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Abstract

We propose a novel scale and rotation invariant method
to track a human subject’s body part regions in cluttered
videos. The proposed method optimizes the assembly of
body part region proposals with the spatial and temporal
constraints of a human body plan. This approach is invari-
ant to the object scale and rotation changes. To enable scale
and rotation invariance, the human body part graph of the
proposed method has to be loopy; efficiently optimizing the
body part region assembly is a great challenge. We pro-
pose a dynamic programming method to solve the problem.
We devise a method that finds N-best whole body config-
urations from loopy structures in each video frame using
dynamic programming. The N-best configurations are then
used to construct trellises with which we track human body
part regions by finding shortest paths on the trellises. Our
experiments on a variety of videos show that the proposed
method is efficient, accurate and robust against object ap-
pearance variations, scale and rotation changes and back-
ground clutter.

1. Introduction

Tracking the movement of human subjects in videos

has important potential applications in sports, entertainment

and surveillance. To understand detailed human movement,

we need to go beyond a simple bounding box representation

which is widely used in previous work and try to follow the

target’s body parts through a long video sequence. Human

body part tracking is challenging due to object articulation,

rotation and scale changes, appearance variation and strong

background clutter.

In this paper, we propose a novel method to track the

regions of human body parts in cluttered videos. Differ-

ent from previous methods, the proposed method represents

each body part as a region in an image. Instead of trying

to fit each body part to a template in different rotations and

scales, the proposed method has the advantage that it does

Figure 1. We track human body part regions in videos. The pro-

posed method assembles body part proposal regions and is invari-

ant to the target’s scale and rotation. It is able to find the optimal

assembly in a single pass optimization. In this figure, arm regions

are yellow, legs are magenta and torso is green.

not have to quantize the scale and rotation and exhaustively

enumerate all the possible cases. By using the relative size

of the body parts, we construct a scale and rotation invari-

ant method, which is able to match the target with unknown

scale and rotation in an efficient single pass optimization.

Our method works in the continuous rotation and scale do-

main and thus eliminates the quantization errors. In this

paper, We also propose an N -best whole body configura-

tion selection method and a dynamic programming solution

to optimize the body part region tracking in videos. The ex-

periment results show that our method is more robust than

previous pictorial structure methods, especially when the

target has large scale or rotation changes. Fig. 1 illustrates

the problem we tackle.

Pictorial structure methods are popular methods for hu-

man pose estimation and tracking, in which rectangular

body part candidates are assembled together to follow a

valid body plan. If tree structured body plan is used, ef-

ficient dynamic programming method can be used to find

the optimal body part assembly. In [1], distance trans-

form method has been proposed to greatly speed up the dy-

namic programming procedure from being proportional to

the square of the number of body parts to a linear complex-

ity. In [2], pictorial structure method is applied to track-

ing human body parts in cluttered videos. In [4, 3], im-

proved body part detectors based on shape context or his-

togram of oriented gradients greatly improve the result of

the pictorial structure methods. Tree structure formulations

have an inherent double counting issue that often causes the

miss-detection of one arm or one leg because there are no
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constraints among the limbs in the tree. Non-tree struc-

ture methods have been proposed to tackle the problem.

Approximation methods using belief propagation [5], lin-

ear programming [6] and dual decomposition [7] have been

studied. Pictorial structure methods have also be combined

with object foreground segmentation [7, 6] to achieve more

reliable results. One of the difficulties of the traditional pic-

torial methods is that they have to roughly know the target

scale or at least the range so that we can quantize the scales

and search in each of them. If the target object’s scale is un-

known, searching through numerous possible cases for the

optimal result is slow. In this paper, instead of using rect-

angular body parts, we use regions to represent each body
part. Such a scheme enables us to build an efficient method

which is invariant to scale and rotation changes.

Our proposed method is related to region tracking. Video

segmentation [8] yields 3D superpixels in videos and these

superpixels do not directly correspond to human body parts

but just homogeneous color regions. The region partition re-

sult also greatly depends on the parameters which are hard

to set correctly to segment all the desired body parts. Pre-

vious region tracking methods [9] and [10] also do not ex-

plicitly give the human body parts.

There have been few previous methods that explicitly

track human body part regions. In [13], a region based

method is proposed to find the body part regions of pedes-

trians in images. This method matches the specific shape

of the upper and lower body of a pedestrian. It is therefore

hard to be generalized to detect complex human poses in

cluttered videos. In [11], legs and torso are extracted from

cluttered images using region merging and shape parsing on

multiple level image segmentation. This method targets at

human pose detection in a single image. In [12], a linear

method is proposed to find people and their body parts by

assemble region proposals [14] in images. This method has

no mechanism to enforce that part region detection is con-

sistent through multiple frames in videos. In this paper, our

proposed method tracks human body part regions in clut-

tered videos.

Our proposed method is also related to the N -best

method [15], which finds the top N -best human poses on

a tree human body plan and uses dynamic programming

to optimize the tracking. The difference of our proposed

method to the N -best method is that we track regions in-

stead of rectangular body parts. Our method is scale and

rotation invariant, while the N -best method needs to know

roughly the object’s scale. We also extract the N -best

whole body configurations in each video frame, but we use

a loop graph body plan while [15] uses a tree structure. Our

method also explicitly controls the smooth movement of

each body part while the method in [15] only enforces that

the overall object silhouette evolves smoothly.

The contribution of this paper is a novel method to track

Figure 2. Body part interaction graph of two adjacent frames. The

nodes represent human body parts, red edges represent the spatial

constraints and blue edges represent temporal constraints among

body parts.

human body part regions in videos. We first find body part

region candidates and then optimize the body part region as-

sembly so that they satisfy relative position, size, symmetry

constraint in each frame and motion continuity constraint

across multiple video frames using dynamic programming.

The proposed method is able to track human poses in com-

plex videos and it is scale and rotation invariant.

2. Method

2.1. Overview

Our model uses a human body plan with five body parts:

a torso, two arms and two legs. The coupling between

the body parts in each video frame and between successive

video frames follows the graph in Fig. 2. Each node in the

graph indicates a body part and the edges indicate the in-

teractions among these body parts. We not only include the

arm-torso, leg-torso, arm-arm and leg-leg constraints, we

also enforce the coupling between arms and legs. The graph

edges also connect the corresponding body parts between

successive video frames to enforce that each part evolves

smoothly through time.

We formulate body part region tracking into an optimiza-

tion problem: we assign a body part region to each of the

graph node so that the assignment cost is minimized. In this

paper, the body part region candidates are obtained from

the object class independent proposals [14]. These region

proposals are randomly merged superpixels whose overall

shape has a high objectness score. Different from homoge-

neous superpixels, the region proposals have a high chance

to include correct body parts even if the target subject wears

uniform color clothing. The proposed method assembles

the chosen region proposals to form a valid human configu-

ration.

For each node assignment, we obtain an estimated whole

body region configuration. The cost of a whole body region

configuration contains several terms as shown in Eq. (1).

Let fk be the body part region configuration in frame k and
n is the number of video frames.
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E(f) = min(

nX
k=1

(α · P (fk) + β ·G(fk) + γ ·O(fk) + δ ·A(fk))

| {z }
Intra-Frame Energy

+

nX
k=2

(η · S(fk, fk−1) + φ · L(fk, fk−1) + θ ·H(fk, fk−1))

| {z }
Inter-Frame Energy

)

(1)

The intra-frame spatial terms include the body part re-

gion shape matching cost P (fk), distance between pairs

of body parts G(fk), body part overlap region O(fk) and
body part area ratio term A(fk). These intra-frame terms
are small if each body part region has the right shape, con-

nected part regions have small distance, body parts have

small overlap, and the area ratio between body parts con-

form to a body plan. The inter-frame temporal terms en-

force the smooth transition of each body part region from

one frame to the next. S(fk, fk−1) enforces the shape sim-
ilarity of regions in successive frames. L(fk, fk−1) quan-
tifies the weight center position changes and H(fk, fk−1)
quantifies the color histogram changes. Coefficients α, β, γ,
δ, η, φ and θ are constant coefficients to control the weight
among different terms.

2.2. Formulation

In the following, we elaborate the details of the proposed

formulation.

Body part shape matching cost (P ): We first extract

region candidates using object class independent proposals

[14]. Each region is a potential candidate for a specific hu-

man body part. Each body part, such as an arm or a leg,

has a sequence of templates. We quantify the similarity of

the shape of a region proposal to a template using the Eu-

clidean distance between their corresponding inner distance

shape descriptors [16]. The shape descriptor of a region is

defined as the distance histogram between each pair of the

points inside the region. When computing the histogram,

we normalize these distances with the longest distance be-

tween two points in the region. We further normalize the

inner distance histogram with the number of distance pairs.

This shape descriptor is scale and rotation invariant. It is

also roughly articulation invariant.

The overall part assignment cost P is defined as:

P (fk) =
∑

i

c(i, fk(i))

where i is the index of a body part, fk(i) denotes the chosen
region candidate for part i, and c(i, fk(i)) is the cost of as-
signing region candidate fk(i) to body part i. c is computed
as the shortest distance of region fk(i)’s shape descriptor to
those of the templates of part i.

To reduce the number of region candidates, we use

RANSAC to partially remove the background clutter. We

match the SIFT features in each video frame to a number

of previous frames and future frames. Since target object

often only occupies a small portion of each video frame,

the SIFT features on the human subjects are outliers in the

RANSAC feature matching in which we use an affine global

motion model. Using only the inlier matching, we warp the

surrounding video frames to the current frame and we com-

pute the median of the stack of these images on each image

pixel. The result is an estimated background with which a

background subtraction can be used to extract a rough ob-

ject foreground. Note that this partial background removal

procedure is optional.

Parts distance (G): Apart from enforcing that each body

part region has the right shape, we further ensure that con-

nected body part regions should not be far away but tend

to have small distance. Let t be the index of torso and j to
be the index of limbs. We compute the minimum boundary

distance d(fk(j), fk(t)) between limb j and torso. The part
distance term is:

G(fk) =
∑

j∈L
d(fk(j), fk(t))

where L is the set of limbs.

Parts overlap (O): We penalize the overlap between

body part regions with term O. This penalty term pushes

body part regions away so that we can find both arm and

leg regions. This is a soft term; overlapped parts are still

allowed.

O(fk) =
∑

{i,j}∈N

A(Fk(i) ∩ Fk(j))
A(Fk(i) ∪ Fk(j))

where Fk(i) is the estimated region for part i in video frame
k, N is the body part pair set, which includes the arm-arm,

leg-leg, arm-torso, leg-torso and arm-leg pairs, and function

A gives the region area.

Parts size ratio (A): Different body parts, such as an

arm and a leg, may have similar shape descriptors. We need

more clues to increase the chance of a correct region as-

signment. We enforce the correct size ratios between pairs

of body parts. We model part size ratio by a Gaussian dis-

tribution, which is estimated by using a training set.

A(fk) =
∑

i∈P

∑

j∈P

(r(fk(i), fk(j))− μi,j)2

σ2i,j

Here r(fk(i), fk(j)) is the area ratio of region candidate

fk(i) for part i to region candidate fk(j) for part j, μi,j and

σ2i,j are the mean and variance of the Gaussian distribution.
P is the set of body parts.

Apart from the intra-frame body part layout terms, we

further enforce that the body parts move continuously

1020103010371043



through the video. The temporal consistency terms are de-

fined as follows.

Shape consistency across frames (S): The shape of

each body part does not change rapidly between adjacent

video frames. The whole silhouette of the estimated whole

body region of the target also should change smoothly from

frame to frame. We introduce the shape consistency term S
to enforce the smooth transition. Here, the shape of a region

is quantified by the histogram of its boundary orientations

[17]. Note that we do not use the inner distance descrip-

tor here because we do not require the articulation invariant

property. The non-invariant boundary orientation histogram

is stronger and more suitable than the inner distance feature

in the non-invariant application.

Let sfk(i) be the shape descriptor of region candidate

fk(i) for part i in frame k. We use sfk
to indicate the

shape descriptor for the whole estimation foreground region

in frame k. The shape consistency term is defined as:

S(fk, fk−1) =
∑

i∈P
‖sfk(i) − sfk−1(i)‖+ ‖sfk

− sfk−1‖

Note that the boundary orientation histogram is not nor-

malized; it thus also contains the region size information.

By minimizing S, we enforce the shape and size consis-

tency of the estimated target through multiple video frames.

Location consistency (L): Similar to the shape consis-
tency, we also prefer that body part location does not change

abruptly in successive frames. We penalize large displace-

ment of the corresponding body part centroids in successive

video frames. Let lfk(i) be the centroid of part candidate

fk(i) for i in frame k. Part position term is defined as

L(fk, fk−1) =
∑

i∈P
‖lfk(i) − lfk−1(i)‖

Color consistency (H): We assume that the appearance

of the target does not change abruptly through time. The

color consistency termH enforces that body part color to be

stable in successive video frames. We use RGB histogram

to quantify the color of the human body parts. The color

term H is defined as:

H(fk, fk−1) =
∑

i∈P
‖hfk(i) − hfk−1(i)‖

where hfk(i) is the color histogram of the chosen candidate

region for part i in frame k.
By combining these items, we obtain a complete energy

function. We search for the assembly f of body part re-

gion proposals to minimize the energy function. The pro-

posed model is non-tree. Therefore, dynamic programming

cannot be directly used. Direct exhaustive search is not an

option because there is a huge set of feasible body part con-

figurations. In the following, we propose a method to trans-

form the problem so that we can use dynamic programming

to find an approximate solution.

(a) (b) (c)

Figure 3. (a) If we treat two arms as an arm node and two legs as

a leg node, the body part interaction graph forms a circle. (b) For

dynamic programming, we break the torso node into two nodes

on both sides of a chain. (c) The trellis for a torso candidate. We

find the shortest paths on the trellis to obtain the top N -best whole

body configurations.

2.3. Optimization by Dynamic Programming

As shown in the body graph in Fig. 2, the body part re-

gions are coupled to each other not only within each video

frame but also between successive video frames. The body

graph is thus non-tree. However, if we treat each sub-graph

in a single frame as a node, the meta-graph forms a chain,

for which dynamic programming can be used to optimize

the body part region assignment.

Unfortunately, there are too many possible body part

configurations of the whole body estimation. If we do not

prune the whole body part configurations in each single

frame, the dynamic programming on the chain meta-graph

would be too big to be solved since its complexity is propor-

tional to the square of the number of the whole body config-

urations in each video frame. We devise an efficient method

to find the N -best whole body configurations in each video

frame, whereN is a relatively small number that DP is able

to handle. This is similar to the spirit of the approach in

[15]. But, since our sub-graph in each single frame is loopy,

the N -best method in [15] cannot be used here. We pro-

pose a new method to extract the N -best configurations for

a loopy structure.

Let’s take a closer look at the body plan graph. If we treat

two arms as a single node, and two legs as a single node,

the meta-graph is in fact a circle as shown in Fig. 3 (a). We

can further convert the circle into a chain in which the torso

node appears twice on both ends of the chain as shown in

Fig. 3 (b). We can now apply dynamic programming to find

N -best configurations on the chain with a constraint that the

two torso nodes have to select the same region candidate.

The torso consistency condition is not too much of a prob-

lem. We simply fix the torso candidate for both ends of the

chain and then run a standard dynamic programming. For

each fixed torso candidate, we keep the sortedN -best whole

1021103110381044



Figure 4. Examples of background removal results. Left column

shows the original video frames and the right column shows the

foreground images.

Figure 5. Examples of video segmentation results with three dif-

ferent thresholds from row one to row three.

body region configurations. We further merge the sortedN -

best regions for all the fixed torso candidates to obtain the fi-

nalN -best whole body configurations. Assuming that there

are K torso candidate regions, with a divide and conquer

algorithm that recursively merges half of the solution sets,

the merging can be completed in O(NK) time. It is easy to
verify that this method indeed finds the N -best whole body

configurations.

With the N -best whole body configurations, we gener-

ate a trellis network whose nodes correspond to each whole

body configuration in each video frame. We connect the

nodes between successive video frames with edges. Each

node has a node cost that is determined by the intra-frame

cost terms P,G,O,A and each edge has edge cost that is

determined by the inter-frame cost terms S,L,H . The opti-

mization in Eq.(1) is thus equivalent to finding a path whose

total node cost and edge cost is minimum. The shortest

path problem can be efficiently solved by dynamic program-

ming.

3. Experimental Results

We apply our method to a set of challenging test video

sequences, which involve complex human poses and ac-

tions. The first four videos are Youtube videos and the last

one is from the HumanEVA dataset [18]. In the following,

we show both the qualitative results and ground truth com-

parison results.

3.1. Qualitative Results

In the experiment, we extract human body part candi-

dates from the object class independent proposal regions

[14]. We partially remove the background clutter using a

RANSAC method as discussed in section 2.2. This method

does not completely remove the clutter. It also does not re-

move the shadow of the human target, which will be treated

as outliers in the matching. Fig. 4 shows two examples of

background removal results. The partial background re-

moval method eliminates a lot of background clutter, but

we still do not have a clean target foreground and it is chal-

lenging to detect the human body part regions. We further

apply the proposed method to extract the human body part

regions. Fig. 6 shows our tracking results on the five test

videos. The frames in Fig. 6 are regularly sampled from the

results. Our method reliably tracks human body part regions

in these challenging videos.

Fig. 5 shows the video segmentation [8] results for one

of the test sequences with different parameter settings. As

shown in this example, video segmentation has a hard time

to determine which parameter to use to detect different body

part regions. In a long video sequence, video segmentation

also tends to break a long narrow 3D superpixel and thus

loses tracking of a region. In contrast, the proposed method

explicitly estimates the body part regions and can be used

to reliably track human body part regions in long video se-

quences.

3.2. Quantitative Results

We compare our method with the N -best method [15]

using the ground truth body part region labeling of the five

test videos. For fair comparison, we use the same back-

ground clutter removed images as the input to the N -best

method. N -best method [15] is not scale invariant; we

give the method the advantage of knowing the correct object

scale. Our proposed method is scale and rotation invariant;

it does not use the scale information.

Since the N -best method outputs a stick figure detec-

tion, we first convert the stick figure result into the body

part region format for further comparison. The body part

regions for the N -best method are obtained by thickening

the lines between the end points of each body part with a

proper width. For each body part region detection, we de-

fine the detection score as A(P ∩G)/A(P ∪G), where P
is the region of the body part detection and G is the region

of the ground truth region of the corresponding body part,

A gives the area of a region.

Table 1 shows the region detection score comparison of

the proposed method with the N -best method. Our pro-

posed method shows great improvement for almost all the

test cases. The overall average part detection score of the

proposed method is always higher than the average part de-

tection score of the N -best method.
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Figure 6. Sample results of the proposed methods on five test videos. These test videos are challenging. They have different human body

movements such as jumping, flipping, handstand, flat turn and walking. Our method reliably detects and tracks the human body parts in

these test videos. Torsos are green, arms are yellow, and legs are magenta. Original videos frames are embedded at the top left corner of

the images.

Fig. 7 illustrates the detection ratio curves of the pro-

posed method and theN -best method. Each detection curve

shows the proportion of the “correct” detected body parts

with respect to a threshold. A detection is deemed correct if

its detection score is greater than the threshold. Therefore,

the detection rate is 0 if the threshold is 1 and 1 if the thresh-

old is 0. Fig. 7 shows that the proposed method gives better

performance than the N -best method in terms of detection

rate.

4. Conclusion

We propose a novel human part regions tracking method.

The proposed method does not require initialization and is

1023103310401046



N -best
Arms

Ours
Arms

N -best
Legs

Ours
Legs

N -best
Torso

Ours
Torso

N -best
All

Ours
All

N -best
Mean

Ours
Mean

Video1 13.96 25.90 45.30 37.37 24.99 40.31 45.70 62.45 32.49 41.51
Video2 12.15 32.49 24.71 43.87 42.61 56.41 38.47 62.43 29.49 48.80
Video3 12.62 25.00 42.69 42.99 45.41 44.03 48.75 67.98 37.37 45.00
Video4 22.54 25.93 44.76 54.29 51.20 53.81 50.21 67.77 42.18 50.45
Video5 22.29 56.10 65.32 64.17 49.75 63.18 62.96 84.58 50.08 67.01
Mean 16.71 33.08 44.56 48.54 42.79 51.55 49.22 69.04 38.32 50.55

Table 1. Comparison of the average scores of the N -best [15] and the proposed method. The values show average detection scores scaled

by 100. Each estimated body part region is compared against the ground truth labeling and the score is defined as the ratio of their region

intersection to that of the region union.
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Figure 7. Comparison of the detection rate comparisons of the N -best [15] and the proposed method.

scale and rotation invariant. Our experiments show that the

proposed method gives more reliable results when tracking

people with different clothing and unconstrained movement

than competing methods. Our method is also efficient. We

believe that it is a useful tool for many applications such as

human movement understanding, surveillance and human

computer interaction.
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