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Abstract

Recent research on computational cameras has shown
that it is possible to make motion blur nearly invariant to
object speed and 2D (i.e., in-plane) motion direction, with
a method called focus sweep that moves the plane of focus
through a range of scene depth during exposure. Neverthe-
less, the focus sweep point-spread function (PSF) slightly
changes its shape for different object speeds, deviating from
perfect 2D motion invariance. In this paper we perform
a time-varying light field analysis of the focus sweep PSF
to derive a uniform frequency power assignment for vary-
ing motions, leading to a finding that perfect 2D motion
invariance is possible in theory, in the limit of infinite expo-
sure time, by designing a custom lens bokeh used for focus
sweep. With simulation experiments, we verify that the use
of the custom lens bokeh improves motion invariance also
in practice, and show that it produces better worst-case per-
formance than the conventional focus sweep method.

1. Introduction

Defocus and motion deblurring has been an active area of
research in the computational camera community, where a
computational deblurring process is facilitated by a camera-
hardware-assisted smart capture process. One of the impor-
tant categories of such capture processes is invariant cap-
ture, which makes the point-spread function (PSF) invari-
ant to scene depth or motion, thereby bypassing the need
for PSF identification [11, 9, 13, 8, 7, 6]. Recently, it has
been shown that the focus sweep method, which sweeps the
plane of focus through a range of scene depth by moving the
lens or the image sensor along the optical axis during expo-
sure, not only makes defocus blur invariant to object depth
[9, 13], but also makes motion blur nearly invariant to object
speed and 2D (i.e., in-plane) motion direction [3, 17]. While
focus sweep is shown to be near-optimal both in terms of in-
variance and high-frequency preservation for certain combi-
nations of depth and motion ranges, it is still suboptimal. In
particular, the focus sweep PSF slightly changes its shape
for different object speeds even in theory.

In this paper we perform an analysis of focus sweep cap-
ture to explore the possibility of achieving perfect 2D mo-
tion invariance at least in theory, and of achieving better
performance in practice. Building upon the time-varying
light field analysis for joint defocus and motion blur PSFs
in [3], we find a way to uniformly distribute PSF frequency
power over all possible scene depths and motions within
some predetermined ranges. This uniform assignment leads
to perfect 2D motion invariance in theory, in the limit of
infinite exposure time, in a similar manner to the case of
an accelerating camera [11] that achieves perfect 1D (e.g.,
horizontal) motion invariance with the infinite exposure as-
sumption. We also show that this uniform assignment is
achieved by a custom lens bokeh used for focus sweep. De-
blurring simulation verifies that the use of the custom lens
bokeh improves motion invariance in practice and produces
better worst-case performance than using the standard lens.

The presented analysis inherits the assumptions and lim-
itations of the previous work [3]. Namely, we assume that
scenes are Lambertian; scene depth and motion have limited
ranges; and object motions are in-plane (no z-axis motion)
and constant (no acceleration) within the exposure time.

2. Related Work

We only summarize previous invariant capture meth-
ods and analyses here. For depth-invariant capture, several
methods have been proposed ranging from the use of a cu-
bic phase plate [8] to focus sweep [9, 13], to an annular
diffuser at the aperture [7], and to a chromatically-aberrated
lens [6]. They are all designed in a way that light rays im-
pinging on a sensor pixel are uniformly distributed over a
range of depth, so that every depth is fractionally focused.
An analysis of depth invariance of computational cameras
can be found in [2].

For motion-invariant capture, it is shown that blur can
be made invariant to object speed in an a priori chosen 1D
(say, horizontal) direction by translating the image sensor
horizontally with a constant acceleration [11]. Comparisons
with a (non-invariant) motion deblurring method [15] can
also be found in [1].

Researchers have found that focus sweep also provides
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near motion invariance in addition to depth invariance, and
that the near motion invariance holds for arbitrary 2D (in-
plane) motion directions [3, 17]. However, the motion in-
variance is only approximate even in theory.

3. Analysis

In this section we first briefly summarize the time-
varying light field analysis of the conventional focus sweep
in [3] in Sec. 3.1, and we derive a uniform frequency power
assignment over depth and motion ranges in order to theo-
retically achieve perfect 2D motion invariance in Sec. 3.2,
which we show can be realized as modified focus sweep
with a custom lens bokeh in Sec. 3.3.

3.1. Preliminaries

We model a degraded image D(x) as 5D convolution of
an incoming time-varying light field l(x,u, t) with a kernel
k(x,u, t) as

D(x0) =

∫∫∫
k(x0−x,−u,−t) · l(x,u, t)dxdudt, (1)

where we use two-plane parameterization for the light field
[12] with x = (x, y) denoting locations on the image sensor
and u = (u, v) locations on the aperture, and t denotes time
(see Fig. 1). The integrals are taken over (−∞,+∞). The
kernel k represents how each light ray passing through the
point u on the aperture at time t is mapped to the position x

on the sensor, and for the conventional focus sweep capture,

k(x,u, t) = δ(x− wtu)R(|u|/A)R(t/T ), (2)

where R is a rect function such that R(z) = 1 for |z| <
1/2 and R(z) = 0 otherwise. R(t/T ) indicates that the
shutter is open during exposure time T for t ∈ [−T/2, T/2],
R(|u|/A) indicates that the aperture is open inside the disc
with diameterA, and δ(x−wtu) indicates that a ray passing
through u on the aperture is mapped to x = wtu on the
sensor with the focused depth wt changing along time at
focus sweep speed w.

x

y

u

v

Sensor

Aperture

Scene depth d

d0

Scene point

Velocity

(mx, my)

b

A

Figure 1. Light field parameterization xyuv and a moving scene
point. Scene depth d is taken as a distance from the aperture to-
wards the sensor. Reproduced from [3]. x—

Now, let d and m = (mx,my) be depth and motion (ve-
locity) of a scene point. The PSF representing joint defocus
and motion blur can be written as

φs,m(x) =

∫∫
k(x + su + mt,u, t)dudt, (3)

where s = (d − d0)/d, with d0 denoting the distance be-
tween the aperture and the sensor, encodes the object depth
in a way that it corresponds to the slope in the 4D light field
space [5, 14, 11]. The optical transfer function (OTF) of
this PSF is given as

φ̂s,m(fx) = k̂(fx,−sfx,−m · fx), (4)

where Fourier transform is denoted using a hat symbol and
fx = (fx, fy) represents frequency in the x and y directions.
This means that the OTF is a 2D slice of the 5D Fourier
transform k̂(fx, fu, ft) of the kernel k with the following
assignments

fu = −sfx, ft = −m · fx, (5)

where fu = (fu, fv) and ft represent frequency in the u, v
and t directions.

The squared modulation transfer function (MTF, the
magnitude of OTF, which characterizes deblurring perfor-
mance [11]) of the conventional focus sweep PSF is de-
rived as follows by explicitly taking 5D Fourier transform
of Eq. (2).

|φ̂s,m(fx)|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A2

w2|fx|2
(

1− 4|m · fx|2
A2w2|fx|2

)

(for |s| ≤ Tw
2 , |m · fx| ≤ Aw

2 |fx|)
0 (otherwise)

(6)
Hence, within some scene depth range S and motion range
M such that |s| ≤ S/2 (≤ Tw/2) and |m| ≤ M/2 (≤
Aw/2), the MTF of the conventional focus sweep does not
depend on scene depth s, but it gradually falls off for faster
motion |m| (see the red plot in Fig. 2). While this fall-
off can be minimized by setting the motion range as M =
Aw/

√
3, the motion invariance is still approximate.

m ⋅ f
x

Aw
2

f
x–

Aw
2

f
x+

A2

w2 f
x

2

π
2A2

16w2 f
x

2

Conventional focus sweep

Modified focus sweep

Figure 2. Squared MTF of the conventional focus sweep PSF (red,
Eq. (6)) and that of the modified focus sweep PSF (blue, Eq. (13)),
plotted with respect to the axis corresponding to object speed.
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3.2. Derivation of an Improved Focus Sweep Kernel

We begin by examining the derivation of Eq. (6). We
first take the 5D Fourier transform of the conventional focus
sweep kernel Eq. (2) as

k̂(fx, fu, ft) =

∫∫∫
δ(x− wtu)R(|u|/A)R(t/T )

· e−2πi(fx·x+fu·u+ftt)dxdudt

=

∫∫
R(|u|/A)R(t/T ) e−2πi((wt−s)fx·u+ftt)dudt, (7)

where we have integrated the delta function over x and
plugged fu = −sfx from Eq. (5). Next, we integrate over u.
The 2D Fourier transform of a disc R(|u|/A) is a jinc func-
tion (πA2/4)jinc(πA|fu|) [4], where jinc(z) = 2J1(z)/z,
and Jn(z) is the n-th order Bessel function of the first kind
[16]. Since Eq. (7) has (wt−s)fx as a frequency component
for u, we have

k̂ =

∫
πA2

4
jinc(πA(wt− s)|fx|)R(t/T )e−2πifttdt. (8)

With infinite exposure assumption T → ∞, Eq. (8) is the
1D Fourier transform of a jinc along the t axis. This pro-
duces the aforementioned fall-off along the ft direction [3]
(note ft = −m · fx as in Eq. (5)), which represents the
deviation from perfect motion invariance.

Here we note that we can make k̂ in Eq. (8) constant if
we have a sinc function instead of the jinc, as the 1D Fourier
transform of a sinc is a rect function. Now the question be-
comes as follows. The jinc function resulted from the 2D
Fourier transform of a disc R(|u|/A). What function pro-
duces a sinc function as the result of 2D Fourier transform?

To answer this question, we take the inverse 2D Fourier
transform of a sinc as

BA(u) =

∫
πA2

4
sinc(πA|fu|) e2πiu·fudu. (9)

Using polar coordinates as fu = (fr cos θ, fr sin θ) with
fr ≡ |fu|,

BA(u) =
πA2

4

∫ ∞

0

∫ 2π

0

sinc(πAfr)e
2πi|u|fr cos θdθ fr dfr

=
πA2

4

∫ ∞

0

sinc(πAfr) · 2πJ0(2π|u|fr)fr dfr

=
πA

2

∫ ∞

0

sin(πAfr)J0(2π|u|fr)dfr, (10)

where we have used J0(z) = 2π
∫ 2π

0
eiz cos θdθ [16] and the

definition of sinc. The solution of the integral in Eq. (10)
can be found in [16], leading to (see the blue plot in Fig. 3)

BA(u) =

⎧⎪⎪⎨
⎪⎪⎩

A

2
√
A2 − 4|u|2 (|u| < A

2 )

∞ (|u| = A
2 )

0 (|u| > A
2 )

. (11)

1

1/2
1/4

A

Disc R( u /A)

Bowl BA(u)

u

Clipped CA(u)

Figure 3. Profiles of circularly symmetric bokehs plotted with re-
spect to the radius |u|.

Hence, by using the following kernel k′ instead of the
conventional focus sweep kernel k in Eq. (2), one can
achieve perfect 2D motion invariance (as well as depth in-
variance) in the limit of infinite exposure time.

k′(x,u, t) = δ(x− wtu)BA(u)R(t/T ). (12)

Indeed, by taking the 5D Fourier transform of k′, we can
derive (see Appendix A for details)

|φ̂′s,m(fx)|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π2A2

16w2|fx|2
(for |s| ≤ Tw

2 , |m · fx| ≤ Aw
2 |fx|)

0 (otherwise)
(13)

which is constant irrespective of scene depth s and motion
m for |s| ≤ S/2 (= Tw/2) and |m| ≤M/2 (= Aw/2) as
can be seen in the blue plot in Fig. 2

In [3], two performance measures of joint defocus and
motion deblurring are proposed. One is a high-frequency
preservation measure defined as the worst-case squared
MTF mins,m |φ̂s,m(fx)|2 and the other is a PSF invariance
measure defined as the ratio of the worst-case squared MTF

to the best-case value mins,m |φ̂s,m(fx)|2
maxs,m |φ̂s,m(fx)|2 . Table 1 shows

comparison between the conventional focus sweep kernel
k in Eq. (2) and the improved kernel k′ in Eq. (12) in terms
of these performance measures. The improved focus sweep
kernel has high-frequency preservation performance closer
to the optimal than the conventional kernel, in addition to
achieving motion invariance.

Table 1. Values of the high-frequency preservation measure and
the PSF invariance measure for the conventional focus sweep ker-
nel (with S = Tw and M = Aw/

√
3 as in [3]) and the improved

kernel (with S = Tw and M = Aw as derived above). Values in
the parentheses show percentages to the upper bounds.

High-freq. preserv. PSF invariance

Upper bound 2A3T
3SM |fx|2 1

Conventional focus
sweep kernel k

2A3T
3
√

3SM |fx|2 (57.7%) 2
3 (66.7%)

Improved focus
sweep kernel k′

π2A3T
16SM |fx|2 (92.5%) 1 (100%)

933941941947



Disc
R(|u|/A)

+ + + + + + =

Bowl
BA(u)

+ + + + + + =

Clipped
CA(u)

+ + + + + + =

Figure 4. Log-intensity of bokehs (instantaneous PSFs) during focus sweep (seven images on the left for each row), and the resultant,
time-integrated focus sweep PSFs (rightmost images). Top row: conventional focus sweep with a disc bokeh. Middle row: modified focus
sweep with a bowl bokeh. Bottom row: modified focus sweep with a clipped bowl bokeh. Each row shows the case in which an object
is moving vertically, and the bokeh center is shifting downward through time while changing its diameter. The vertical (red arrow) and
horizontal (green arrow) profiles of the resultant focus sweep PSFs are shown in Fig. 5.

Disc Bowl Clipped
Vertical profile

Horizontal profile

Figure 5. Focus sweep PSF profiles with a disc bokeh (left), a bowl bokeh (center), and a clipped bowl bokeh (right). Red and green plots
show vertical and horizontal profiles, respectively, where the color corresponds to the same-colored arrows in Fig. 4. Note that the red plots
are almost identical to (and thus hidden by) the green plots for the modified focus sweep (center and right).

3.3. Modified Focus Sweep with a Custom Bokeh

The use of the new kernel of Eq. (12) means that
one needs to distribute energy (or light rays) according to
BA(u) inside the aperture rather than uniformly according
to R(|u|/A). In other words, the defocus blur PSF of the
lens used for focus sweep (which we call bokeh to distin-
guish it from the resultant focus sweep PSF) needs to have
a bowl-like shape (the blue profile in Fig. 3) instead of a
disc (the red profile). Although the bowl bokeh BA(u) has
singularity at |u| = A/2, it is integrable

∫
BA(u)du =

πA2/4 < ∞, and hence it is physically realizable with fi-
nite resolution. An easy way to approximate the bowl bokeh
is to place an attenuator at the lens aperture by sacrificing
light, in which case large values have to be clipped as they
cannot exceed R(|u|/A). We define such a clipped bokeh
as

CA(u) = min{αBA(u), R(|u|/A)}, (14)

where α is an attenuation coefficient. We find α = 1/2
is a good compromise between the fidelity to the desirable
profile and light efficiency (the green profile in Fig. 3).

While we conjecture that light efficient bowl bokehs may
be realized with advanced and emerging optical elements
such as phase plates and metamaterials [10], we leave the
exploration of implementation as future work, and in what

Normal camera Focus sweep (disk) Focus sweep (bowl)

Figure 6. Simulated camera images of point light sources moving
horizontally at three different speeds and at three different depths.

follows we evaluate the performance of the modified focus
sweep with the ideal bowl bokehBA(u) and its clipped ver-
sion CA(u) by simulation.

Using the ideal bowl bokeh, we can also confirm 2D
motion invariance in the spatial domain. Let ψb(x) =

4
πb2Bb(x) denote the instantaneous defocus PSF with diam-
eter b and unit volume. The focus sweep PSF is the integral
of ψb(x) with changing center position x and diameter b,
and straightforward integration leads to (see Appendix B)

φ′(x) =

∫ +T/2

−T/2

ψAw|t|(x−mt)dt→ 1

Aw|x| (15)

for T → ∞, which does not depend on object motion m.

934942942948



 20

 25

 30

 35

 0  10  20  30  40  50

PS
N

R
 [

dB
]

Speed |    |  [pixels/sec]

Depth s = 0

m

 20

 25

 30

 35

 0  10  20  30  40  50

PS
N

R
 [

dB
]

Speed |    |  [pixels/sec]

Depth s = S/4

m

 20

 25

 30

 35

 0  10  20  30  40  50

PS
N

R
 [

dB
]

Speed |    |  [pixels/sec]

Depth s = S/2

m

Disc ClippedBowl

Figure 7. PSNR of deconvolution simulation results of focus sweep methods with different bokehs (disc, bowl, and clipped bowl). Scene
depths s = {0, S/4, S/2} and object speeds |m| ≤ M/2 are simulated, where S = 1 and M = 100.

s = 0 s = S/4 s = S/2
|m| = 0 |m| = M/4 |m| = M/2 |m| = 0 |m| = M/4 |m| = M/2 |m| = 0 |m| = M/4 |m| = M/2

Disc
R(|u|/A)

21.7 21.3 19.2 21.6 19.9 18.2 20.2 18.7 16.4

Bowl
BA(u)

20.5 20.2 19.7 20.2 19.3 18.9 18.9 18.3 17.3

Figure 8. Deconvolved images and PSNR values from focus sweep simulation for various scene depths s = {0, S/4, S/2} and speeds
|m| = {0, M/4, M/2}. Top row: conventional focus sweep with a disc bokeh. Bottom row: modified focus sweep with a bowl bokeh.

For a vertically moving scene point as shown in Fig. 4,
a disc bokeh produces a vertically-elongated focus sweep
PSF as can be seen in Fig. 5 (left) where its profile in the
vertical direction (red) is wider than that in the horizontal
direction (green). On the other hand, a bowl bokeh produces
almost identical vertical and horizontal profiles, which re-
mains also true for a clipped bowl bokeh, as shown in Fig. 5
(center and right). Fig. 6 shows more examples of focus
sweep PSFs for varying object speeds and depths, along
with normal camera PSFs for reference. The PSF elonga-
tion in the motion direction observed for the focus sweep
with a disc bokeh is alleviated by the use of a bowl bokeh.

4. Evaluation

We conducted deblurring simulation for the conventional
focus sweep with a disc bokeh and the modified focus
sweep with bowl and clipped bokehs. We set A = 100
pixels, T = 1 sec, S = 1, and M = 100 pixels/sec, and
simulated focus sweep PSFs with different bokehs for var-
ious object speeds and depths. We convolved a natural im-
age with the PSF, added Gaussian noise with standard devi-
ation 10−3 for [0, 1] pixel values, and computed the mean

squared error (MSE) between the Wiener-deconvolved im-
age and the original unblurred image. We repeated this pro-
cess for several images and took the MSE average. In or-
der to evaluate depth/motion invariance, we always used the
“center” PSF corresponding to s = 0 and m = 0 for decon-
volution. As deconvolution with the center PSF can produce
shifted images, we register the deconvolved image with the
original image before computing the MSE.

Fig. 7 reports the simulation results in terms of PSNR =
−10 log10(MSE). As can be seen, the performance of the
conventional focus sweep gradually deteriorates for faster
object motion. In contrast, the PSNR plot for the modi-
fied focus sweep with a bowl bokeh is flatter, producing
better worst-case performance (i.e., minimum PSNR) at
|m| = M/2 (= 50). The modified focus sweep with a
clipped bowl bokeh performs slightly worse than with the
ideal bowl bokeh due to light loss, but the degree of motion
invariance almost remains the same as the ideal case. In
practice, even the use of an ideal bowl bokeh cannot elim-
inate the deterioration for faster object motion and also for
object depth away from the middle of the depth range s = 0.
This is due to the use of a finite exposure time, known as a
tail-clipping effect [11]. Please note that, as the modified

935943943949



Blurred input Static lens Focus sweep (disc) Focus sweep (bowl) Focus sweep (clipped)

Figure 9. Magnified views of the deconvolution simulation results of a moving resolution chart in Fig. 8 with s = S/2 and |m| = M/2.
The leftmost column: simulated blurred images of the normal camera with a static lens (top) and of the focus sweep camera with a bowl
bokeh (bottom, disk and clipped bowl bokehs produce similar images). The four columns on the right: deconvolution results (top) and their
errors (bottom, differences from the ground truth unblurred image) of 1) the normal camera with a static lens, 2) the conventional focus
sweep camera with a disc bokeh, 3) the modified focus sweep camera with a bowl bokeh, and of 4) the modified focus sweep camera with
a clipped bowl bokeh.

Blurred input Focus sweep (disc) Focus sweep (bowl)

Figure 10. Deconvolution results of a simulated scene containing moving fish at different depths in front of a textured background of an
ocean floor. The leftmost column: simulated blurred images of the normal camera with a static lens (top, focused on the yellow fish) and of
the focus sweep camera with a bowl bokeh (bottom). The two columns on the right: deconvolution results (top) and their errors (bottom,
differences from the ground truth unblurred image) of the focus sweep camera with a disc bokeh and a bowl bokeh.

focus sweep distributes the frequency power “budget” more
evenly over the motion range, it comes with the cost of re-
duced PSNRs for slow object motion [11, 3]. Nevertheless,
the modified focus sweep improves worst-case performance
as dictated by the theory (see Table 1).

Fig. 8 shows simulated deconvolution results of a mov-
ing resolution chart at various depths. While the improve-
ment of worst-case performance (at s = S/2 and |m| =
M/2) may not be visually significant, the modified focus
sweep results in deblurred images with higher contrast as
shown in the magnified views in Fig. 9. The use of a clipped
bowl bokeh produces noisier images, but they still retain the

overall contrast, providing better reconstructions than the
conventional focus sweep.

Fig. 10 shows a simulated scene of moving fish. It con-
sists of four depth layers (an ocean floor background and
three fish), and is rendered with ray-tracing to simulate de-
focus and motion blur. Hence, the rendered images contain
blur that cannot be modeled as simple convolution at occlu-
sions. Nevertheless, as the focus sweep PSF remains nearly
uniform over the image, visually pleasing images are re-
covered using Wiener deconvolution, with the focus sweep
with a bowl bokeh producing better contrast than with a disc
bokeh, as can be seen around the face of the yellow fish.

936944944950



5. Conclusion

Through a time-varying light field analysis of the focus
sweep PSF, this paper has shown that perfect 2D motion
invariance is possible in theory, in the limit of infinite expo-
sure time, by using a bowl-shaped lens bokeh instead of a
standard disc bokeh for focus sweep. We have also verified
that the use of a bowl bokeh improves motion invariance
also in practice, and showed that it produces better worst-
case performance than the conventional focus sweep. Al-
though the improvement is small and may not justify the
cost of designing a custom bokeh at present, we hope that
emerging optics technologies will minimize such concerns
in the future.

Our primary goal in this paper is to provide an analysis
to answer the question of whether or not the gap between
the theoretical optimum and the near-optimum achieved by
the conventional focus sweep can be further reduced. While
uniqueness of the 2D motion-invariant kernel and existence
of kernels that also achieve optimal high-frequency preser-
vation are yet to be investigated, we believe that the analysis
presented in the paper provides further theoretical support
not only for motion invariance of focus sweep but also for
joint defocus and motion deblurring in general, upon which
follow-on work can build.
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Appendix

A. MTF of the Improved Focus Sweep Kernel

Here we show a derivation of Eq. (13), the MTF of the
improved focus sweep kernel.

We take the 5D Fourier transform of the improved fo-
cus sweep kernel in Eq. (12). First, we integrate the delta
function over x and obtain

k̂′(fx, fu, ft) =

∫∫∫
δ(x− wtu)BA(u)R(t/T )

· e−2πi(fx·x+fu·u+ftt)dxdudt

=

∫∫
BA(u)R(t/T )e−2πi(fx·(wtu)+fu·u+ftt)dudt

=

∫∫
BA(u)R(t/T )e−2πi((wt−s)fx·u+ftt)dudt, (A.1)

where for the last line we have substituted Eq. (5) for
fu. Next, we integrate over u. Since we have shown
that the 2D Fourier transform of a bowl BA(u) is a sinc:
(πA2/4)sinc(πA|fu|), and Eq. (A.1) has (wt − s)fx as a
frequency component for u, we have

k̂′ =
∫
πA2

4
sinc(πA(wt− s)|fx|)R(t/T )e−2πifttdt.

(A.2)
Finally, we integrate over t. For the moment, we omit
R(t/T ) by assuming infinite exposure time. We rearrange
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Eq. (A.2) with change of variable as t′ = t−s/w and obtain

k̂′ =
πA2

4
e−2πifts/w

∫
sinc(πAw|fx|t′)e−2πiftt

′

dt′.

(A.3)
This amounts to the 1D Fourier transform of a sinc. As the
Fourier transform of sinc(at) with respect to t is given as
(π/a)R(πft/a), applying this to Eq. (A.3) and taking the
magnitude leads to

|k̂′|2 =

⎧⎪⎪⎨
⎪⎪⎩

π2A2

16w2|fx|2
(
|ft| ≤ A

2
w|fx|

)

0 (otherwise)

(A.4)

With finite exposure time, Eq. (A.3) gets convolved by the
Fourier transform of R(t/T ), which is T sinc(πTft), in the
ft axis. Since convolution by sinc(πTft) cancels out sinu-
soids with higher frequencies than T/2, and since Eq. (A.3)
has the sinusoid term e−2πifts/w, the additional condition
for Eq. (A.4) to be non-zero is given as |s| ≤ (T/2)w. Plug-
ging Eq. (5) for ft into Eq. (A.4) leads to Eq. (13).

B. Proof of Perfect 2D Motion Invariance

Here we prove perfect 2D motion invariance of the mod-
ified focus sweep by showing a derivation of its PSF given
in Eq. (15).

We start from the left hand side of Eq. (15).

φ′(x) =

∫ +T/2

−T/2

ψAw|t|(x−mt)dt. (B.1)

For |m| < M/2 (= Aw/2), the above equation can be
written as

φ′(x) =

∫ t0

−T/2

1

πAw|t|
√
q(t)

dt+

∫ +T/2

t1

1

πAw|t|
√
q(t)

dt,

(B.2)
where q(t) = (Awt/2)2 − |x − mt|2, and t0 and t1 are
the roots of q(t) = 0. We order them such that t0 ≤ t1,
and we assume T is large enough to satisfy −T/2 < t0 and
t1 < +T/2. If we further set as

q(t) = (A2w2/4− |m|2)t2 + 2(m · x)t− |x|2
≡ at2 + bt+ c, (B.3)

where a ≡ A2w2/4 − |m|2 > 0, b ≡ 2(m · x), and c ≡
−|x|2 ≤ 0, we can write the roots as

{t0, t1} =
−b±√b2 − 4ac

2a

=
−(m · x)±

√
(m · x)2 + (A2w2/4− |m|2)|x|2
(A2w2/4− |m|2) .

(B.4)

Since a > 0, c ≤ 0, and therefore b2 − 4ac ≥ b2 ≥ 0,
existence of the real roots t0 and t1 is guaranteed, and we
also have t0 ≤ 0 and t1 ≥ 0. Now we can remove the abs
operations in Eq. (B.2) as

φ′(x) =

∫ t0

−T/2

− 1

πAwt
√
q(t)

dt+

∫ +T/2

t1

1

πAwt
√
q(t)

dt.

(B.5)
Here we apply the following equation

∫
1

t
√
at2 + bt+ c

dt =
1√−c sin−1

(
bt+ 2c

|t|√b2 − 4ac

)
.

(B.6)
Then,

φ′(x) =

[
− 1

πAw|x| sin
−1

(
bt+ 2c

|t|√b2 − 4ac

)]t0

−T/2

+

[
1

πAw|x| sin
−1

(
bt+ 2c

|t|√b2 − 4ac

)]+T/2

t1

. (B.7)

By simple substitution, we can see that

bt0 + 2c

|t0|
√
b2 − 4ac

=
−b2−b

√
b2−4ac+4ac
2a

−−b
√

b2−4ac−(b2−4ac)
2a

= −1, (B.8)

bt1 + 2c

|t1|
√
b2 − 4ac

=
−b2+b

√
b2−4ac+4ac
2a

−b
√

b2−4ac+(b2−4ac)
2a

= −1, (B.9)

and thus

φ′(x) =
1

πAw|x|
[
− sin−1(−1) + sin−1

( −bT + 4c

T
√
b2 − 4ac

)

+ sin−1

(
bT + 4c

T
√
b2 − 4ac

)
− sin−1(−1)

]

=
1

πAw|x|
[
π

2
+ sin−1

(−b+ 4c/T√
b2 − 4ac

)

+ sin−1

(
b+ 4c/T√
b2 − 4ac

)
+
π

2

]

=
1

Aw|x| +
1

πAw|x|
[
sin−1

(
b+ 4c/T√
b2 − 4ac

)

− sin−1

(
b− 4c/T√
b2 − 4ac

)]
,

(B.10)

as sin−1(·) is an odd function. Now we can see that

φ′(x) → 1

Aw|x| (B.11)

for T →∞.
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