera systems to

each other, and transform a point psr from the silicon retina

stereo camera to a point pref in the reference stereo camera

system. The homography H is determined to match a cer-

tain plane for the given feature points shown in figure 3. The

Silicon Retina (Left) Reference System (Left)

Figure 3. Left: silicon retina camera image, Right: reference im-

age. - The circles represent the exact feature points extracted and

crosses show the feature points transformed with the homography.

left image shows the silicon retina image with the feature

points psr from the left sensor, and the right image shows

the reference image feature points pref from the left cam-

era. All feature points represented by the green circles are

the exact extracted feature points. The blue crosses in the

right image, are the transformed feature points, estimated

with the calculated homography at a distance of 1m.

Using only this homography will lead to errors by ap-

plying it to other distances. This is the reason why the ho-

mography H was calculated at different distances d (in me-

ter), where d ∈ M := {1, 1.5, 2, 2.5, 3, 3.5, 4}. For each

of these distances the corresponding homography H(d) is

calculated using the singular value decomposition (SVD)

given by

[USV ] = SV D(D(psr(d), pref (d))) (4)
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with

D =

⎡
⎢⎢⎢⎢⎢⎣

pTsr1 · pref1(1,3), 0, 0, 0, (−pTsr1) · pref1(1,1)
0, 0, 0, pTsr1 · pref1(1,3), (−pTsr1) · pref1(1,2)

...

pTsrN · prefN (1,3), 0, 0, 0, (−pTsrN ) · prefN (1,1)

0, 0, 0, pTsrN · prefN (1,3), (−pTsrN ) · prefN (1,2)

⎤
⎥⎥⎥⎥⎥⎦
(5)

and N being the number of feature points. The last column

of matrix V represents the solution vector h = V (:, 9) ∈
R

9x1, which gives the coefficients of the homography H(d)
in the form of

H(d) = [h11h12h13h21h22h23h31h32h33]. (6)

After the SVD a refinement step fr given by

Hr(d) = fr(H(d)), (7)

to optimize the results and get the homography Hr(d) is

used.

After this step the homographs for the seven defined dis-

tances are available, but the distances in between are still

missing. For this reason an interpolation step was done to

determine a polynomial function of the degree 4 to approx-

imate the homography of each position in the distance be-

tween 1m - 4m. All the homographs calculated in 7 for the

distances d ∈ M , are used to calculate the coefficient vector

C ∈ R
5x1. The polynomial curve fitting function fp is used

to calculate the vector C for each element of the homogra-

phy H = (hi,j)i,j=1..3 with

C(h(i, j)) = fp(Hr(d, i, j)) ∀ d ∈ M. (8)

Now, for a certain distance dn all elements of the vector C
are used to calculate with

Hn(dn, i, j) = C(h(i, j)1) · d4
n + C(h(i, j)2) · d3

n+

C(h(i, j)3) · d2
n + C(h(i, j)4) · dn + C(h(i, j)5)

(9)

the elements of a new homography Hn. The next section

presents the test of the homography calculation process.

3.3.3 Testing Registration

For checking the accuracy of the homographs in the dis-

tances dn ∈ Mn := {1.25, 1.75, 2.25, 2.75, 3.25, 3.75} (in

meters), the coefficient vectors C described in equation 9

are used. In table 2 the displacement of the calculated pixel

positions in relation to the real measured pixel positions in

x- and y-direction are shown. The average pixel error in x-

and y-direction is less than 2 pixels, which is a promising

result and the reason why using this approach for further

tests is reasonable.

distance avg pix avg pix

err x err y

1.25m 0.83 1.50

1.75m 0.67 0.67

2.25m 0.67 1.67

2.75m 0.17 0.67

3.25m 0.67 0.83

3.75m 1.67 1.33

Table 2. Accuracy and displacement of the calculated pixel po-

sitions in relation to the real measured pixel positions in x- and

y-direction

4. Experimental Results
For the test of the novel evaluation method for silicon

retina stereo sensors, three different test cases are used, to

demonstrate and present the performance of the new method

in comparison to the approach used till now. In all test

cases the stereo sensors are static, without movement, and

observe a dynamic scene.

In figure 4 all three test cases are shown. Figure 4(a)

shows a laboratory scenario where a planar disc with a

printed pattern is rotating at a fixed distance (1.5m) in front

of the stereo sensors. In figure 4(b), the torso of a human

body is shown, where a distance range of 1.1m from the

hands till 1.7m of the head is covered, which represents a

more closer real world scenario than the rotating disc. Fig-

ure 4(c) shows two persons walking around in 2m and 4m

distance. This scenario was chosen to have a real world sce-

nario with different objects at different distances, and where

the object shape is not represented by a plane.

For all three test cases the average distance error eavg
in meter was calculated. Therefore, all depth values psr =
(x, y)T of the depth map DMsr generated by the silicon

retina based stereo algorithm are processed with

eavg =
∑

psr∈DMsr

|DMsr(psr)−DMref (Hn · psr)|, (10)

whereby the depth values must fulfill the following con-

straint

∀psr ∈ DMsr|DMsr(psr) �= 0 ∧DMref (Hn · psr) �= 0.
(11)

Here, DMref is the depth map used as ground truth data

calculated by the reference stereo system.

The error was processed for different window sizes of

the SAD stereo correlation and different history times (ac-

cumulation times) for grayscale image generation, of the

silicon retina data stream. All results of the new approach

were compared with the outcome of the old method, where

all depth pixels were compared with a fixed distance, and

are illustrated in figure 5.
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(a) (b) (c)
Figure 4. Reference depth images from all three test cases; (a) planar rotating disc in 1.5m, (b) torso of a human body in a distance range

of 1.1m-1.7m, (c) two independent persons (objects) in 2m and 4m.
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Figure 5. Average distance error of all three test cases - (a) shows the results of the rotating disc in a fixed distance, (b) shows results of

the human torso with different distances in the foreground, (c) shows the results of two persons walking around - Square marks in the plot

show the results of the new approach in comparison to the circle marks which represent the outcome of the old evaluation approach.

Figure 5(a) shows the result of the rotating disc, where

the average distance error between the old and new method

was minimally increased by around 0.02m. In this case the

improvement is not significant, because the rotating disc is

represented by a single plane and also the old evaluation

method is quite accurate. The usage of longer histories gen-

erate higher error rates because of the rotating disc, which

moves on and more events are collected which do not rep-

resent the current position of the disc (motion blur).

The results of the second test case, the torso of a hu-

man body, are depicted in figure 5(b). In the case, where

different distances are available, the improvement of the

new method in contrast to the old one is much more sig-

nificant. The old method evaluates all torso depth values at

one pre-defined distance value, and therefore, the average

error over all input datasets was increased by approximately

0.2m. Within this test case it is good to see that there is a

continuous improvement of the data, if larger window sizes

are used, and if the history of the event stream is increased

to collect more events to match.

In the last test case, shown in figure 5(c), two persons in

2m and 4m distance were evaluated. Here, the old method

performs worse because the evaluation of all depth values

referred to one distance value. In this case we measured

and compared all depth values of the scene with an arti-

ficial distance of 3m, which produces an average distance

error of 0.8m with all different SAD results. In this real

world scenario, the new approach achieves a much more

accurate result. The measured average distance error was

between 0.2m and 0.4m depending on the window size and

event stream history. Furthermore, this test case shows also

the outage of the old method on testing different algorithm

settings. Different window sizes and histories have less

or no influence on the output or show a behavior which

is not related to the algorithm’s performance. However,

the new method facilitates a more exact evaluation of the

stereo matching results, which visualizes the impact of dif-

ferent sets of parameters of a stereo algorithm applied on

real world data. As a consequence, the new method is well

suited for the development and evaluation of new stereo vi-
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sion algorithms and their settings.

5. Conclusion
In this work we presented a novel approach to gener-

ate ground truth data for stereo vision systems based on

silicon retina cameras. For conventional stereo systems,

various ground truth datasets and methods to generate new

datasets are available. Event-driven silicon retina based sys-

tems cannot be evaluated with these datasets and also spe-

cific datasets for retina sensors are not available. Up to now,

only fixed objects at fixed distances were evaluated, but this

does not represent real world scenarios were different ob-

jects at different distances along with various shapes and

speeds are present. The introduced approach uses a video

based stereo sensor with a sufficiently high accuracy and

registers the stereo sensors’ data onto each other with ho-

mographs. This method allows not only the evaluation of

stereo matching results, but is also accurate enough to visu-

alize the effect of different parameter sets. In all test cases

the generated ground truth data provided accurate and com-

parable results. The results show that the new evaluation

method with ground truth data enables the development of

silicon retina based stereo matching algorithms and their

comparison on real world datasets. In further research, new

silicon retina based stereo matching algorithms will be de-

veloped and evaluated with the proposed approach. A dif-

ferent application of this method is also the fusion of 3D

data, generated by different sensor technologies.
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