
 

 
Abstract 

 
Sparse representations have successfully been exploited 

for the development of highly accurate classifiers.  
Unfortunately, these classifiers are computationally 
intensive and subject to the adverse effects of coefficient 
contamination, where for example variations in pose may 
affect identity and expression recognition.  We propose a 
technique, called LGE-KSVD, that addresses both 
problems and attains state-of-the-art results for face and 
gesture classification problems.  Specifically, LGE-KSVD 
utilizes variants of Linear extension of Graph Embedding 
to optimize K-SVD, an iterative technique for small yet 
overcomplete dictionary learning.  The dimensionality 
reduction matrix, sparse representation dictionary, sparse 
coefficients, and sparsity-based linear classifier are jointly 
learned through LGE-KSVD.  The atom optimization 
process is redefined to have variable support using graph 
embedding techniques to produce a more flexible and 
elegant dictionary learning algorithm.  Results are 
obtained for a wide variety of facial and activity 
recognition problems to demonstrate the robustness of the 
proposed method. 

1. Introduction 
The notion of Sparse Representations (SRs), or finding 

sparse solutions to underdetermined systems, has found 
applications in a variety of scientific fields including 
computer vision.  An image xi is efficiently represented by 
sparse linear coefficients from a dictionary � of 
overcomplete basis functions, where ��RDxn.  SR solves 
for coefficients a�Rn that satisfy the �1 minimization 
problem ��=�a.  It has been shown that under typical 
conditions, the minimal solution is the sparsest one [1, 2].  
There have been several studies optimizing both the �1 
minimization [3, 4] as well as the selection of dictionary 
elements [5, 6].   

Although the SR framework is designed for 
reconstruction purposes, it has been adapted successfully 
for classification problems.  In the influential facial 
recognition work of Wright et al.  [7, 8], the a coefficients 
are passed into a minimum reconstruction error classifier.  

In this framework, the dominant signal always prevails, 
but it could produce some unintended effects.  For 
example, when trying to extract facial identity, pose 
variation may contaminate or even dominate the sparse 
coefficients. This coefficient contamination is unfortunate 
yet important, as it has been shown that images of a single 
person under multiple poses exhibit greater variation than 
images of different people at a single pose [9]. 

Wright et al.  [7, 8] used random projections to make 
the coefficient learning computationally tractable.  
Tzimiropoulos et al. [10] and  Zafeiriou and Petrou [11] 
used Linear Discriminant Analysis (LDA) and Principal 
Component Analysis (PCA) respectively, along with SR 
techniques based on [8] to demonstrate further 
computational and accuracy improvements. The work in 
[11] struggled with coefficient contamination, noting that 
applying Wright’s framework is not a straightforward 
process because the facial identity of the person is often 
confused with facial expression.  Ptucha et al. [12] 
addressed the coefficient contamination problem by 
preprocessing the data with supervised manifold learning.  
Similarly to subspace clustering [13], supervision in 
manifold learning encourages clustering of sample images 
in accordance with their classification labels. 

Given n data samples, x1, x2, …, xn, each sample xi�RD, 
stored in matrix X, X�RDxn and D < n, PCA and LDA are 
effective techniques for obtaining a lower dimensional 
representation of X.  During PCA or LDA, the top d 
eigenvectors are used in projection matrix U such that the 
low dimensional representation of X is YT=XTU, Y�Rdxn.  
Although these linear dimensionality reduction techniques 
produce meaningful results, we wish to find an alternate 
representation in a low dimension d, such that d<<D.  
Further, the underlying linearity assumption of PCA and 
LDA may be limiting when modeling the behavior of 
complex imagery such as face representations. 

Manifold learning techniques reduce the dimensionality 
of input data by identifying a non-linear lower 
dimensional space where the data resides [14, 15].  In 
order to support the extension of the manifold model to 
new examples, linearized techniques called Linear 
extension of Graph Embedding (LGE) [16], solve a linear 
approximation of the non-linear object.   

Research in manifold learning has influenced the SR 

 
LGE-KSVD: Flexible Dictionary Learning for Optimized Sparse 

Representation Classification  
 

Raymond Ptucha 
Rochester Institute of Technology 

Rochester, NY, USA 
rwpeec@rit.edu 

 

Andreas Savakis 
Rochester Institute of Technology 

Rochester, NY, USA 
andreas.savakis@rit.edu 

 

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.126

840

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.126

848

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.126

848

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.126

854



 

community and vice-versa.  The Sparsity Preserving 
Projections [17] approach replaces the adjacency matrix 
used in LGE techniques with SR sparse coefficients. 
Mairal et al. [18] injects a multiclass logistic regression 
term to the sparse energy function to make dictionary 
learning have both reconstructive and discriminative 
properties.  Discriminative Sparse Coding [19] uses sparse 
coefficients in an LDA framework.  Graph Regularized 
Sparse Coding [20] adds the LGE objective function on 
sparse coefficients to the traditional �1 sparse objective 
function as it jointly learns the sparse coefficients and 
dictionary terms.  What lacks is a single method that 
optimizes dimensionality reduction, SRs, and 
classification learning concepts into a single framework. 

This paper solidifies the relationship between manifold 
learning and SRs by proposing an elegant solution to 
jointly optimize dimensionality reduction, sparse 
dictionary learning, and sparsity-based classification.  
Distinguishing features of our novel framework include: 
� Utilization of a semi-supervised Linear extension of 

Graph Embedding to minimize coefficient 
contamination and reduce compute intensity. 

� Iterative procedure for optimizing dimensionality 
reduction matrix in conjunction with dictionary atoms 
and coefficients. 

� Modification of K-SVD algorithm to remove the fixed 
atom support in the iterative atom selection process.   

� Simultaneous creation of a sparse classifier. 
We contrast our technique, which we call LGE-KSVD, 

to other recently introduced techniques across a wide 
variety of facial and activity classification problems. 

The rest of this paper is organized as follows.  Sections 
2 and 3 introduce the necessary principles of manifold 
learning and sparse signal representation.  Section 4 
describes how to combine the two concepts into the LGE-
KSVD framework.  Section 5 presents experimental 
results.  Section 6 summarizes with conclusions. 

2. Linear Extension of Graph Embedding 
High dimensional feature spaces used in computer 

vision are not only inefficient and computationally 
intensive, but the sheer number of dimensions often masks 
the discriminative signal embedded in the data.  For 
samples xi�RD we seek a low dimensional representation 
yielding yi�Rd, where d<<D.  For linear models, e.g. PCA 
or LDA, yi

T = xi
TU, where U is a D×d projection matrix. 

Alternatively, the high dimensional feature space can be 
parameterized by a lower dimensional embedded manifold 
discovered using manifold learning [14, 15].   

During manifold learning a fully connected graph of the 
input space is constructed, where each of the n input 
samples or nodes is connected to all other (n-1) input 
samples with a weight, 0 � wij � 1, i,j = 1…n. The 
resulting connection matrix W is called the adjacency 

matrix and the connections or weights wij can be solved 
several ways.  For example, wij is set to 1 if xi is amongst 
the z nearest neighbors of xj, 0 otherwise.  Alternatively, 
wij is set to 1 if ||xi - xj|| < �, and 0 otherwise.   

The goal of graph embedding is to preserve the 
similarities amongst neighbors in both high and low 
dimensional spaces. The optimal Y is found by 
minimizing: ���� � �	
���	�
	 ��������������������������������������������� 

As such, if neighbors yi and yj have a strong connection 
wij, their Euclidean distance should be minimal.  W is 
defined similarly for X and Y, such that if neighbors xi and 
xj are close, yi and yj are also close.  LGE seeks a linear 
approximation to this nonlinear concept of the form 
yi

T=xT
iU or YT=XTU.  We define D as a diagonal matrix of 

the column sums of W, Dii = �jwij; and L is the Laplacian 
matrix, L=D-W.  After simplification, the optimal U is 
given by the minimum eigenvalue of the generalized 
eigenvector problem: 

X L XT U = ��X D XT U           (2) 

where U is the resulting projection matrix.  
Different choices of W yield a multitude of 

dimensionality reduction techniques such as LDA, 
Locality Preserving Projections (LPP) [21], and 
Neighborhood Preserving Embedding (NPE) [22].  For 
each approach, W is initialized to all zeros, and then 
connected wij entries are determined by similarity.   

For LDA, nodes wij from the same class are set to 1/kn, 
where kn is the number of samples per their shared class: ��	 � � ��� �������������������������������������������������   

For LPP, if nodes i and j are connected, then: 

��	 � ����������� ������������������������������������������ 
LPP can be used in supervised mode by defining 

connected neighbors as those which share similar class 
labels. 

3. Sparse Signal Representation 

3.1. Sparse Representations 
A natural representation of a low dimensional sample 

y�Rd from a training dictionary ��Rdxn is obtained by 
solving �=�a, where a�Rn is the weight of each training 
exemplar in the dictionary �.  The objective of SRs is to 
identify the smallest number of nonzero coefficients a, 
such that � = �a.  Donoho et al. [1] and Candes et al. [2] 
introduced a convex relaxation approach called Basis 
Pursuit Denoising (BPDN): 
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���������������� � � �!"#$ $% ���&' (' $�� �� $� �) *�������������+� 
Often (5) is approximated by loosening the error 

constraints and reconfigured to specifically include a 
regularization term, �: ����� � � �!"#,$�� �� $�� - .$ $%/������������������0� 

Perhaps the most widely used method to solve the �1 
minimization of (5) or (6) is Orthogonal Matching Pursuit 
(OMP) [23].  Given the SR coefficients â of a test image 
using the dictionary �, a reconstruction error method 
estimates the class k* of a query sample y. Given k classes, 
the reconstructed sample using sparse coefficients a from 
all classes is compared to the reconstructed sample using 
coefficients ai from each respective class:  �����������������1 � �!"#�2%34�� � 5 6�� ���������������������������������7� 

When constructing � the goal is to generate an over-
complete dictionary with n>d.  This allows the necessary 
degrees of freedom for choosing the sparsest solution and 
produces smooth and graceful coefficient activity across 
diverse test samples [24].   

To avoid dictionary redundancy, K-SVD [25] was 
introduced as a means to learn an over-complete but small 
dictionary.  K-SVD is an iterative technique, where at 
each iteration, training samples are first sparsely coded 
using the current dictionary estimate, and then dictionary 
elements are updated one at a time while keeping others 
fixed.  Each new dictionary element is a linear 
combination of training samples.  Rubinstein [26] 
implemented an efficient implementation of K-SVD using 
Batch Orthogonal Matching Pursuit.      

The works of [18, 27, 28] jointly optimize dictionary 
learning and classifier training to select exemplars that 
minimize both reconstructive and discriminative errors.  
Jiang et al. [5] devised efficient methods for choosing � 
from a set of training exemplars by minimizing both 
reconstruction and classification errors in an optimal 
fashion.  The work in [5] encourages input samples from 
the same class to have similar sparse codes. 

4. Formulation of LGE-KSVD 

4.1. Dimensionality Reduction and Sparse 
Representations 

Although methods for populating the adjacency matrix 
W vary, sparseness is one common characteristic across all 
techniques.  Sparsity Preserving Projections (SPP) [17] is 
similar to NPE, but uses sparse coefficients instead of 
local topology when solving for W.  Global Sparse 
Representation Projections [29] modifies the 
dimensionality reduction function in SPP to 
simultaneously maximize supervised class separability and 

minimize sparse representation error.   [19] uses the sparse 
coefficients to populate matrix W, then adds supervised 
similarity and dissimilarity matrices akin to LDA.   [20] 
replaces the y terms in (1) with coefficients â, claiming 
that nearby samples should have similar coefficients. 

We wish to combine the dimensionality reduction 
matrix U from (2) with a method to learn a dictionary � 
and sparse coefficients a.  K-SVD solves: �������,58 
  �/ � �!"#$� �� $�����&' (' $ $9 �) :���������;� 
where <= denotes estimate.  Combining (2) with (8), we get: 

,>8
58 
  �/ � �!"#$?@> �� $�� ��- ABCDCBAABCECBA�����������F�    �����������������������������&' (' $ $9 �) :����������������������������������������������� 
The first term performs K-SVD optimization in low 

dimensional space, and the second term is the LGE 
dimensionality reduction objective function.   LGE is used 
as subspace clustering during dimensionality reduction 
minimizes SR coefficient contamination by enforcing 
class separation.  

Equation (9) is neither directly solvable nor convex.  A 
discriminative dictionary was utilized in [5, 17-19, 29]. 
We find better results if the SR energy function minimizes 
reconstruction errors and the LGE energy function 
encourages class discrimination.  Not only does this offer 
superior classification results, but because we are 
operating in a low dimensional space, the resulting 
framework minimizes compute intensity.   

After an initial dimensionality reduction matrix U is 
obtained via semi-supervised LGE, we propose a double 
nested iterative training procedure.  The outer loop 
updates U based upon the best estimates of � and a, and 
the inner loop uses K-SVD to iteratively update a, then �.   

To get an updated estimate of U, coefficients a from 
each training example are stored into matrix A, A�Rmxn.  
The update problem is then formulated as: ��������������>8 � �!"#$?@> � G@5H$������������������������������I� 
and is solved directly: ���������������> � �??@��%?G@5@��������������������������������� 

Classification is performed with coefficient 
transformation matrix C, C�Rmxk, where k is the number 
of classes and m is the number of dictionary elements.  We 
define H as a sparse ground truth matrix, H�Rkxn.  Each 
column of H corresponds to a training sample, where the 
kth element is set to 1 if yi belongs to class k, 0 otherwise.  
This problem is formulated as: ��������������JK � �!"#$L � J@G$�����������������������������������M� 
which can be solved directly: ���������������J � �GG@��%GL@������������������������������������� 
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With training complete, given a test sample x, along 
with U, �, and C, we first calculate low dimensional 
sample yT= xTU, then calculate sparse coefficients a using 
(6), and finally use C along with a to estimate class label 
vector l�Rk , where the maximum value of l is used as a 
class identifier: ��������������NK � !OP�2%34�N � J@ �� � ������������������������������������ 

The choice of LGE technique needs to be a 
discriminative embedding which maintains input topology. 
An optimal approach uses a convex combination of 
supervised and unsupervised adjacency matrices WLDA and 
WGaussian corresponding to (3) and (4) respectively.  The 
two are combined into a single W:  ���������������Q � RQDES - �� � R�QTUVWW�U������������������������+� 

For posed datasets which are linearly separated, WLDA is 
weighted higher.  For natural datasets or classification 
problems in which the number of classes is small, we 
emphasize the addition of WGaussian.   

We call this method LGE-KSVD for Linear extension 
of Graph Embedding for optimized K-SVD dictionary 
learning.  The next section demonstrates how to improve 
the K-SVD learning by injecting LGE concepts directly 
into the K-SVD atom definition. 

4.2. Updating the Atom Optimization in K-SVD 
The K-SVD penalty term of (8) can be rewritten as:� 

�$? ��G$X� � �Y? ��5ZG@Z
[
Z2% Y

X
�

� �\]? ��5ZG@ZZ^	 _ � 5	G@	 \
X

�

� �� 	̀ � 5	G@	 �X�
������0��� 

Where �A is decomposed into the sum of m rank-1 
matrices �Rdxn, each representing one dictionary element, 
with ��Rdxm and A�Rmxn, and ||·||F is the Frobenius norm.  
The error, Ej is the total error for all n training samples 
with the jth dictionary element removed.  The step of 
updating dictionary elements sequentially updates one 
element at a time.  While updating element j, K-SVD 
assumes that dictionary matrix � and sparse coefficient 
matrix A are fixed except for (column) element j of �, 
�j�Rdx1, and the corresponding coefficients for �j, which 
comprise row j of coefficient matrix A, Aj

T�R1xn.   
SVD solves the closest rank-1 matrix that approximates 

Ej, yielding �j and Aj
T directly; our new best estimates for 

dictionary element j and its corresponding coefficients.  
Unfortunately this would tend to result in a non-sparse Aj

T.  
K-SVD enforces sparsity by fixing the support of �j to 

only those training entries with non-zero coefficients of 
element j; as such, at initialization, each dictionary 
element is paired up with a list of training samples that can 
never change.   

An improvement is to let the training samples that 
contribute to each dictionary element be governed by 
sample-to-sample similarity and class labels.  Further, as 
long as sparsity is maintained, it is desired for the support 
of each element to change at each iteration.  We propose 
to use semi-supervised LGE adjacency matrix W as per 
(15) to regulate the support of each dictionary element.  In 
particular, the support of dictionary element j may: 
� Expand:  Modify the support of element j by adding 

(union) all training entries similar to element j. 
� Contract: Modify the support of element j by 

removing (intersection) training entries not similar to 
element j. 

� Redefine: Set the support of element j to be only 
training samples similar to element j. 

In LGE-KSVD, similar is defined to be training 
samples that respect LGE adjacency matrix W (i.e., all 
samples of same class or nearest neighbors).  During the 
updating of dictionary element j, LGE-KSVD modifies the 
support of Ej using the expand, contract, and redefine 
operations, creating a different ER

j for each condition; then 
SVD decomposes ER

j =U	VT.  �j is the first column of U, 
and Aj

T is the first column of V multiplied by 	(1,1).  
Given three sets of ER

j, �j, and Aj
T we choose the �j and 

Aj
T that minimize our penalty term (16) as:  

��������������,5ab
G@ab/ � !"#�2%3c de 	̀f� � 5	�G@	 �eX
�g � �������������7� 

Rather than assigning a single class to each element j, 
LGE-KSVD uses the top coefficients from Aj

T.  Each of 
those top coefficients is used as a look-up into adjacency 
matrix W.  All training samples similar to each of those 
top coefficients (as defined by W) are used to expand, 
contract, or redefine Ej before the SVD decomposition.  
The top coefficients are solved by keeping the top 
percentile of total energy. 

Although it may seem desirable to use the same W for 
dimensionality reduction as well as element neighbor 
similarity determination, there are advantages in 
maintaining some degree of flexibility.  For example, it is 
often desirable to decrease 
 in (15) or increase � in (4) 
for element neighbor similarity determination.  Both 
modifications make W less sparse, and perhaps less 
discriminate, but simultaneously make W more open to 
finding relationships between diverse training samples.     

4.3. Putting it all together 
The LGE-KSVD algorithm is summarized in Figure 1.  

To calculate U in step 1a, we use LPP in a semi-
supervised mode via (15).  Regarding the selection of 
 in 
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(15), 
 values should be in the range 0.1�
�0.9, and we 
recommend use 
=0.5. 
 

 
Figure 1.  The LGE-KSVD Algorithm. 

The introduction of K-SVD not only shrinks the size of 
the dictionary, but also results in higher classification 
accuracy.  The size of the dictionary m varies with the 
dataset size n, and we typically set m=n/2, and can often 
shrink m such that m<<n. 

To update the variable support of each dictionary 
element in Step 4.2, the selection of top coefficients is 
done by picking training samples with >50% of the total 
coefficient energy.  Similar neighbors are those elements 
whose Euclidean distance in the W matrix includes 99% of 
all related training samples.  This accounts for 100% of 
samples of the same class, as well as other samples that 
are deemed to be similar by the unsupervised LPP 
adjacency matrix 

5. Experiments 
We evaluate the proposed LGE-KSVD approach on 

four public databases: the extended Cohn-Kanade (CK+) 
facial expression dataset [30], the extended Yale B facial 
recognition database [31], the Facial Expression 
Recognition and Analysis Challenge  (FERA2011) 
GEMEP-FERA [32] dataset, and the i3DPost multi-view 
activity recognition dataset [33].  We test each dataset 
across three categories of (i) dimensionality reduction; (ii) 
sparse representation; and (iii) combined techniques.  The 
dimensionality reduction techniques include PCA, LDA, 
LPP [21], NPE [22], and Sparsity Preserving Projections 
(SPP) [17].  The sparse representation methods include K-
SVD [25], LC-KSVD1 and LC-KSVD2 [5]. The  
combined methods include Sparse Representation-based 
Classification (SRC) [8]  and the LGE-KSVD method. 

5.1. Testing Datasets 
The CK+ [30] expression dataset contains 118 subjects 

in 327 sequences exhibiting the expressions of anger, 
disgust, fear, happiness, sadness, surprise, and contempt. 
An Active Appearance Model (AAM) automatically 
localizes 68 points on the face.  The AAM eye and mouth 
corner points are used to define an affine warp to a 
canonical face of 60x51 pixels.  As such, from this dataset 
we compare two variants: D=68x2=136 (AAM point 
based), and D=60x51=3060 (pixel based).  Each has 164 
training and 163 testing faces (chosen randomly), and the 
K-SVD methods use a dictionary size of 63 elements. 

The Extended YaleB facial recognition dataset contains 
2,414 frontal images of 38 people under varying 
illumination and facial expression.  Each face is 192x168 
pixels which are reduced to D=504 via random projections 
following [8].  The test set contains 1216 training faces 
and 1198 testing faces.  The K-SVD methods use a 
dictionary size of 570 elements. 

 
Figure 2.  Sample  subjects exhibiting (from top to bottom) static facial 
expressions, facial identity, temporal emotion, and multi-view activity 
from the CK+, YaleB, GEMP-FERA, and i3DPost datasets respectively. 

WHILE1 � has not converged  
IF   firstIteration  

1a. Calculate U using LGE. 
ELSE 

1b. Calculate U using (11). 
ENDIF 
2. Calculate low dimensional samples YT= XTU. 
3. Initialize the m samples of � randomly from the 

n low dimensional training samples. 
4. Calculate {A, �} using modified K-SVD:  
WHILE2 � has not converged  

4.1. Calculate coefficients A using (6). 
4.2. Update dictionary �: 
FOREACH element j in dictionary 

4.2a. Calculate �j, Aj
T, and ER

j in expand. 
4.2b. Calculate �j, Aj

T, and ER
j in contract. 

4.2c. Calculate �j, Aj
T, and ER

j in redefine. 
4.2d. Calculate �j, Aj

T, and ER
j in fixed. 

4.2e. Select the ER
j and corresponding �j and 

Aj
R that minimize (17). 

END FOREACH 
END WHILE2 
5. Calculate C using (13). 
6. Calculate verification set error, � = ||H – CTA||22. 

END WHILE1 
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The GEMEP-FERA temporal expression dataset 
contains 155 training and 134 testing videos.  Each video 
sequence varies from 20-150 frames of 10 actors 
exhibiting the five emotions of anger, fear, joy, relief, and 
sadness.  Automatically localized eye and mouth corner 
points define an affine warp to a canonical face of 60x51 
pixels per each frame.  A sequence of 16 frames at the 
1/3rd and 2/3rd mark of each video is fed into Motion 
History Image (MHI) [34] analysis yielding a 24x20 dense 
optical flow per sequence.  The X and Y coordinates at 
each 24x20 grid point for each of the two sequences 
formed the D=1920 input dimensions per sample.  The K-
SVD methods use a dictionary size of 75 elements. 

The i3DPost multi-view [33] activity recognition 
dataset contains 768 videos of 8 people performing 12 
actions from 8 views.  The 12 activities are walk, run, 
jump, bend, hand-wave, jump in place, sit-stand, run-fall, 
walk-sit, run-jump-walk, handshake, and pull.  Each video 
is MHI processed, giving 125 MHI sequences, each 
sequence containing 1500 motion vector points.  PCA 
yielded 767 dimensions per video.  The dataset contains 
512 training videos and 256 testing videos.  The K-SVD 
methods use a dictionary size of 450 elements. 

5.2. Testing Methodologies 
The dimensionality reduction techniques capture 99.9% 

of the data variance, and all use multi-class linear SVM as 
a classifier.  LDA uses equation (3) and LPP uses (4).  
NPE and SPP are adopted from [22] and [17] respectively.  

The sparse representation techniques all use K-SVD to 
define a training dictionary of size m, where m<n.  
Coefficient transformation matrix C is generated from the 
training set as per (13).  Test samples use the m element 
dictionary to generate sparse coefficients using (6), setting 
�=0.25.   These sparse coefficients are converted to a class 
estimate using (14).  LC-KSVD1 modifies the K-SVD 
objective function to favor clustering of coefficients by 
class and LC-KSVD2 further modifies the K-SVD 
objective function to include the solution of coefficient 
transformation matrix C. 

The SRC method uses random projection matrices for 
dimensionality reduction.  The low dimensional projection 
of all training samples forms the training dictionary.  The 
corresponding sparse coefficients of test samples use (7) to 
make a final classification estimate.  All LPP methods use 

=0.5 in creation of W using (15).  The LGE-KSVD 
method uses a �=1 for dimensionality reduction W and 
�=100 for element neighbor similarity W.  The LGE-
KSVD method keeps the top coefficients which make up 
50% of the total energy from Aj

T. 

5.3. Experimental Results 
Table 1 demonstrates the performance of the five 

dimensionality reduction methods, the three sparsity based 
methods, and the SRC combined method against LGE-

KSVD on the 7-class CK+ dataset using the 68 AAM 
points.   Because the data is only 136 dimensions, no 
dimensionality reduction is used for K-SVD, LC-KSVD1, 
LC-KSVD2, or SRC.  This is a posed dataset, and as such 
LDA performs the best out of the dimensionality reduction 
techniques.  The LGE-KSVD method has two numbers in 
the accuracy entry for Tables 1-5.  The first is with 
iterative convergence turned off (1 iteration), and the 
second is the accuracy after convergence.  The value in (·) 
after the second accuracy entry is the number of iterations 
required for convergence. 

Table 2 uses the same CK+ dataset from Table 1, but 
uses 60x51 images as input.  This higher dimensional 
space is not as discriminative as the 68 AAM points, but 
all methods do well because of the large separation of 
facial expression in each class.   

Table 3 uses the 38-class YaleB facial recognition 
dataset.  The 504 random projection input for all methods 
was further reduced in dimensionality as indicated by the 
d column, where d is the dimension where classification is 
performed.  The SR methods are advantaged over the 
dimensionality reduction methods, while the combined 
LGE-KSVD method performs the best.     

 
Method d m % Accuracy 

PCA 62 - 82.2 
LDA 6 - 89.6 
LPP 62 - 83.4 
NPE 24 - 80.4 
SPP 48 - 87.7 

K-SVD 136 63 79.1 
LC-KSVD1 136 63 79.1 
LC-KSVD2 136 63 75.5 

SRC 136 164 43.6 
LGE-KSVD (this paper) 62 63 90.2 / 92.0 (2) 

Table 1. Classification results on the 7-Class CK+ Expression Dataset, 
using 68 AAM Points.  164 training and 163 testing samples. 

 

Method d m % Accuracy 
PCA 162 - 82.8 
LDA 6 - 86.5 
LPP 163 - 84.7 
NPE 71 - 84.0 
SPP 80 - 77.9 

K-SVD 3060 63 84.0 
LC-KSVD1 3060 63 85.9 
LC-KSVD2 3060 63 84.7 

SRC 500 164 71.8 
LGE-KSVD (this paper) 163 63 86.5 / 87.1 (5) 

Table 2. Classification results on the 7-Class CK+ Expression Dataset, 
using 60x51 Images. 164 training and 163 testing samples. 

 Table 4 uses the 5-class GEMEP-FERA emotion 
dataset.  Two MHI optical flow sequences per video were 
used as input.  The dimensionality reduction methods are 
advantaged over the SR methods, and the combined 
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methods perform better than the dimensionality reduction 
methods. 

 

 
Method d m % Accuracy 

PCA 477 - 89.1 
LDA 37  - 90.3 
LPP  477 - 89.3 
NPE 271 - 91.2 
SPP 288 - 88.7 

K-SVD 504 570 93.2 
LC-KSVD1 504 570 93.7 
LC-KSVD2 504 570 93.4 

SRC 504 1216 86.1 
LGE-KSVD (this paper) 477 570 95.7 / 95.7 (1) 

Table 3. Classification results on the 38-Class YaleB Recognition 
Dataset. 192x168 pixel images reduced to 504 dimensions via random 
projections.  1216 training images, 1198 testing images. 

 
Method d m % Accuracy 

PCA 154 - 55.2 
LDA 4 - 55.2 
LPP 154 - 55.2 
NPE 66 - 56.7 
SPP 75 - 52.2 

K-SVD 1920 75 51.5 
LC-KSVD1 1920 75 53.7 
LC-KSVD2 1920 75 51.5 

SRC 500 155 57.5 
LGE-KSVD (this paper) 154 75 58.2 / 61.2 (9) 

Table 4. Classification results on the 5-Class GEMEP-FERA Emotion 
Dataset. MHI motion vectors.  155 training videos, 134 testing videos. 

 
Method d m % Accuracy 

PCA 510 - 94.9 
LDA 510 - 94.5 
LPP 510 - 96.1 
NPE 224 - 94.9 
SPP 241 - 91.0 

K-SVD 767 450 94.1 
LC-KSVD1 767 450 95.3 
LC-KSVD2 767 450 93.8 

SRC 767 512 88.7 
LGE-KSVD (this paper) 510 450 96.9 / 96.9 (1) 

Table 5. Classification results on the 12-Class i3DPost Multi-view 
Activity Recognition Dataset.   512 training videos, 256 testing videos.  

Table 5 uses the 12-class i3DPost multi-view activity 
recognition dataset.  The 767 PCA projection input for all 
methods was further reduced in dimensionality as 
indicated by the d column.  While there is no clear winner 
on this dataset, the semi-supervised LPP methods 
performed the best. 

The results in Tables 1-5 show impressive accuracy 
performance of LGE-KSVD across a wide variety of 
problem sets.  We attribute this to the discriminative 
strengths of dimensionality reduction, the classification 

power of SR methods, along with the integration of LGE 
into the K-SVD dictionary learning architecture.   

When SR methods have insufficient training exemplars 
in �, their performance lags behind SVM classification 
methods.  When datasets are posed, LDA dimensionality 
reduction is preferred; when datasets are natural, semi-
supervised LPP or NPE methods are preferred.  The LGE-
KSVD representation offers the discriminative properties 
of LDA while maintaining the local topology of complex 
data representations in the low dimensional manifold 
representations.  As such, LGE-KSVD has been shown to 
be robust over datasets with few vs. many classes, high vs. 
low dimensionality, posed vs. spontaneous faces, static vs. 
temporal features, and across the classification problems 
of facial expression, facial recognition, and human activity 
recognition. 

6. Conclusions 
  This paper presents LGE-KSVD, a new method that 

integrates manifold-based dimensionality reduction and 
sparse representations within a single framework.  We 
leverage LGE dimensionality reduction concepts to 
optimize K-SVD dictionary learning such that the support 
of dictionary elements remains sparse, but is no longer 
fixed.  Semi-supervised dimensionality reduction produces 
sufficient discrimination between input classes to 
minimize coefficient contamination while preserving 
enough geometric detail from the high dimensional space 
for real world imagery.  The modification of the dictionary 
element update step in K-SVD improves classification 
accuracy while making K-SVD more generally applicable 
to a broader spectrum of problems and less reliant on a 
good initialization.  Our results show that our proposed 
LGE-KSVD framework provides significant advantages 
over other techniques across a wide variety of facial and 
activity classification problems. 
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