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Abstract

We propose a learning-based method for detecting car-
ried objects that generates candidate image regions from
protrusion, color contrast and occlusion boundary cues,
and uses a classifier to filter out the regions unlikely to
be carried objects. The method achieves higher accuracy
than state of the art, which can only detect protrusions from
the human shape, and the discriminative model it builds
for the silhouette context-based region features generalizes
well. To reduce annotation effort, we investigate training
the model in a Multiple Instance Learning framework where
the only available supervision is “walk” and “carry” labels
associated with intervals of human tracks, i.e., the spatial
extent of carried objects is not annotated. We present an
extension to the miSVM algorithm that uses knowledge of
the fraction of positive instances in positive bags and that
scales to training sets of hundreds of thousands of instances.

1. Introduction

In the field of visual surveillance one of the important

problems that has received increased attention in recent

years is the detection of objects carried by people. The

train bombings carried out in Madrid and London in recent

years are strong incentives for a computer vision solution,

but there are also other applications, especially military,

that require awareness of object presence. While signifi-

cant progress has been made in detecting and tracking hu-

mans, the variability in the appearance of the objects people

can carry makes carried object detection a very challeng-

ing problem. Capturing the relationships of the object with

the human silhouette is also hard, as objects may or may

not have color contrast with clothing; may occupy a small

fraction of the human silhouette or can be comparable in

height with the human; may be carried by hand, under the

arm, with both arms, or on the back. Finally, objects may

∗This research is supported by ONR grant N000141010766.

be swung or held still and they may be occluded in some of

the frames in which the human is observable.

The most successful approaches so far to finding carried

objects have extracted a foreground mask of the human and

then matched and subtracted a generic body template (ei-

ther 2D [9] or 3D [22]), returning the protrusions as objects.

While this approach is intuitively appealing, it cannot detect

objects in the frequent case when they are mostly inside the

human silhouette, in the 2D setting, and it requires a stereo

camera moving among people, in the 3D setting. Directly

using other cues such as color and motion to find carried

objects is bound to produce numerous false alarms corre-

sponding to the head, feet, hands, or just noise, but for hu-

man vision it is easy to distinguish body parts from carried

objects when displayed together with the human silhouette.

We propose a method to detect carried objects that applies

three types of low level detectors inside human bounding

boxes (based on protrusions, color contrast and occlusion

boundaries) and models the resulting image regions as car-

ried objects with a kernel SVM on features related to the

human silhouette context.

As the performance of the classifier is directly related to

the size of the training set, and as the object annotation pro-

cess is time consuming (roughly 40,000 precise bounding

boxes are needed for one of the datasets in this work), we in-

vestigated using a multiple instance learning (MIL) frame-

work. MIL, introduced by [10], departs from the classic su-

pervised learning setting by making labels available for sets

of instances (bags) rather than individual instances; in each

positive bag there is at least one positive instance while all

the instances in negative bags are negative. In our setting,

instances are image regions produced by low level detec-

tors and bags are sets of instances from intervals of human

tracks annotated as “walk” (no carried object) or “carry” (at

least one object), and we focus on instance level classifica-

tion. Most MIL approaches are computationally intractable

for our datasets (our problems range from approximately

12,000 to 192,000 instances), and the few that are tractable–

miSVM [3] and sbMIL [6]–can have significantly lower test

set accuracy than a fully supervised classifier. Observing
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that our low level detectors produce a roughly constant frac-

tion of correct regions when the human is carrying an ob-

ject, we extend miSVM to adjust the fraction of positive

labels in positive bags accordingly at each iteration.

Our contribution is two fold: (1) we propose a novel

learning-based method for carried object detection with ac-

curacy exceeding state-of-the-art and with good generaliza-

tion capability; (2) we extend the miSVM algorithm to ac-

count for an expected positive bag density, achieving im-

proved accuracy for virtually the same computational cost.

2. Related Work
The majority of papers on carried object detection fol-

low the pattern of estimating the pixel mask of the person

and object, subtracting from it a human template (either ab-

stract or learned from data) and returning the remaining re-

gions. Haritaoglu et al. [16] used background subtraction,

averaged human masks temporally, and relied on the sym-

metry of the walking human silhouette around a principal

axis and on the periodic nature of limb motions. Lee and

Elgammal [18] proposed a generative silhouette appearance

model parameterized by viewpoint, body proportions and

gait phase, and iteratively estimated these parameters to-

gether with holes in the foreground mask and outlier regions

(carried objects). Noting the sensitivity of Haritaoglu et al.’s

method to the principal axis estimate, Damen and Hogg [9]

matched and subtracted synthetically rendered templates of

unencumbered humans. To select the correct template, they

require a ground plane homography and an estimate of the

walking direction. The most recent work related to carried

objects utilized a cylindrical 3D shape representation of hu-

mans both in a tracking-before-detection framework and for

carried object detection [22]. 2D template subtraction ap-

proaches are limited to discovering objects that significantly

protrude from the silhouette and their accuracy is dataset

dependent – the results section shows Damen and Hogg’s

method [16] performing poorly when people wear robes.

To improve both the recall and the precision of 2D carried

object detection, we propose using multiple sources of can-

didate object regions and then pruning these candidates in

the context of the human silhouette.

Interesting context modeling work by Zheng et al [28]

effectively combines the appearance of an object with

that of its neighborhood. Other efforts focus on deciding

whether people carry something or not, without providing

an actual location for the object [26] [23]. While know-

ing carrying status is valuable, precise object masks are di-

rectly usable in important higher level tasks like detecting

abandoned objects, theft or object exchange. Unfortunately,

much more annotation effort is involved in learning-based

methods that explicitly localize objects, but we adopt a MIL

framework and still require only weak supervision in the

form of carry status.

The Multiple Instance Learning literature is extensive,

covering aspects as varied as discovering a single concept

shared by positive but not negative bags [21], finding the

most appropriate exemplar embedding [8], explicitly fac-

toring in the cost of false positives in the classification task

[15], to give just a few examples. As Li et al. [20] noted,

most approaches that can classify instances have prohibitive

training cost. An exception is the miSVM framework of

Andrews et al. [3], who cast MIL as a mixed integer pro-

gram involving the labels of instances in positive bags and

the parameters of the separating hyperplane, and solved it

with an iterating heuristic with good performance in prac-

tice. Gehler and Chappelle [13] added to the SVM formu-

lation of [3] a term correlated to label uncertainty that al-

lows finding better local minima of the objective function.

However, this leads to very high computational cost if the

number of instances in positive bags is large, since the SVM

solver sees these instances duplicated as both positive and

negative. The approach most directly applicable to our set-

ting is due to Bunescu and Mooney [6], who loosened a

constraint in their SVM formulation so that as few as one

instance per positive bag can be labeled positive. The re-

sults of their approach are inferior to miSVM [3] in our

problems, which we believe is because too few of the ac-

tual positive instances are labeled positive.

A few researchers used MIL to cope with noisy labels

when learning from images retrieved with search engines

[27] [20] [19]. Li et al. [20] leveraged the constraint that

the fraction of positives in a positive bag is relatively large

(0.6) and proposed an iterative scheme that trained on an in-

creasingly larger number of bags. In [19], they reduced the

high computational cost of the optimization run in each it-

eration and updated a separating hyperplane incrementally.

It is very unlikely that these two methods would be applica-

ble to our problem setting, as the positive bag density varies

from 0 to 0.5 and the decision surface has to make multiple

local distinctions between various objects and body parts.

Lastly, two papers bear superficial resemblance to our

work. Fathi et al. [11] used egocentric video to learn to

discriminate between object appearances with little super-

vision. While both works learn to classify image regions in

a MIL framework, the problems considered are significantly

different: [11] employs multi-class MIL for relatively small

training sets, while we use two class MIL for large amounts

of data. Ghanem and Davis [14] also adopted a learning

approach in connection to carried objects, but could only

predict object appearance/disappearance events holistically.

3. Low Level Detectors
Our method assumes that human tracks are available

and runs background subtraction [17] and optical flow [24].

Next, three types of image region detectors are run: an op-

tical flow-based protrusion detector, a segmentation-based
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(a) (b) (c)

Figure 1: Sample output of low level detectors: (a) opti-

cal flow-based protrusion (b) segmentation-based color con-

trast (c) occlusion boundary-based moving blob. Each of

these is too noisy as a carried object detector, but human

silhouette context can be used effectively to filter its output.

color contrast detector and an occlusion boundary-based

moving blob detector, see Figure 1. The three detectors are

simple but have high probability of finding carried objects if

they exist; if none of them fires during an interval in which

a person is carrying an object, then most likely the object

does not protrude, has poor contrast, and is static with re-

spect to the body – an extremely hard target to find. We

ignore such cases and instead address the problem of dis-

ambiguating between image regions corresponding to body

parts/noise versus those that are carried objects, using the

context of the human silhouette. With respect to [9], we

additionally require optical flow but we improve on their

detector (section 3.1), use two additional detectors and em-

ploy a mechanism to select the correct regions.

3.1. Optical Flow-based Protrusion Detector

The optical flow-based protrusion detector builds a prob-

abilistic mask for each human bounding box that reflects

how close the motion of a pixel is to the average translation

in the box. We call this the carried probability mask (CP)

and we define it by assuming that the projection of a pixel’s

velocity on the average translation is normally distributed:

CP (p) ∝ exp

⎛
⎜⎝−

(
w(p)·w̄
|w̄|22 − 1

)2

2σ2

⎞
⎟⎠ (1)

where w(p) = (u(p), v(p)) is the optical flow vector at

pixel p = (x, y) and w̄ is the mean optical flow of the points

in the human bounding box. (To compensate for camera

motion, the average optical flow over the image is sub-

tracted from all optical flow vectors.) We visualized CPs for

a range of σ’s, observed that smaller values produce holes

and larger values overestimate the human shapes, and chose

σ = 0.4 for all videos we process. Limbs swinging opposite

to the walking direction tend to be removed, which is advan-

tageous over using background subtraction masks as in [9],

since the temporal aggregation for noise reduction can be

done effectively on a smaller time interval, e.g. 9 frames as

opposed to 50 needed by [9]. We aggregate the CP masks

by simply translating them opposite to the average optical

flow vector and call the thresholded resulting mask average

carrying shape (ACS). The ACS’s of unencumbered pedes-

trians tend to be urn-shaped regardless of viewpoint, which

allows matching against a single urn+head template with

shape contexts [4] and then retrieve protrusions, see sup-

plemental material. Compared to our protrusion detector,

Damen and Hogg [9] incur the disadvantage of needing a

ground plane homography and an estimate of the walking

direction to select the proper template.

3.2. Segmentation-based Color Contrast Detector

The color contrast detector runs mean shift clustering on

the foreground mask obtained with background subtraction.

Foreground pixels are represented with [0, 1] normalized

rgb and image positions (the positions are normalized with

respect to the human bounding box). The clustering band-

width is set to 0.2 for all videos in all datasets; other values

do not lead to significantly different segmentations with re-

spect to the carried objects. This detector is designed for

situations when the object’s color clearly stands out from

the colors of the human silhouette, as in Figure 1b. As the

figure shows, many false positives occur, but a large portion

are meaningful parts of the silhouette e.g., body and head.

3.3. Occlusion Boundary-based Moving Blob De-
tector

If the person moves the carried object with respect to

the body or changes viewpoint while walking, occlusion

boundaries will likely appear around the object. To detect

them we employ criteria from [25]: occlusion boundaries

are pixels where the flow forward from a frame is inconsis-

tent with the flow back into the frame or where the flow gra-

dient has large magnitude. With respect to [25], we tighten

the first condition and loosen the second, requiring more

consistency but allowing for larger gradient magnitudes:

|w(p)+w′(p′)|22 > 0.01(|w(p)|22+ |w′(p′)|22)+0.01 (2)

|∇u(p)|22 + |∇v(p)|22 > 0.01|w(p)|22 + 0.01 (3)

where p′ = p + w(p) and w′ is the backward optical flow

field. Superimposing the boundary mask on the foreground

mask from background subtraction segments the latter into

candidate regions. Empirically we observe this detector fre-

quently finds people’s heads and feet.
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4. Learning a Model for Carried Object Re-
gions

The candidate image regions retrieved by the low level

detectors are filtered to remove noise: regions less than 10
pixels in width or height, or greater than half the size of

the human mask are eliminated. We also use a compact-

ness filter requiring a region to occupy at least half its min-

imum area (not necessarily axis aligned) enclosing rectan-

gle. The method might miss some types of objects (e.g.

semi-automatic weapons), but since compactness is one of

the features we compute for regions, the choice can be re-

verted by simply removing this filter. The cost is introduc-

ing more types of negatives and making learning harder.

4.1. Region Features

The inspiration for features comes from common sense

knowledge about body parts, e.g. the head is near the top of

the silhouette, shares contour points with it and is relatively

small. We compute twelve features and use a Gaussian ker-

nel SVM for classification. Three features characterize the

shape of a region and nine capture its relation to the human

silhouette. (To clarify, we use the term silhouette to denote

all points inside a shape as opposed to just its contour.) The

silhouette produced by background subtraction is processed

with a morphological “open” prior to feature computation

to reduce the noise of the estimated silhouette height. The

features are:

• compactness: ratio of the region size to the area of its

enclosing rectangle

• orientation: the angle of the largest side of the enclos-

ing rectangle with the vertical direction (∈ [0, π
2 ])

• aspect ratio: the ratio of the larger side of the enclosing

rectangle to the smaller side

• relative size: the ratio of the region size to the silhou-

ette size

• relative x: the absolute difference between the x of the

region centroid and the x of the silhouette centroid,

normalized by silhouette height (the width is too noisy)

• relative y 1: minimum y of the region normalized with

respect to vertical silhouette span

• relative y 2: maximum y of the region normalized with

respect to vertical silhouette span

• fraction of horizontal occupancy: the ratio of the re-

gion size to the silhouette area between the region’s

smallest and largest y

• fraction of vertical occupancy: the ratio of the region

size to the silhouette area between the region’s smallest

and largest x

• fraction of contour points 1: the fraction of points on

the region contour that are at most 5 pixels away from

the silhouette contour

• fraction of contour points 2: the fraction of points on

the silhouette contour that are at most 5 pixels away

from the region contour

• local color contrast: χ2 distance between the color his-

togram of the region and the color histogram of the sil-

houette pixels in a bounding box four times larger than

the region bounding box (like the CC cue from [2] but

projected on the silhouette)

Note that due to different video resolutions, the 5 pixel

threshold represents roughly the same quantity relative to

the silhouette height.

5. A Multiple Instance Framework for Learn-
ing a Model for Carried Object Regions

One of the typical ways to apply MIL to computer vi-

sion is to treat images as bags and their segments as in-

stances. In our framework, the instances are still image re-

gions but the bags are sets of regions produced by the low

level detectors in human track intervals annotated as “carry”

or “walk”. The label “carry” means that the walking human

has at least one visible object in some frames of the interval

and “walk” means no object visible. The annotations are

independent of region detector output, so a slight complica-

tion arises that some bags labeled positive may not contain

any positive instances at all due to low-level detectors fail-

ing to retrieve carried objects. However, a more important

aspect is problem size: the smallest problem in this work

has approximately 12, 000 instances, about twice more than

the well known MIL dataset MUSK-2, and the largest is ap-

proximately 192, 000, two orders of magnitude larger. An-

other difficulty is that the union of positive bags has 51%
to 85% of the training instances while the fraction of actual

positives is between 7% and 14% of the training instances.

(Note that the latter is different from the expected fraction

of actual positives in each positive bag, 25%.) Learning an

instance level classifier requires overriding bag labels for

large numbers of instances in positive bags with the support

of a limited number of known negatives.

Numerous MIL methods assume the existence of a few

prototypical positive instances common to many positive

bags and/or a meaningful Euclidian distance, assumptions

which do not hold for our datasets. The most suitable ap-

proach is miSVM [3], which iterates two steps: (1) compute
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Algorithm 1 miSVM-Positive Fraction Shift

input : instances, bags, bag labels; T , α0, θ
label all instances with their bag labels

for i = 1→ T do
compute separating hyperplane with SVM solver

compute decision values for instances in positive bags

for each positive bag do
α← fraction of instances with decision value≥ 0
order the instances by decision values

relabel top (1− θ)α+ θα0 instances as positive

relabel rest of bag instances as negative

end for
end for
return separating hyperplane computed with SVM

solver for current labels

the separating hyperplane given all instance labels (initial-

ized with bag labels) and (2) relabel the instances in pos-

itive bags according to the current separating hyperplane,

correcting so that each positive bag has at least one posi-

tive instance. A characteristic of our problem is that the low

level detectors produce a fraction of correct regions close to

α0 = 0.25 when the person carries an object, so we adapt

miSVM to reflect an expectation of the fraction of posi-

tives in positive bags, see Algorithm 1. The relabeling is

now done so that the fraction of positive instances shifts to-

wards α0 and we call this extension miSVM-Positive Frac-

tion Shift (miSVM-PFS).

The algorithm minimizes the modified SVM objective

L (w, b, y1..N+
) =

1

2
||w||22

+C1

N∑
i=1

max(0, 1− yi(wxi + b))

+C2

n+∑
j=1

∣∣∣∣∣∣
∑
k∈Bj

yk + 1

2
− α0nj

∣∣∣∣∣∣ (4)

where y1..N+
are the labels of the instances in positive bags,

N is the total number of instances (N+ in positive bags, N−
in negative bags), n+ is the number of positive bags, Bj are

the indexes of instances in the j-th (positive) bag and nj =
|Bj |. In each iteration, the SVM training minimizes the

sum of the first two terms over w and b, and the subsequent

instance relabeling minimizes the sum of the second and

third over y1..N+
. To see why the latter is true, consider the

change in the second loss term when label yk switches:

ΔL2k =

{
yk · 2dvk |dvk| < 1

yk · (dvk + sign(dvk)) |dvk| ≥ 1
(5)

where dvk = wxk + b. For each positive bag, minimiz-

ing the second term is achieved by switching the labels of

instances with decision values of opposite sign to the old

labels (ΔL2k < 0). Any set of label changes can be com-

posed as a set that minimizes the second term of the ob-

jective and then some other set of changes. The other set

will strictly increase the second term while potentially de-

creasing the third, so to minimize their sum, it must include

only instances with dv between 0 and a threshold depend-

ing on α0 and C2

C1
(smallest |dv|’s). This is because ΔL2k is

monotonically increasing in dvk and the third loss term does

not depend on which labels are switched but on how many.

The algorithm implements the two sets of label changes to-

gether, by sorting instances by dv and relabeling them in

relation to a threshold between 0 and the dv of the top α0-th

instance. Parameter θ equivalently models the effect of C2

C1
.

We observe that the algorithm changes very few labels

after 20 iterations in all problem settings, so we fix T to

this value. We also set θ to 0.333. Note that θ = 0 does not

make our algorithm equivalent to miSVM but makes it over-

fit (miSVM counters overfitting by switching a label when

no positives are left in a positive bag). By relabeling in-

stances in positive bags in a controlled manner, with θ > 0
bias towards fraction α0, miSVM-PFS smoothes the trajec-

tory in label space and so is less likely to find local minima.

The ALP-SVM version of Gehler and Chapelle’s determin-

istic annealing approach [13] has a similar smoothing effect

and employs a similar objective function, but it incurs far

higher computational cost in the SVM training step because

it duplicates the instances in positive bags as both positive

and negative. Running ALP-SVM on a subsampled ver-

sion of one of the smallest MIL problems in our datasets

(thousands of instances) took over one hour while miSVM-

PFS finished in under one minute; for the other problems

the disparity will be much greater due to SVM training

time increasing roughly quadratically with the number of

instances.

6. Experimental Results
We ran experiments on three datasets: Pets2006, Cd2a

and Towncenter, see Figure 2 for representative images.

Pets2006 [12] is a well known visual surveillance bench-

mark that contains videos of people walking with luggage

in a busy train station. For comparison with the method of

Damen and Hogg [9], we ran our system on the 7 videos

from the third camera. These videos range from 2,371 to

3,401 frames in length, with an average of approximately

25 people in the scene. Cd2a consists of 16 videos we se-

lected from a corpus collected to highlight carry and ex-

change actions [1]. The Cd2a videos show people in var-

ied viewpoints in two types of outdoor scenarios: a country

road and a safe house. There are few object types (small

packets, large boxes, duffel bags and backpacks), but peo-

ple wear robes and head scarves, which complicate silhou-

ettes. The videos are between 2,430 and 18,023 frames and
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(a) Pets2006 (b) Cd2a

(c) Towncenter

Figure 2: Datasets used in the paper.

show an average of approximately 14 people. The Town-

center dataset [5] consists of a single high resolution video

of a busy pedestrian-only zone near store fronts. We evalu-

ate our approach on the first 4500 of the 7500 video frames,

for which [5] provide (noisy) ground truth human bounding

boxes; we annotate the objects carried by the 230 people.

We manually annotate the human tracks which are input

to our method and perform training and testing on image

regions detected in the parts of the tracks where humans

move. These are annotated as “walk” or “carry” according

to object presence and also used by the MIL version of our

approach. Note that these two settings reflect the scope of

our method: given human tracks, the goal is to detect ob-

jects carried by walking people, as is done in prior work

[9] [16]. Each region feature is normalized by subtract-

ing its training set mean and dividing by standard deviation.

For classification, we use libsvm [7] with a Gaussian kernel

with σ the mean of pairwise distances between instances in

the training set.

We compare our method against Damen and Hogg’s [9];

note that a comparison with the more recent method due

to Mitzel et al [22] is not meaningful because they use

video and depth data. [9] evaluate carried object detections

with a criterion requiring that the bounding box of a de-

tected region overlap at least 15% with a ground truth object

bounding box. The threshold is much lower than typically

used in human detection (50%) in order to recognize correct

matches when the protrusion is small, but this has a serious

flaw – a method can return random large parts of the human

silhouette and score high when most people carry objects.

We remedy the criterion: a detected region is correct if it

covers at least 20% of a ground truth object bounding box

and at least 66.6% of its area is inside the box. We mea-

sure the performance of carried object detection methods in

terms of region precision and of object track recall. Preci-

sion is defined as the fraction of regions (out of all regions

eventually returned) that match ground truth and recall as

the fraction of object tracks (out of all object tracks) for

which there are correct detections in at least 10% of the

frames. We perform non-maximum suppression by remov-

ing any region that has high pixel mask overlap with another

region with higher detection score. The low recall threshold

allows detections to be sparse in time (3/s), but since our

method is very precise, a blob tracking extension of it can

achieve both high frame level recall and high precision.

6.1. Fully Supervised Learning

Precisely annotated object bounding boxes determine la-

bels for the image regions from the low level detectors: a re-

gion is positive if and only if it matches a box by the criteria

in the preceding paragraph. In the fully supervised setting,

the label of each training region is given. We perform cross

validation experiments on all three datasets. We randomly

divide the sets of videos 10 times into roughly half for train-

ing and half for testing; for Towncenter, the split was on

persons. For each of the three datasets, Figure 3 shows two

precision-recall curves: the curve with the smallest and the

largest area among the 10 splits. The curves were obtained

with C = 100 for the kernel SVM for all datasets; values

10 and 1000 virtually did not change any of the Pets2006

curves and two curves of Cd2a, showing no need for cross

validation. The Towncenter video is especially hard because

people walk in all directions, wear very diverse clothing,

have vastly different body builds, and carry many types of

baggage, all while the number of training regions is about

twice that for Pets2006. Also, it is difficult to obtain accu-

rate foreground masks as the scene is densely populated.

To compare against Damen and Hogg’s [9] full method

(using spatial prior and continuity) we modify the code

made public by the authors to return correctly aligned car-

ried object pixel masks for all video frames. As was done

in [9], we vary parameter λ representing the pairwise cost

in an MRF-based segmentation and trace the PR curves dis-

played in dotted black in Figure 3. Their method tends to

return large parts of the human silhouette together with the

carried object, which is significantly less precise than our

method. A qualitative analysis complementing numerical

results can be found in the supplemental material, which

we urge reviewers to consult.

Given large differences between the three datasets in the

appearance of people and objects, it is legitimate to doubt

that a model learned on one dataset would work well on the

other two, but experiments in which we train on a complete

dataset and test on the others highlight the generalization ca-

pability of our models, see Figure 4. The PR curves are be-

low those obtained when training and testing on subsets of

the same dataset (Figure 3), but good precision-recall values

are achieved when we train on people wearing tight cloth-

ing and test on people wearing robes (Pets2006→Cd2a) or

when we train with 4 object types and then test on more
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(a) Pets2006 (b) Cd2a

(c) Towncenter

Figure 3: Pairs of representative precision-recall curves

for the fully supervised version of our method (solid and

dashed) and the curve for [9] (dotted). The solid curve has

largest area among the curves obtained on the 10 training-

test splits, dashed smallest. The curves for [9] do not extend

right more than shown; in particular, on Pets2006 [9] does

not obtain more than 0.57 recall.

than 10 object types (Cd2a→Pets2006), for example. The

models learned on Pets2006 and on Cd2a (Figure 4, e and

f) perform poorly on Towncenter but there is strong reason

to believe this is because Towncenter is more complex than

Pets2006 and Cd2a: the model learned on the former tests

well on both latter datasets (Figure 4, b and d).

6.2. Multiple Instance Learning

In this setting, the only supervision is labels “carry” and

“walk” associated with intervals of human tracks, partition-

ing the image regions retrieved by low level detectors into

positive and negative bags. We compare the peformance of

miSVM [3], our extension miSVM-PFS (α0 = 0.25), sMIL

and sbMIL [6] in Table 1, which includes the results of a

fully supervised SVM (labels available for each image re-

gion) for reference. We use the same 10 training-test splits

as in the fully supervised experiments and report the mean

area under the PR curve. In many of the splits the total num-

ber N+ of instances in positive bags is larger than the total

number N− of instances in negative bags (sometimes dras-

tically so), biasing classifiers towards false positives. In the

SVM formulations of both miSVM and miSVM-PFS, we

kept the weights of the instances in positive bags 1 and as-

signed weights
N+

N−
to instances in negative bags. We set C

to 1 for both miSVM and miSVM-PFS; other values pro-

duce little change in the relative peformance of the two.

(a) Pets2006 (Cd2a) (b) Pets2006 (Towncenter)

(c) Cd2a (Pets2006) (d) Cd2a (Towncenter)

(e) Towncenter (Pets2006) (f) Towncenter (Cd2a)

Figure 4: Precision-recall curves when training and testing

on different datasets. Format: test dataset (training dataset).

Note that since some positively labeled bags may not ac-

tually contain any positive instances due to low level detec-

tors failing to find any object regions, it is inappropriate to

set C by bag-based cross validation. For sMIL and sbMIL,

we report the best mean area under PR curve over a number

of parameter combinations. In particular, η in sbMIL for

the expected positive bag density (α0 in our work) varied

in the set {0.1, 0.25, 0.5}. Table 1 shows the effectiveness

of miSVM-PFS compared to other approaches on Pets2006

and Cd2a. All approaches perform poorly on Towncenter,

confirming the difficulty of this dataset. sbMIL is slightly

better on Towncenter; we attribute this to imbalance in posi-

tive bag densities (many more values close to 0 and 0.5 than

to α0 = 0.25) due to errors in background subtraction.

The training times obtained on an Intel Core2 Quad at

3GHz for miSVM and miSVM-PFS are very similar. On

Cd2a, the largest dataset, the training time averaged over the

10 splits was 20.7 minutes for miSVM and 16.3 minutes for

miSVM-PFS; the average training set size over the 10 splits

was 154,000 instances. The two algorithms both took about

1 minute on Pets2006 and about 10 minutes on Cd2a per

training set respectively.
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Pets2006 Cd2a Towncenter

SVM (fully

supervised)
0.5238 0.9410 0.2488

miSVM 0.3526 0.8158 0.0881

miSVM-PFS 0.4098 0.8496 0.0971

sMIL 0.1413 0.3031 0.0507

sbMIL 0.3086 0.6878 0.1019

Table 1: Mean area under PR curve for different learning

methods. The second row of the table shows results when

object bounding boxes are available, while for the other

rows only “carry” and “walk” information is given.

dataset\α0 0.1 0.2 0.3 0.4 0.5

Pets2006 0.2481 0.3791 0.4298 0.4159 0.3933

Cd2a 0.7065 0.8370 0.8508 0.8325 0.8221

Towncenter 0.0552 0.0832 0.0903 0.0959 0.0963

Table 2: Mean area under PR curve when the expected pos-

itive bag density in miSVM-PFS is varied.

Because the positive bag density is only approximately

known, we characterize the sensitivity of miSVM-PFS to

parameter α0. Table 2 shows good mean area under the

PR curve for the range [0.1, 0.5]; on Pets2006 and Cd2a we

still outperform competing approaches, suggesting that an

accurate estimate of α0 is not critical.

7. Conclusion
We proposed a learning-based method for carried object

detection that finds objects even when they do not protrude,

achieves high accuracy, and has good generalization capa-

bilities. Our method obtains candidate image regions from

three cues (protrusions, color contrast and occlusion bound-

aries) and selects the plausible object regions with a kernel

SVM classifier on features characterizing the context of the

human silhouette. To avoid annotating tens of thousands

of carried object bounding boxes, we investigated training

the classifier in a MIL framework which only required hun-

dreds of “walk” and “carry” labels for intervals of human

tracks. We extended the miSVM algorithm [3] to effectively

account for a known fraction of positive instances in posi-

tive bags and this extension consistently improved accuracy

while keeping computational cost low.
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ing the multiple instance problem with axis-parallel rectan-

gles. AI, 89(1-2):31–71, 1997.

[11] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize

objects in egocentric activities. In CVPR, 2011.

[12] J. Ferryman. WPETS, 2006.

[13] P. V. Gehler and O. Chapelle. Deterministic annealing for

multiple-instance learning. JMLR, 2:123–130, 2007.

[14] N. Ghanem and L. Davis. Human appearance change detec-

tion. In ICIAP, 2007.

[15] Y. Han, Q. Tao, and J. Wang. Avoiding false positive in

multi-instance learning. In NIPS, 2010.

[16] I. Haritaoglu, R. Cutler, D. Harwood, and L. S. Davis. Back-
pack: Detection of people carrying objects using silhouettes.

CVIU, 81(3):385–397, 2001.

[17] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. S. Davis.

Real-time foreground-background segmentation using code-

book model. Real-Time Imaging, 2005.

[18] C.-S. Lee and A. Elgammal. Carrying object detection using

pose preserving dynamic shape models. In AMDO, 2006.

[19] W. Li, L. Duan, I. W.-H. Tsang, and D. Xu. Batch

mode adaptive multiple instance learning for computer vi-

sion tasks. In CVPR, 2012.

[20] W. Li, L. Duan, D. Xu, and I. W.-H. Tsang. Text-based image

retrieval using progressive mil. In ICCV, 2011.

[21] O. Maron and T. Lozano-Prez. A framework for multiple-

instance learning. In NIPS, 1998.

[22] D. Mitzel and B. Leibe. Taking mobile multi-object tracking

to the next level. In ECCV, 2012.

[23] T. Senst, A. Kuhn, H. Theisel, and T. Sikora. Detecting peo-

ple carrying objects utilizing lagrangian dynamics. In AVSS,

2012.

[24] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow

estimation and their principles. In CVPR, 2010.

[25] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajec-

tories by gpu-accelerated large displacement optical flow. In

ECCV, 2010.

[26] D. Tao, X. Li, X. Wu, and S. J. Maybank. Human carrying

status in visual surveillance. In CVPR, 2006.

[27] S. Vijayanarasimhan and K. Grauman. Keywords to visual

categories: Multiple-instance learning for weakly supervised

object categorization. In CVPR, 2008.

[28] W.-S. Zheng, S. Gong, and T. Xiang. Quantifying contextual

information for object detection. In ICCV, 2009.

760760760766


