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Abstract

We study natural human activity under difficult settings
of cluttered background, volatile illumination, and frequent
occlusion. To that end, a two-stage method for hand and
hand-object interaction detection is developed. First, ac-
tivity proposals are generated from multiple sub-regions in
the scene. Then, these are integrated using a second-stage
classifier. We study a set of descriptors for detection and ac-
tivity recognition in terms of performance and speed. With
the overarching goal of reducing ‘lab setting bias’, a case
study is introduced with a publicly available annotated RGB
and depth dataset. The dataset was captured using a Kinect
under real-world driving settings. The approach is moti-
vated by studying actions-as well as semantic elements in
the scene and the driver’s interaction with them-which may
be used to infer driver inattentiveness. The proposed frame-
work significantly outperforms a state-of-the-art baseline
on our dataset for hand detection.

1. Introduction and Motivation
Object detection and tracking, in particular of human

hands, has been widely investigated in the research com-

munity. Inferring information from hand activity is espe-

cially important in the operated vehicle, because it can pro-

vide vital information about the state of attentiveness of the

driver [12]. The field has been pushed by increasingly dif-

ficult datasets comprising of different visual modalities, al-

though the overall majority of these are still captured un-

der controlled environments (some exceptions are the PAS-

CAL VOC challenge [8] and the hand dataset in [15]). The

dataset in this work adds upon the aforementioned by incor-

porating depth images, temporal events, occluding objects,

and other appearance artifacts produced in the volatile envi-

ronment of the vehicle’s interior.

In addition to a novel dataset, there are two contributions

in this paper. First, motivated by the need for a fast and

robust hand localization system, we propose a two-stage

method for integrating cues from critical regions of inter-

est in the vehicle. We extend the framework and features

proposed in [16, 3] for detecting hand or no hand events

from RGB and depth. A hand model is learned for each

region using a linear SVM, and the output of each SVM is

integrated through a second-stage classifier to produce the

final activity classification. The approach is also extended

to detect activities of hand-object interaction. The method

is experimentally shown to significantly outperform a state-

of-the-art sliding window detector for hand detection. It is

particularly robust for handling cases of self-occlusion and

other occluding objects (see figure 1), as well as in reducing

the false positives from appearance artifacts.

The second contribution is in proposing an interactive

hand gesture module. To that end, we present a real-time,

RGB and depth-based vision system for hand detection and

gesture recognition. The method is implemented using a

spatio-temporal feature for RGB and depth images based

on a modified histogram of oriented gradients (HOG) [4]

applied spatially as well as temporally [17].

2. Related Work
Vision-based hand detection is challenging, primarily

because of the wide range of configurations and appear-

ances it can assume and its tendency to occlude itself in

images. The problem is further complicated by the vehicu-

lar requirement for algorithms to be robust to changing il-

lumination. Hand detection was mostly studied in indoor

settings, where the hand is segmented in a naive manner.

For instance, the hands may be the main salient object in

the scene in terms of motion [6], skin-color [10, 21], or it

may be segmented using a depth-based threshold [14]. As

single cues, such techniques were shown to perform poorly

on our dataset. The more reliable schemes were edge-based

boosting schemes [13, 19]. Such schemes may incorporate

an arm detector as well [11]. A close work to ours is found

in [15] where a shape, arm, and skin-based detectors are in-

tegrated to achieve state-of-the-art on several benchmarks.

Because hand detection of the entire scheme takes over 2
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Figure 1: The naturalistic CVRR-HANDS 3D dataset, collected while observing the driver of an operating vehicle. One

proposed evaluation is in terms of detecting hand presence or hand-object activity in five regions of interest, for which the

labels are visualized. The dataset poses many challenges, such as volatile illumination and frequent occlusion of objects

and hands. In addition to hand location, six classes of hand-object interaction types and 11 hand swipe gestures for human-

machine interaction were annotated.

Figure 2: Hand (left) and object (right) occurrence distribu-

tion in our dataset. NOOBJ are instances in the dataset with

hand but no hand-held object.

minutes per image, we only use the hand shape model as

a baseline. This model was built using a deformable part

model (Felzenszwalb et al. [9]) and trained on hand in-

stances from several hand datasets and the PASCAL VOC

dataset (see [15]).

We tie hand and object detection with activity recog-

nition by proposing a hand-gesture based module for

occupant-vehicle interaction. One reason for this is in or-

der to study RGB and depth-based spatio-temporal descrip-

tors performance under the harsh visual settings, including

illumination artifacts and occlusion. A second reason is

domain specific: as we are concerned with driver distrac-

tion caused by secondary tasks-a contact-less hand gesture-

based interface may be intuitive for the driver. To that end,

we incorporate the frame-by-frame features extracted for

hand detection using a modified HOG algorithm in order

to produce a fast to compute, spatio-temporal descriptor for

gestures [17]. The method is compared against two other

common spatio-temporal feature extraction methods: the

Cuboids descriptor proposed by Dollár et al. [7] and the

motion history image (MHI) [1] coupled with HOG. These

are studied both on the RGB and depth images.
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3. Dataset - CVRR-HANDS 3D
We introduce a publicly available dataset of synchro-

nized RGB and depth videos collected in an operating ve-

hicle (available at http://cvrr.ucsd.edu/eshed). The experi-

ments in this work are performed in cross-subject testing

over a subset of the dataset containing 7207 sample frames,

with subjects performing different tasks while driving (fig-

ure 1). Our goal is two-fold: study recognition of naturalis-

tic driver gestures that are related to driver attention, and

propose an interactive framework for hand gesture-based

user interface. The main observation that motivates our

approach is that hand presence in a certain region can be

detected, but the difficult illumination and quality makes

sliding-window detectors over the entire image perform

poorly with many false positives. Therefore, we constrain

the problem into a number of regions of interest (ROIs) that

researchers may be interested in for studying the driver’s

state. This leads to a better posed problem, where regions

can be integrated to produce the final activity classification.

Hands locations were annotated, and we evaluate activity

in terms of region (figure 2): Wheel, lap, hand rest, gear,

and instrument panel). The region of activity is generally

defined as the one with the most area occupied by the hand

out of the five, unless its the lap region where annotation

in lap must involve no interaction with the wheel. Further-

more, presence of objects in the region is annotated as well

for six classes (figure 2-right). The classes were chosen to

represent common secondary tasks performed in the vehi-

cle and may be related to less attentive driving [20]. The

dataset in whole spans more than 80 minutes of video, al-

lowing for future evaluation of more intricate driver states

and maneuver gestures.

In a particular ROI, gestures may be performed for

occupant-vehicle interaction. Therefore, we collected a

dataset of 11 dynamic gestures: left-right,right-left, down-
up, up-down, X-swipe, Plus-swipe, Z-swipe, V-swipe, N-
swipe, clockwise-O and counter clockwise-O swipes. There

are 807 and 864 instances of gestures performed by the

driver or passenger respectively under different times of the

day in different vehicles. A total of 7 subjects participated

(each subject performed the gestures both as driver and pas-

senger). In the next section, we turn to our developed ap-

proaches for evaluating the hand, object, and interactive

gestures categories of the CVRR-HANDS 3D dataset.

4. Naturalistic Driver Gestures Recognition
4.1. Hand and Hand+Object Event Detection in Re-

gions

In the context of driving, naturalistic gestures are dic-

tated by the location of the hands. Localizing the hands is

therefore the main evaluation on the dataset. This proved

quite challenging as partial-occlusion of the hands occurs

often. The method in [15] showed best results compared to

other detectors and trackers on our dataset, although perfor-

mance overall was still quite poor. For instance, a multi-

object version of the Tracking-Learning-Detection scheme

proposed in [22] failed to track hands correctly in the ma-

jority of the frames, even under slight deformation and oc-

clusion. Nonetheless, the dataset can be used for evaluating

tracking techniques, yet due to poor performance of state-

of-the-art methods such analysis is left for future work.

Seeking robustness, we were motivated to introduce a ROIs,

which system integrates cues from in order to perform the

final activity classification.

We expect the hand to vary in appearance among the dif-

ferent regions. Some regions may require finer-detailed de-

scriptors as parts of the hand may be present while interact-

ing in another region (e.g. the hand may be interact with the

instrument panel but be present in the gear region, or simi-

larly for the wheel and lap regions). Furthermore, The size

and location of each region produce different challenges

for a vision-based system. Therefore, we thoroughly study

different descriptors in terms of performance and computa-

tional complexity.

4.2. Features

We detail the features we found useful for hand and

hand+object detection, with the dimensionality and extrac-

tion time give for the largest region, the wheel, in table 1.

Modified HOG (MHOG): The algorithm has been pre-

viously used for hand detection [16], as well as action

recognition [17]. MHOG differs from HOG mainly in the

division of the image into subcells. The parameters are the

number of cells to divide the image into in the horizontal

and vertical directions, where a 50% overlap between the

cells was used. Within each cell, an orientation histogram

is generated by quantizing the angles of each gradient vec-

tor into a pre-defined number of bins. These resulting his-

tograms are concatenated to form the final spatial feature

vector. For instance, a 3 × 3 grid of cells with 9 histogram

bins on the image results in a 81D feature vector.

HOF: The IMHwd descriptor from [5] was used, which

amounts to applying Haar-like operator on the optical flow

image. The optical flow was calculated between current

frame and three frames before. The parameters were set

such that the cells are approximately the width of an arm,

in the hopes of capturing relative displacement of the hand

with respect to the background.

Difference of HOG (DIFFHOG): Haar-like operator on

the HOG descriptor produces this descriptors.

GIST: Another widely known image descriptor pro-

posed in [18]. Although it is slower to compute, it proved

successful in difficult cases of hand detection. For instance,

when the hand is interacting with the instrument panel re-

gion, part of it or part of the arm may be in the gear region.

900908908914



Descriptor Extraction Time (ms) Descriptor Size

HOG99 6 11780D

MHOG11 10 9D

HOF88 13 1155D

DIFFHOG 10 9D

GIST8 370 2048D

Skin 10 4D

EUC 4 14535D

GLOBAL 1 3D

Table 1: Analysis in terms of speed and dimensionality for

each descriptor. The original HOG (HOG99) is the only

descriptor with a fast implementation, the rest are in MAT-

LAB, and are likely to be faster than the original HOG

extraction once implemented efficiently. The approximate

times and sizes are given for the largest ROI, the wheel re-

gion. The parameters are followed after the name, where

HOG99 has cell size 9, MHOG11 is a 1 × 1 split to cells,

and both are fixed at 9 orientation bins. GIST8 means the

free parameters are set to 8.

The GIST significantly outperformed HOG under these set-

tings.

Skin: In order to obtain a skin segmentation model spe-

cific to the user, the user’s skin color is obtained by an ini-

tialization where the driver was asked to maintain the hands

over the wheel and in front of the sensor. The hands are

segmented using the depth values, and a color likelihood

classifier is then constructed in the L*a*b color space. The

final descriptor is 4D: the area and area/perimeter ratio of

the two largest connected components in the image.

EUC: By applying a distance function between column

pixel intensities of an image, such as the Euclidean distance,

this feature is produced. In [16] it was shown to perform

well on some of the regions, in particularly on the depth

image.

GLOBAL: The median, mean, and variance of the in-

tensities in the image.

4.3. Learning from Sparse Exemplars

A linear SVM is learned for each of the regions with

a different set of color and depth-based features. Datasets

such as the one in this work usually contain sets of unbal-

anced data-presence of hand in a certain region may be sig-

nificantly more rare than in other regions (such as the wheel

region). Nonetheless, we would like to preserve the large

spectrum of training samples to fully capture the intra-class

variations in appearance.

We address this through penalizing parameters in a max-

margin linear SVM formulation. Given training vectors

xi ∈ R
n and yi ∈ {−1, 1}, we use LIBSVM [2] to solve

the following optimization problem:

min
w,b,ξ

1

2
wT w + C+

ti=1

∑
ξi + C−

ti=−1

∑
ξi

subject to ti(wTφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

(1)

4.4. Hypothesis Integration from ROIs

By training five individual SVMs, a score is obtained for

each region in testing. The five scores can be combined

to form a feature vector, and a second-stage linear SVM is

learned using the scores. Learning a confidence for each

region leverages information from different regions under

difficult settings. This is useful because smaller regions are

expected to have higher accuracy of hand or object recog-

nition. Other regions might be less prone to illumination

changes. Furthermore, it allows for learning patterns of ac-

tivities with multi-region cues better. For example, it alle-

viates false positives in situations where the arm in one re-

gion and the hand in another. Finally, it provides improved

recognition under occlusion, where one hand may not be

visible but both are on the wheel (there is no hand in the

peripheral regions).

4.5. Evaluation Criteria

Due to unbalanced number of class instances, perfor-

mance is measured in terms of normalized accuracy (av-

erage correct classification rate-CCR)

CCR =
1

K
c=1:K

∑
pc (2)

where K is the total number of classes, and pc denotes

the percentage of correctly matched instances for class c.

5. Experimental Evaluation - No Hand, Hand,
and Hand+Object Events

We show top performing descriptors and combinations

of descriptors in figure 4 for the three class activity recogni-

tion problem of no hand, hand or hand+object detection in

each region. Classification of the type of object that is being

used out of the six object classes is left for future work.

The top performing descriptors varied for the differ-

ent regions (figure 4)-mostly alternating between GIST,

HOG, and modified HOG. Throughout the two modali-

ties and their combination, the modified HOG together

with GLOBAL and DIFFHOG produced the highest re-

sults on average. Nonetheless, top performance varied sig-

nificantly among regions-mostly alternating between GIST,

HOG, and MHOG. The EUC descriptor of Euclidean dis-

tance among column pixel intensities was useful for analyz-

ing activity in the lap region. Motion (HOF) wasn’t shown
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(a) RGB (b) Depth (c) RGB+Depth

Figure 4: Results of normalized accuracy for the three class problem of no-hand, hand, and hand+object detection in each

region using top performing descriptors and combinations of descriptors. The analysis is in terms of modality: RGB, Depth,

and combined RGB and Depth (concatenated descriptors).

(a) Baseline: 35.2%. (b) This work

RGB only: 52.1%.

(c) This work - RGB and Depth: 69.4%.

Figure 3: Activity recognition as a five class problem of

hand localization in five regions. (a) The baseline hand

model in [15], a mixture model over three components

based on Felzenszwalb et al. [9] and trained on hand in-

stances from several hand datasets and the PASCAL VOC

dataset. Testing is done at 36 different rotations of the

image-10◦ intervals. (b) and (c) is our ROI integration

framework.

to provide performance improvement, and motion cue ex-

traction needs to be further studied.

We choose a collection of the top performing descrip-

tors for each region, and use it to analyze the five class

activity classification problem within the five regions (fig-

ure 3). All five and final SVM learned use a linear kernel

and a one-vs-one multiclass classification. In this evalua-

tion, we are only concerned with whether there is a hand

in one of the four peripheral regions or whether both of the

hands are in the wheel region. We use the entire dataset

containing both instances of hand in the different regions as

well as hand holding object. As a baseline, we use the hand

shape model from [15] built using a deformable part model

(Felzenszwalb et al. [9]) and trained on hand instances from

several hand datasets and the PASCAL VOC dataset (see

[15]). Testing is done at 36 rotations. The technique is

significantly slower than ours, and we reach close to or

real time (depending on the descriptor used). Secondly, by

learning multi-region cues for activity recognition, difficult

cases of occlusion are better handled. We notice a signif-

icant increase in performance, especially in the rest, gear,

or CD regions. The baseline suffers from large amounts of

false-positives in the wheel region. Taking four of the top

scored detection windows from the baseline (as opposed to

just the top two) and checking for activity other than in the

wheel region by taking the maximum activity index from

one to five (ordered as in figure 3) leads to an improvement

overall performance (up to 41.7%, but the wheel region ac-

curacy goes down from 89% to 63%).

6. Experimental Evaluation - Interactive Hand
Gestures

The gesture dataset in this work is unique compared to

existing datasets as the hand is facing away from the sen-

sor (leading to more self-occlusion) and data was captured

in naturalistic driving settings. Furthermore, gestures were

performed by the passenger and driver leading to variations

in the performance of the gestures. In the evaluation, both
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Method RGB Depth

Cuboids 20.62% 15.55%

MHI 20.97% 15.21%

HOG2 46.65% 35.27%

Table 2: Comparison of gesture classification using three

different spatial-temporal feature extraction methods: 1)

cuboids [7] with a flattened gradient descriptor 2) HOG ap-

plied to the motion history image (MHI) [1] 3) HOG ap-

plied to the collection of spatial HOG descriptors over time,

HOG2 [17]. Average correct classification rate is reported

using cross-subject cross-validation.

the MHI scheme and the HOG2 descriptor are inputted to a

linear SVM. The parameters for the Cuboids descriptor (see

[7]) were grid optimized. Out of the three techniques, the

HOG2 gives the best classification on the dataset for each

modality and user (table 2). The depth images are sensi-

tive to illuminations and reflective screens in the car, hence

the lower performance. The training and testing for HOG2

is also significantly faster than the Cuboids descriptor. It’s

computationally efficient due to the use of the feature set

extracted from the initial hand detection step of the sys-

tem. The implemented system is lightweight, with about

10 ms/frame for spatial feature extraction at every frame

and 10 ms for the re-application of the modified HOG on

the 2D array of collected histogram descriptors over time).

On average, spatio-temporal extraction and gesture classifi-

cation can be done at about 14 ms/frame.

7. Concluding Remarks
We presented a rich activity recognition dataset in order

to contribute to the development of algorithms that work

well in naturalistic settings of human activity. A hand lo-

calization framework was introduced, with an analysis of

different RGB and depth image descriptors for object de-

tection and activity recognition. Interactive gesture recog-

nition was done using a fast bag-of-words approach leading

to a real-time interaction module.
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