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Abstract

Recently, vision-based systems have been deployed in
professional sports to track the ball and players to en-
hance analysis of matches. Due to their unobtrusive nature,
vision-based approaches are preferred to wearable sensors
(e.g. GPS or RFID sensors) as it does not require players or
balls to be instrumented prior to matches. Unfortunately, in
continuous team sports where players need to be tracked
continuously over long-periods of time (e.g. 35 minutes in
field-hockey or 45 minutes in soccer), current vision-based
tracking approaches are not reliable enough to provide fully
automatic solutions. As such, human intervention is re-
quired to fix-up missed or false detections. However, in in-
stances where a human can not intervene due to the sheer
amount of data being generated - this data can not be used
due to the missing/noisy data. In this paper, we investigate
two representations based on raw player detections (and not
tracking) which are immune to missed and false detections.
Specifically, we show that both team occupancy maps and
centroids can be used to detect team activities, while the
occupancy maps can be used to retrieve specific team ac-
tivities. An evaluation on over 8 hours of field hockey data
captured at a recent international tournament demonstrates
the validity of the proposed approach.

1. Introduction
As the sophistication of analysis increases in profes-

sional sport, more organisations are looking at using player

tracking data to obtain an advantage over their competi-

tors. For sports like field-hockey, the dynamic and continu-

ous nature makes analysis extremely challenging as game-

events are not segmented into discrete plays, the speed of

play is very quick (e.g. the ball can move at 125km/h), and

the size of the field is very large, with each player free to

occupy any area at any time. A common approach to this

problem is to use each player’s trajectory path (e.g. lin-

ear or polynomial) and learn a combined model which can

Figure 1. (Top) Detecting and tracking players over long-periods

of time is challenging and often results in missed detections (high-

lighted in yellow) and false detections. (Bottom) In this paper, we

compare two representations which are robust to false and missed

detections: (left) an occupancy map, which is formed by quantis-

ing the field into discrete areas), and (right) team-centroid, which

is formed by finding the mean, covariance of the detected players.

We show that while both representations can detect team activities

quite well, the occupancy map can be used to retrieve high-level

activities to good effect.

anticipate the future location of each player [12, 13, 15].

However, as reliably tracking players in this environment

over relatively long periods of time (i.e. > 1 min) remains

an unsolved computer vision problem, humans are required

to manually correct tracks so that a continuous track of each

player is obtained1.

Due to the enormous volume of data that vision-based

tracking systems generate, coupled with the cost and time

required to clean up the tracking data by a human, often

large amounts of tracking data is rendered unusable as it

contains “holes” or “gaps”. To counter these issues, recent

success in the area of multi-agent tracking has been gained

by the use of additional “contextual” features to improve

1This is either done live during a match or cleaned-up post match.
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tracking performance. As player motion and position (i.e.

proximity to teammates and opponents) is heavily linked to

where the action on the field is taking place and the game-

context (i.e. is one team attacking or defending), these con-

textual features can be used to fill in the gaps of missed

tracks (due to missed or false detections). Most notably,

Liu et al. [17] used a coarse player occupancy map to get an

indication of the game-state (i.e. is one team attacking or de-

fending) to improve player tracking, while Lucey et al. [19]

used team centroid as a contextual feature to approximate

player role in conjunction with a spatiotemporal bilinear

model to clean-up noisy data. In this paper, we compare:

1) the occupancy map representation – which is formed by

quantising the field into a series of areas and counting the

players in each area; to 2) a team-centroid representation –

which is formed by calculating the mean and covariance of

the detections (see Figure 1).

To enable this research we used player detection data

captured via 8 fixed high-definition (HD) cameras, across

seven complete field-hockey matches (over 8 hours of

match data for each camera). We utilise a state-of-the-art

real-time player detector [3] to give player positions at every

frame, affiliate detection results into teams using a colour

histogram model, and compare both approaches across a

series of labelled team activities. Additionally, we show

the utility of these representations for the task of play re-

trieval. We evaluate the performance relative to ground truth

annotations, and demonstrate that our descriptor is able to

quickly and accurately locate activities similar to a query

without any tracking information.

2. Related work
Due to the host of military, surveillance and sport appli-

cations, research into recognising group behaviour has re-

cently increased dramatically. Outside of the sports realm,

most of this work has focussed on dynamic teams (i.e.

where individual agents can leave and join teams over the

period of the observations). An initial approach was to

recognise the activities of individual agents and then com-

bine these to infer group activities [1]. Sukthankar and

Sycara recognised group activities as a whole but pruned the

size of possible activities by using temporal ordering con-

straints and agent resource dependencies [26, 27]. Sadilek

and Kautz [23] used GPS locations of multiple agents in

a “capture the flag” game to recognise low-level activities

such as approaching and being at the same location. All of

these works assume that the position and movements of all

agents are known, and that all behaviours can be mapped

to an activity within the library. Recently, Zhang et al. [29]

used a “bag of words” and Support Vector Machine (SVM)

approach to recognise group activities on the Mock Prison

dataset [4].

Sport related research mostly centres on low-level ac-

tivity detection with the majority conducted on American

Football. In the seminal work by Intille and Bobick [11],

they recognised a single football play pCurl51, using a

Bayesian network to model the interactions between the

players trajectories. Li et al. [16], modelled and classified

five offensive football plays (dropback, combo dropback,

middle run, left run, right run). Siddiquie et al. [24], per-

formed automated experiments to classify seven offensive

football plays using a shape (HoG) and motion (HoF) based

spatio-temporal features. Instead of recognising football

plays, Li and Chellapa [15] used a spatio-temporal driving

force model to segment the two groups/teams using their

trajectories. Researchers at Oregon State University have

also done substantial research in the football space [9, 8, 25]

with the goal of automatically detecting offensive plays

from a raw video source and transferring this knowledge

to a simulator. For soccer, Kim et al. [13] used the global

motion of all players in a soccer match to predict where

the play will evolve in the short-term. Beetz et al. [2] de-

veloped the automated sport game models (ASPOGAMO)

system which can automatically track player and ball posi-

tions via a vision system. Using soccer as an example, the

system was used to create a heat-map of player positions

(i.e. which area of the field did a player mostly spend time

in) and also has the capability of clustering passes into low-

level classes (i.e. long, short etc.), although no thorough

analysis was conducted due to a lack of data. In basket-

ball, Perse et al. [22] used trajectories of player movement

to recognise three type of team offensive patterns. Morariu

and Davis [21] integrated interval-based temporal reason-

ing with probabilistic logical inference to recognise events

in one-on-one basketball. Hervieu et al. [7] also used player

trajectories to recognise low-level team activities using a hi-

erarchical parallel semi-Markov model.

It is worth noting that an enormous amount of research

interest has used broadcast sports footage for video sum-

marisation in addition to action, activity and highlight de-

tection [14, 18, 10, 28, 20, 6, 2, 5], but given that these

approaches are not automatic (i.e. the broadcast footage

is generated by humans) and that the telecasted view cap-

tures only a portion of the field, analysing groups has been

impossible because some individuals are normally out of

frame. Although similar in spirit to the research mentioned

above, our work differs as: 1) we rely only on player detec-

tions rather than tracking, and 2) we compare across many

matches (7 compared to 1).

3. Detection Data

3.1. Field-Hockey Test-Bed

To enable this research we used player detection data

captured via 8 fixed HD cameras, and over seven complete

field-hockey matches (over 8 hours of match data for each
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Figure 2. View of the field-hockey pitch from the 8 fixed HD cam-

eras.

Frames Annotated

Match code Activities 1st Half 2nd Half

1-JPN-USA � - -

2-RSA-SCO � - -

5-USA-SCO � - -

9-JPN-SCO � - -

10-USA-RSA � 14352 -

22-RSA-IRL - 17861 -

23-ESP-SCO � - -

24-JPN-USA � 20904 7447

Table 1. Itemised list of analysed field hockey data.

camera). Each camera is connected to a computer which

extracts the player positions and their team from the video

feed. This is then relayed to a central hub via optic fibre

where the detections are merged, and can be analysed on-

line to perform activity recognition and other analysis. The

cameras are attached to light-pole structures at a height of

18m, and provide complete coverage of the field. Example

images from the eight cameras are displayed in Figure 2.

From this test-bed, we collected and analysed over 8 hours

of video footage from a recent field hockey tournament. The

analysed matches are listed in Table 1, along with the num-

ber of frames annotated with players’ team and field posi-

tion (x,y). Due to the enormous amount of time it takes to

manually label player tracks during a match, we limited our

labelling effort to three matches (four halves). However,

match statistics or team activities were labelled for seven

complete matches as can be seen in this table.

1

8

7

6
5

4

3

2

Team A
Team B
Other (Refs, Goalies)

Figure 3. (Left) We detect players in each camera using a real-time

person detector. (Right) We then classify the detections into one

of the two teams and aggregate the information from each camera

to extract the state of the game at each time instant.

3.2. Player Detector and Team Affiliation

An illustration of our player location and team affilia-

tion method is shown in Figure 3. For each camera, we

extract player image patches using a real-time person de-

tector [3], which detects players by interpreting background

subtraction results in terms of 3D geometry, where players

are coarsely modelled as cylinders of height 1.8 m. The

overlapping camera arrangement allows players missed in

one view to potentially be detected in another camera view.

However, players may still be missed when they stand close

to one another. The detected player image patch bounding

boxes represent a height of 1.8× 0.9 meters and vary in size

depending on the distance from the camera (40-100 pixels

height). Detected patches are normalised to 90 × 45 pix-

els, and classified into teams using colour histograms of the

foreground pixels.

The A and B channels of the LAB colour space are used

(the luminance channel is ignored as it is affected by illumi-

nation changes), with nine bins for each dimension, and the

histograms are normalised to sum to one. The team models

are learnt from a training set of approximately 4000 train-

ing histograms, using k-means clustering, and we compare

histograms using the Bhattacharyya coefficient. An image

patch is classified to the closer of the two models, or if it

falls outside a threshold, it is put into the “others” team

(i.e. noise, referees, goalies). In our dataset, teams are al-

ways dressed in contrasting colours, so colour histograms

are suitable for distinguishing between the two teams. The

detections are then aggregated by projecting the player posi-

tions to field co-ordinates using each camera’s homography

and utilising the covariance matrix of each player position

(representing the player position error) to merge detections.

The performance of the detector and team classification

compared to ground truth annotated frames using precision

965973980986



(a) Face-off (b) Penalty corner (c) Long corner (d) Defensive corner (e) Goal scored

Figure 4. Diagrams and examples of structured plays that occur in field-hockey

Match code Detector Team A Team B

10-USA-RSA-1 81.1% 67.2% 77.7%

22-RSA-IRL-1 80.3% 84.9% 70.2%

24-JPN-USA-1 89.5% 91.7% 90.0%

24-JPN-USA-2 85.8% 72.4% 79.7%

Table 2. Precision values after aggregating all cameras

Match code Detector Team A Team B

10-USA-RSA-1 89.0% 98.3% 98.4%

22-RSA-IRL-1 88.4% 97.6% 98.2%

24-JPN-USA-1 87.5% 95.2% 97.4%

24-JPN-USA-2 90.0% 97.6% 97.0%

Table 3. Recall values after aggregating all cameras (Team A and

Team B are relative to what was recalled by the detector)

and recall metrics is shown in Tables 2 and 3 respectively. In

these tables, it is evident that while recall is high, the team

classification has quite low precision in some matches. The

poor performance is mainly attributed to non-team-players

(referees, goalies, and false-positive player detections) be-

ing misclassified into one of the teams, since the image

patches contain a combination of team colours, especially

in the varying lighting conditions. A better model repre-

sentation could be used for colour modelling, and online

learning of the colour models to adapt with changes in illu-

mination would further improve results. From these results,

it is evident that our team behaviour representation must be

able to deal with a high degree of noise.

3.3. Team Activity Labels

Seven complete matches were annotated with common

activities that occur in field hockey, which are listed along

with their frequency count in Table 4 for each match half.

Both pictorial and broadcast examples of these five activi-

ties are shown in Figure 4. To quantify our approach, we

look at classification and retrieval of these activities. Each

of these five activities correspond to activities or statistics

that an analyst would label during a game. As all of them

have distinctive spatial locations and motion patterns, the

reliability of labelling these activities are very high. In this

work, we try to automatically detect these activities based

solely on noisy player detections (i.e. there is no ball or

player identity information).

Face Pen. Goal Long Def

off Cnr Cnr Cnr

(L) (R) (L) (R)

1-JPN-USA-1 3 2 2 11 5 4 4

1-JPN-USA-2 2 6 1 4 10 7 3

2-RSA-SCO-1 2 4 2 11 4 3 3

2-RSA-SCO-2 3 9 2 3 12 4 3

5-USA-SCO-1 3 4 2 7 4 1 7

5-USA-SCO-2 3 8 2 3 3 2 2

9-JPN-SCO-1 2 4 2 8 7 5 2

9-JPN-SCO-2 1 1 0 10 10 6 0

10-USA-RSA-1 5 9 5 5 5 8 0

10-USA-RSA-2 6 4 5 6 7 4 1

23-ESP-SCO-1 3 4 2 7 6 1 1

23-ESP-SCO-2 3 7 2 9 5 2 1

24-JPN-USA-1 4 3 3 9 6 5 1

24-JPN-USA-2 2 2 1 5 9 7 6

Total 42 67 31 98 93 59 34

Table 4. Activity frequency in each match half

4. Representing Team Behaviors
4.1. Team Occupancy Maps

Team sports like field-hockey are played over a very

large spatial area. An intuitive representation of sports

would be to track all players (maintaining their identity)

and the ball, which would result in a 46 dimensional sig-

nal (i.e. 23 objects in x and y coordinates – 11x2 players,

1 ball). However, since we cannot reliably and accurately

track the player and ball over long durations (e.g. 35mins),

an alternative is to represent the match via player detections.

By using detections, we overcome the issue of tracking but

as a consequence we remove the player identity component

of the signal, and need another method to maintain feature

correspondences. We propose to employ an occupancy de-

scriptor, which is formed by breaking the field into a series

966974981987



of spatial bins and counting the number of players that oc-

cupy each of the bins.

The team occupancy descriptor xo
i is a quantised oc-

cupancy map of the player positions on the field for each

team represented at time i. Given we have the locations

of players from the player detector system and have as-

signed team affiliation, for each frame, an occupancy map

is calculated by quantising the field into P bins, and count-

ing how many player detections for that team fall within

each location. The dimensionality of the formation de-

scriptor is equal to twice the number of bins (i.e. P × 2)

so that both teams A and B are accounted for, resulting

in xo
i = [a1, . . . , aP ; b1, . . . , bP ], where al and bl are the

player counts for teams A and B in each bin l. Depend-

ing on the level of complexity of the activity that we want

to recognise, we can use varying descriptors (coarse to

fine). In this paper we evaluate five different descriptor

sizes: P = 2(2 × 1), P = 8(4 × 2), P = 32(8 × 4),
P = 135(15 × 9), and P = 540(30 × 18). The differ-

ent quantisations represent how much tolerance there is in

player’s positions within an activity and can be thought of

as the space each player occupies in the activity (e.g. in

15× 9 quantisation, each player occupies an area of 6m2).

Since an activity can occur for either team, we compare

the template descriptors in both orientations (xo = [a,b]T ,

and xo = [brot,arot]
T , where arot represents a rotation of

the field by 180◦ for team a’s formation descriptor, so that

the new descriptor is given by arot[i] = a[P+1−i], for i =
1, 2, . . . , P ). We take the minimum of the two orientations

as the distance measure. Examples of the Team Occupancy

Maps are displayed in Figure 5.

Figure 5. Example Team Occupancy Maps using 2×1, 4×2, 8×4
and 15× 9 descriptor sizes.

4.2. Team Centroid Representation

Given the player detections and their team affiliations,

the centroid representation, xc
i is found by calculating the

mean and covariance of the player positions for each team.

As with the team occupancy representation, we compare

centroid features in both orientations, and the rotated po-

sitions are given by xrot = 91.4 − x and yrot = 55.0 − y
(where 91.4 m× 55.0 m are the dimensions of the field and

x and y are the positions on the field). An example of the

team centroid representation is depicted in Figure 6.

Figure 6. The team centroid representation is overlaid on the player

detections. The ‘x’ represents the mean position for each team (i.e.

the centroids), and the ellipses represent the covariances of their

positions.

5. Experiments
5.1. Isolated Team Activity Recognition

To compare the different representations, we conducted

a series of isolated activity recognition experiments. As

these activities coincide with a single event (i.e. the ball

crossing the outline, or a goal being scored), they do not

have distinct onset and offset times. To account for this,

we used the event as the start of the activity and went for-

ward 10 seconds as the offset time, which gave us a series

of 10 second play clips. We split the annotated activities of

Table 4 into testing and training sets using a leave-one-out

cross-validation strategy, where one half was used for test-

ing and the remaining match halves for training. We used

a k-Nearest Neighbour classification approach, taking the

mode activity label of the closest k examples in the training

set, using L2 as our distance measure. Confusion matrices

using k = 10 are presented in Figure 7.

We achieve the best accuracy using the centroid descrip-

tor, with an accuracy of 79.3%, followed closely by an 8×4
descriptor, with an accuracy of 78.2%. Most activities are

well recognised, however goals are most often misclassi-

fied, being randomly classified as the other activities, as

they are less structured, with a lot of variability possible.

Defensive corners and long corners are sometimes confused

as the main difference is the team which maintains posses-

sion, which is not discernible from the occupancy or cen-

troid descriptors.

The centroids outperform the team formation descrip-

tors, which may be attributed to the fact that these activi-

ties can be described on a macroscopic scale (i.e. by the

967975982988
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Figure 7. Confusion matrices for isolated activity recognition using different descriptor sizes, and centroids (far right)

global distribution of players, which is captured by the cen-

troid, rather than individual positions as represented by the

more fine descriptors). The 8 × 4 descriptor captures sim-

ilar granularity to the centroid and is also very effective in

distinguishing between the labelled activities, and both rep-

resentations are able to accurately recognise the game state,

despite their simplicity, in the presence of noise and without

any tracking information.

5.2. Continuous Team Activity Recognition

Recognising team activities in a continuous sense is a

more challenging task than isolated recognition, as events

are not separated and a lot of movements and formations

can appear very similar to labelled activities (particularly

without knowledge of where the ball is, and in the presence

of noise). In this section, we qualitatively demonstrate how

our representations can be used to retrieve team activities in

a continuous domain.

In Figure 8, centroids for match half 24-USA-JPN-1 are

displayed with ground truth labels for goals and penalty cor-

ners. It can be seen that goals correspond to regions where

both teams are located close to the goals, followed by a

movement to the centre of the field. A penalty corner (‘PC’)

is characterised by the team centroids being separated for a

duration of time (as they move into formation, and the at-

tacking team plans their attack), followed by a convergence

towards the goal when the ball is brought into play. This in-

formation can be used to quickly recognise the game state.

Figure 8. Team centroids (y-position) across a match half 24-USA-

JPN-1. It can be seen that centroids provide important information

for game state and can be used to assist in retrieving activities.

While centroids are very useful, many team behaviours

will have similar centroids, and to pick up on more specific

behaviours and activities, a finer descriptor is necessary. To

demonstrate retrieval, we calculate the distances between

the occupancy map descriptors extracted from a game and

a template of the activity of interest using a sliding window.

In Figure 9, we used a 15 × 9 descriptor to recognise two

different activities in match half 2-RSA-SCO-2. A 15 × 9
descriptor was used as it was found that a smaller descriptor

size was often confused with non-activities when compared

in a continuous domain. It can be seen that the descriptor

is able to effectively locate the ground truth activity regions

for a penalty corner and a face off.
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Figure 9. Retrieval distances for a Penalty Corner (left) and Face

Off (right). The plots show the distances from an example activity

template we wish to retrieve (in blue) vs ground truth activity onset

(black dashed vertical line). A low distance (high similarity) is

apparent at the ground-truth locations.

6. Summary and Future Work

Accurately tracking players over long durations of time

is an unsolved computer vision problem, and prevents auto-

mated analysis of team sports using traditional representa-

tions based on player tracks. In this paper, we presented a

fully automated method which is able to recognise team ac-

tivities from raw player detections, without player tracking

or ball information. We investigated two representations –

a team centroid representation and team occupancy maps –

which are robust to missed and false detections and demon-

strated that both team occupancy maps and centroids can

be used to accurately recognise team activities in the pres-

ence of noise. While both representations are able to detect

team activities quite well, the occupancy map can be used

to retrieve more specific team activities.

Future work will involve improving the team classifica-

tion, and learning activities in an unsupervised fashion. We

also seek to automatically predict future events/activities

based on an observed sequence of play.
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