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Abstract

This paper investigates the use of synthetic 3D scenes
to generate ground truth of pedestrian segmentation in 2D
crowd video data. Manual segmentation of objects in videos
is indeed one of the most time-consuming type of assisted
labeling. A big gap in computer vision research can not
be filled due to this lack of temporally dense and precise
segmentation ground truth on large video samples. Such
data is indeed essential to introduce machine learning tech-
niques for automatic pedestrian segmentation, as well as
many other applications involving occluded people. We
present a new dataset of 1.8 million pedestrian silhouettes
presenting human-to-human occlusion patterns likely to be
seen in real crowd video data. To our knowledge, it is the
first publicly available large dataset of pedestrian in crowd
silhouettes. Solutions to generate and represent this data
are detailed. We discuss ideas of how this ground truth can
be used for a large number of computer vision applications
and demonstrate it on a camera calibration toy problem.

1. Introduction
Computer vision problems related to scene understand-

ing are so complex that they generally cannot be solved us-

ing human-designed heuristics. The main breakthroughs in

last few decades has always been triggered by the introduc-

tion of new (or old) machine learning techniques to detect

and recognize those objects. This kind of approach is not

fully satisfying as the learning is often object-specific (i.e.

it will only detect one object class: face, body, eye, car, and

so on). None-the-less these techniques have been very ef-

ficient at solving a wide range of problems and have found

many real-world applications in industry. One of the prac-

tical caveats with learning techniques is that a consequent

amount of training data is required. In some cases it is pos-

sible to provide that ground-truth data manually or semi-

automatically. This can be done either by a small group of

people or by crowd sourcing (e.g. [2]) the labeling problem.

Unfortunately, it is most of the time unpractical to use ei-

ther of these “human-in-the-loop” techniques. Some of the

main obstacles to produce human-supervised ground-truth

are the lack of efficient semi-automatic labeling methods,

training size requirements that make even simple monitor-

ing/correction approaches too costly, and labeling quality

requirements since intra and inter-human repeatability is not

always tight enough.

Here we encounter a classic dead-lock problem where

the data needed to design an automatic labeling system can

not be reasonably obtained without an automatic labeling

system in the first place. We propose to break that loop by

using synthetic data to produce a first large set of ground

truth silhouettes. We expect that it will help the develop-

ment of better segmentation methods that in turn can be

used to extract ground truth data from real video scenes with

limited supervision.

In the next sections we detail the problem and related

work on the subject before presenting the dataset and how it

was generated. We then demonstrate on a toy problem how

this data can be used to answer new questions and discuss

the many possible applications this data can be used for.

2. Related Work
Most benchmarking videos used for pedestrian track-

ing offer no ground truth segmentation. The data usually

provided consists of labeled rectangular bounding boxes

around each pedestrian occurrence. A few datasets come

with ground truth segmentation like [4] and [5], however

the ground truth is only given for a few frames in the se-

quence. This is already praiseworthy as manually segment-

ing video is a very time-consuming task. It appears that no

video dataset provides temporally dense segmentation. It

has to be noted that there is no efficient tool to manually

segment video. Some tools designed for tracking provide

some contour detection functionality (e.g. [9]) but nothing

that can be used for complex scenes.

In theory, 3D vision could really help the generation of

ground truth segmentation for 2D videos (e.g. [3]). Seg-

menting objects or people using the depth information is

indeed very easy. Once the segmentation is known, it can
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Figure 1. The dataset of 1.8 million pedestrian silhouettes can be visualized as a smooth 3.7 billions pixels pyramidal image. The right-most

image is magnified 256 times.

be adjusted for the 2D color video. However it has not been

used for pedestrian video datasets. Indeed, active 3D vision

(e.g. structured light) camera usually have narrow recon-

struction volumes and/or have trouble to capture outdoor

scenes. Passive 3D vision reconstruction (e.g. stereo vi-

sion) is still difficult especially when dealing with uniform

texture. In conclusion, there is no easy way to perform ma-

chine learning research on pedestrian segmentation for now

and the main limiting reason is the lack of data. Using 3D

synthetic human models to help computer vision applica-

tions is not a new idea. It was used in [10] for gait analysis

applications, in [11] and [14] for action recognition using

silhouettes, and in [13] to train the Microsoft Kinect body

pose recognition system. To our knowledge, the dataset pre-

sented here is the first to provide individual pedestrian seg-

mentation for crowded scenes and probably represents one

of the largest human silhouette collections available to re-

searchers.

3. Crowd Generation
Our dataset has followed the same guidelines for its

creation as the recent synthetic crowd dataset AGO-

RASET [1]. In this setting, 25 different avatars were used

to produce an animation of four groups of 16 people going

in opposite directions. In the middle of the crossing, a tan-

gled pattern emerges as each pedestrian is trying to find his

way through the crowd. The simulation model is a varia-

tion of Helbing’s social force model [1] which guarantees

that each pedestrian’s path is collision free. Regarding the

different avatars’ animations, a walking motion capture file

was used to drive the pedestrian skeletons. The playback

speed for this motion was dynamically adjusted so as to

match the current pedestrians velocities. The rendering was

performed thanks to the commercially available Maya soft-

ware. The rendering setup was adjusted so as to cancel any

anti-aliasing filters that would have impaired the quality of

the segmentation. As depicted in Figure 2, several cameras

were positioned so as to render the different views of this

scene. Using a simple polar parametrization, the azimuth

Figure 2. Simulated crossing scene along with the 64 camera con-

figurations used to obtain the dataset.

and elevation angles distribution was discretized along a

8 × 8 grid. As a result, 250 frames were rendered through

64 cameras. In order to generate the silhouette, the scene is

rendered with each pedestrian represented with plain colors.

The colors are defined as a function of the pedestrian id in

such way that any two pedestrian colors differ significantly

and so that the inverse function is robust to noise. The in-

verse color function is used on the virtual camera output

to produce 16-bit gray-level images where each pixel value

corresponds to the pedestrian id. A 16-bit representation

was chosen to allow more than 255 pedestrians in future

scenes.

4. Dataset content

Extracting each individual silhouette from the global 16-

bit mask is straightforward using thresholding filters on

pixel values. The resulting image can be trimmed to a mini-

mal bounding box and saved. Since all the parameters of the

scene are known, we can also output for each pedestrian the
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Figure 3. Toy problem: Is it possible to retrieve the camera tilt

angle by solely using people shapes (N.B. not their size)?

number and identities of its occluders. To do that we con-

sider that if two pixels associated with two different pedes-

trian touch each other, one of the pedestrian is occluded by

the other. We select the occluder as being the one closer

to the camera in that view using the absolute coordinates

of the pedestrians (provided with the database). Pedestrian

masks that are occluded by the image border get an addi-

tional occluder of label -1. This can be used to easily split

the database into occluded and non occluded masks. The

occluders’ metadata is provided with the dataset.

From the 64 different views of 64 pedestrians in 250

different frames, we obtain 903,103 non-empty pedestrian

masks. Since the mirror image of each mask is also a valid

mask we end up with 1,806,206 individual silhouettes. In

this dataset, 808,666 of the 1.8 million silhouettes are non-

occluded. The complete set of silhouettes is shown as a sin-

gle 3.7 billions pixels pyramidal image on the first author’s

website 1. Figure 1 shows a sample zoom on the dataset.

In addition to the 16-bit images, a number of other

ground-truth data is provided with the dataset. The bound-

ing boxes for each pedestrian in each frame, their position,

direction and speed in the global space referential, the skele-

ton data, the list of occluders for each pedestrian and for

each camera, the association between avatar and pedestrian,

the vertical angle for each pedestrian in each view (see sec-

ond part of the article), as well as all camera parameters.

5. Practical Example: Retrieving the Camera
Tilt Angle Using People Shapes

Is it possible to determine some camera parameters by

only using the shape of the people in the video? In this

section we present a toy problem where we try to find the

tilt angle view α of one camera upon a crowded scene, even

if only a single frame is given (see Figure 3). This proof

of concept is designed to demonstrate the usefulness of our

proposed ground-truth data to allow existing problems to be

solved with original data-driven approaches.

1http://clementcreusot.com/pedestrian/

5.1. Simplification

The toy problem presented here only focuses on one

camera calibration parameter (the tilt angle of the camera

relative to the floor) to make the article more accessible to

non-specialists. For example, determining the distance of

the camera to the ground cannot be done without measuring

something in the scene. This can be achieved by using a

distribution of human heights or other techniques but it has

no direct interest for our demonstration. Similarly the roll

of the camera around his axis can be determined for low an-

gle views by detecting vertical direction in the scene (like

upright humans). As a first simplification, we will assume

in the remainder that the camera is upright.

Camera parameters are divided in two categories: Intrin-

sic (like the focal length, principal point and image for-

mat(dimension of the sensor area) and extrinsic (like the

position and orientation relative to other referentials). Here

we assume an ideal pinhole camera model since distortions

would not in any case matter for the type of scene and pre-

cision we are targeting. In practice, the intrinsic parameters

do not cause many difficulties since most of them do not

change over time (like the sensor size). In most cases, only

the focal length varies, e.g. for zooming cameras. In this

proof of concept we consider the focal length to be fixed.

Note that when the view angle is retrieved, the focal length

can be approximated using the formula in Figure 6 over a

large set of silhouettes. This is not discussed here.

The main issue in uncontrolled environments are the ex-

trinsic parameters. The position and orientation of the sen-

sors is difficult to determine in large scale environment and,

also, might change over time. Here the camera angle re-

trieved is relative to the ground floor and is positive, i.e. we

consider the tilt angle of the camera rather than its pitch.

Note that in real life situations, getting the pedestrians’

silhouettes using a simple 2D camera is very difficult. Here

we first evaluate what the calibration performance would be

if the segmentation problem was solved.

5.2. Rapid background

The idea of calibrating cameras using pedestrians is not

new. Indeed, in most cases the aim of camera networks is

to monitor people. Trying to use pedestrians as calibration

devices is therefore a natural endeavor. Usually, calibra-

tion using pedestrians is done using the known or assumed

heights of individuals in the picture [6][8][7]. In [6], the

main assumption made is that the height of one person is

stable throughout the gait motion. If the floor is flat and the

camera still, you can draw the projection of parallel lines

(in the 3D scene) by joining respectively the top head points

and the bottom foot points of a single subject between frame

p and q. Repeating this allows to get vanishing points that in

turn can be used to determine the camera parameters. This

foot-head homology method is interesting but can only be
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α 10 20 30 40 50 60 70 80

αy 13.6 27.3 40.4 53.0 64.7 75.8 86.4 96.9

Figure 4. Variations in pedestrian shape at position (x, y) w.r.t. the

camera tilt angle α. Note that extracting a foot-head vector for

high tilt angle view is impossible using naive top/bottom pixels

selection.

used in very restricted conditions. First you need to track

the individual within the video to be able to create those

parallel lines and this can be a challenging task. Second,

you need to determine the segment representing the per-

son’s height (top and bottom point), this is possible if the

view angle is low but become impossible when the view tilt

angle reaches 60 or above (see Figure 4).

In [7], cyclical inferences between object detections

(cars and pedestrians) and the scene geometry are used

to refine the camera position hypothesis for low tilt angle

views.

In [8], the vertical vanishing point is computed us-

ing a RANdom SAmple Consensus (RANSAC) on verti-

cal blob direction candidates extracted from a large number

of pedestrians. The discovered vertical directions are then

used to detect the head and foot points in each blob to com-

pute the horizontal plane by a least mean square regression.

The focal length is determine using hypothesis testing based

on the known human heights distribution.

To our knowledge nobody has ever tried to learn the

viewing angle using the shape of people’s silhouettes. The

closest related idea was found in [12], where the authors

proposed to retrieve the camera angle using the ratio be-

tween the width and height of the pedestrian bounding box.

However they did not use it in their final results.

Using people as measurement devices is not likely to

work for a single person on a single frame but accumula-

tion of clues from different people over time can give good

approximations.

5.3. Setup

For our proof of concept the silhouette dataset was split

into two disjoint parts. The training set is composed of 42

pedestrians (Ids 0-13, 25-38 and 50-63) corresponding to 14

avatars (0-13). The test set is composed of 22 pedestrians

(Ids 14-24 and 39-49) corresponding to 11 different avatars

(14-24). Figure 5 shows how the training and testing set are

constructed.

This experiment is designed with video surveillance ap-

Figure 6. During training, the angle αy is stored for each silhouette

in the feature space.
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Figure 7. Distribution of αy angles in the train and test sets.

plications in mind, we therefore assume that the camera

looks down on the scene, i.e. the world projection of the

camera principal point is located under the horizon (so that

the camera center axis intersect the ground plane).

In the offline part of the method, all training sequence

masks are extracted to compute their representation feature

vector and the relative view angle at which they are seen in

the scene (see Figure 6). This angle can only be computed

for a point, not for a whole object. The center bottom pixel

of the pedestrian bounding box is used as a reference to

determine αy . The distribution of these angles in the train

and test sets are given in Figure 7.

In the online part the input is a non-empty sequence

of frames. For all the silhouettes in the sequence above a

threshold area, feature vectors are computed. The view an-

gle associated to the nearest neighbor in the feature space is

retrieved. From this points two approaches are considered:

1. Simply averaging the angle returned by the matching

process (we eliminate outliers using the 3-sigma rule).

2. Using all the angles associated with all the positions

of the silhouettes in one frame to compute a regression

of the view angle plane. Here a simple least square re-

gression is performed. The angle for the center pixel of

the camera is returned as the view angle for the frame.

709709709715



Random View Extracted Training Extracted Test view

Figure 5. Each scene view is split in two according to the pedestrian avatar group: train or test. This guaranty that all testing silhouettes

represent previously unseen pedestrians.

Orig 16x32 8x16

(a) Shape Descriptors

Features Silhouettes

(b) 3 Nearest Neighbors (8x16)
Figure 8. Simple descriptors for shape matching.

The second approach requires all pedestrians to navigate on

the same horizontal plane and assume the arctangent func-

tion in the αy computation can be approximated by a linear

function. This is true when the focal length is larger than

half the sensor height. For example with a 35mm focal and

a 36mm sensor, the function varies between arctan(−0.51)
and arctan(0.51) and is almost a straight line. Results are

given for all scenes with view angles between 10 and 80

degrees vertical angle for 100 frames (200 to 300). This

represents 6400 different test images.

The features used to retrieve the angle are very coarse,

the bounding box of the pedestrian silhouette is simply re-

sized to fit a 16x32 (feature 1) or a 8x16 (feature 2) matrix

which is serialized to a single feature vector. The matching

is done by retrieving the first nearest neighbor in the fea-

ture space (see Figure 8). In the next Section we investigate

how the results vary depending on several parameters of the

system.

5.4. Results

For the toy problem presented here only synthetic video

sequences have been considered. In order to test this idea

on real data we would need both camera calibration ground-

truth and dense segmentation ground-truth on the same se-

quences.

Prediction-combination strategies In Figure 9, we show

the angle estimation errors obtained with our two ap-

proaches. A surprising fact is that even by simply averaging

the angle estimation for each pedestrian in the scene we ob-
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tain errors under 10 degrees for low angles view and under 4

degrees for high tilt views. Please note that this is achieved

by looking at a single frame only. Using a plane regres-

sion to retrieve the camera tilt angle seems beneficial for all

angle views, lowering the error to under 7 degrees for low

angle view and under 3 degrees for high tilt angles.

The difference of accuracy between low and high angle

views seems to come from the shape matching approach.

In Figure 10, we show the number of test silhouettes per

frame. It can be seen that the total number of silhouettes is

smaller for lower angles. Indeed, people in the foreground

sometimes completely occlude people in the background.

For the same reason the number of non-occluded masks is

very low. Our shape matching mechanism does not know

whether a shape is occluded or not, it just finds the closest

looking shape seen in training. We think that developing an

occlusion-aware shape comparison system might reduced

the performance gap between low and high angle views.

Number of frames per prediction In Figure 9, we also

compare the mean error according to the number of frames

710710710716
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used for the angle estimation. As expected using more

frames lowers the mean error but also reduces the devia-

tion and worse case errors (maximum angle). Surprisingly

however, the errors do not seem to converge to zero when

the number of frames increases, as seen in Figure 11. These

systematic errors toward which they converge seem to be

small, but stable. The fact the error is constant for a given

view angle is very interesting. We have not found any valid

explanations for such behavior yet. It might be due to the

fact we use the bottom of the bounding box to compute the

angle αy . This approximation has more impact on lower

angle views.

In Figure 12 we show some visualization results obtained

with our technique and a known focal length. The camera

angle is used to create a virtual ground plane below the fore-

ground silhouettes. The quality of the ground reconstruc-

tion and variation over frames are better seen in video (See

supplemental material - http://clementcreusot.
com/pedestrian/). While answering an interesting

theoretical question about pedestrian shape, this work can-

not yet be used on real life sequences as the people seg-

mentation it requires is very difficult to obtain with current

vision systems.

6. Discussion
In the field of segmentation, prior data is rarely consid-

ered. Most segmentation techniques are heuristic in nature

or rely on very local learning (for example pixel color dis-

tributions). The contour of objects being often sufficient

to recognize objects/postures, one might consider using sil-

houettes to help segmentation using machine learning tech-

niques. This is our main focus for future work using this

dataset.

We can imagine numerous other applications for which

this data can be used. For example it might be possible

to retrieve a person’s orientation from its silhouette which

might be of interest in terms of attention detection, urban

planing, and advertisement study. Detecting if a silhouette

is occluded or not can also be done by using two-fold classi-

fication methods. If a statistical model is constructed from

the database it is in theory possible to reconstruct an esti-

mate of the occluded part of a pedestrian. This can be very

useful in highly crowded scenes where the level of occlu-

sion is important.

While our ground-truth dataset of silhouettes can still be

improved in terms of variability (limited number of avatars,

gait, situations, lack of accessories and non-human occlu-

sions) it is much more precise than any manually acquired

pedestrian video segmentation. The strong point of our

dataset is that it is temporally dense, pixel accurate, that

it presents a variability large enough to generalized to pre-

viously unseen people, and offers a large amount of human-

to-human occlusions.

References
[1] P. Allain, N. Courty, and T. Corpetti. Agoraset: a dataset for

crowd video analysis. In Proceedings of the 1st International
Workshop on Pattern Recognition and Crowd Analysis, 2012.

[2] Amazon. Mechanical turk. http://www.mturk.com.

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV (1), pages 44–57, 2008.

[4] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In Proceedings of the 11th Eu-
ropean conference on Computer vision: Part V, ECCV’10,

pages 282–295, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] K. Fragkiadaki, W. Zhang, G. Zhang, and J. Shi. Two-

granularity tracking: Mediating trajectory and detection

graphs for tracking under occlusions. In ECCV (5), pages

552–565, 2012.
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