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Abstract

This document is the supplementary materials for the
CVPR 2013 paper ”Group and Sparse Regularized Sparse
Modeling for Dictionary Learning”. The first section con-
tains derivations of the theoretical proof and of the two op-
timization algorithms in the Sec. 2 of the main text. The
second section contains extra results from the experiment in
Sec 3.2 of the main text.

1. Supplementary Materials to the Method
Section

1.1. Simple Proof of the Theoretical Guarantee

Without loss of generality, we will prove the condition
of one group data X. We first concatenate columns of
X ∈ Rn×s into a vector x′ ∈ R(n·s). The dictionary
D = [di · · ·dm] of m columns has to be converted accord-
ingly to

D′ =


d1 0 · · · 0 d2 0 · · · · · ·0
0 d1 · · · 0 0 d2 · · · · · ·0

...
...

...
0 0 · · · d1 0 0 · · · · · ·dm


= [Is ⊗ d1, Is ⊗ d2 · · · Is ⊗ dm],

where ⊗ denotes Kronecker product, and Is is a s× s iden-
tity matrix. A block of k atoms, di · · ·di+k−1, in D is now
a block of size k × s in D′. We also concatenate rows of C
into a vector c′ as follows:

c′ = [C1 C2 · · ·Cm]ᵀ,

where Ci is the i-th row in C. Assuming the number of
atoms of the i-th block of the original dictionary D is ndi,
then C[i], the i-th block of coefficients C, is now a segment
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of size s · ndi in c. Our program

P`0,p : min
C

∑
i

I(‖C[i]‖p) s. t. X = DC (1)

is now

min
c′

∑
i

I(‖c′[i]‖p) s. t. x′ = D′c′. (2)

Likewise,

P`1,p : min
C

∑
i

‖C[i]‖p s. t. X = DC. (3)

is now
min
c′

∑
i

‖c′[i]‖p s. t. x′ = D′c′. (4)

P ′`0,p and P ′`1,p can be converted to

min
c′

∑
i

I(‖D′c′[i]‖p) s. t. x′ = D′c′, (5)

and
min
c′

∑
i

‖D′c′[i]‖p s. t. x′ = D′c′, (6)

respectively.
Due to the structure of D′ and the matrix norm we use

here is element-wise norm, all the restricted isometry con-
stants and block related coherence values defined in [2] of
D′ are identical to those of D. Therefore, given a unique
k-block sparse solution of P`0,p and P ′`0,p , the proof of the
equivalence between P`1,p (P ′`1,p ) and P`0,p (P ′`0,p ) under
appropriate conditions can be can be constructed in a simi-
lar fashion as in [2].

1.2. Derivation of Reconstructed Block/Group
Sparse Coding Algorithm

Continue from Section 2.3 in the main text. For clar-
ity of presentation, we will again derive the reconstructed
block/group sparse coding (R-BGSC) algorithm for only
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one single group of data. P ′`1,p can be cast as a optimization
problem that minimizes

1

2
‖X−

∑
i 6=r

D[i]C[i]−D[r]C[r]‖2F + λ
∑
i

∥∥D[i]C[i]

∥∥
p
. (7)

We now derive the crucial steps in optimization algorithm
for p = 2 (as the p = 1 case is straightforward). Similar
to the derivation in previous section, we first assume the
norm

∥∥D[r]C[r]

∥∥
F is positive for optimal solution for C[r].

Taking the gradient of the objective function with respect to
C[r] and equating it to zero, we have

−Dᵀ
[r]X + Dᵀ

[r]

∑
i 6=r

D[i]C[i] + Dᵀ
[r]D[r]C[r]+

λDᵀ
[r]

D[r]C[r]

‖D[r]C[r]‖F
= 0. (8)

Now denoting the first two terms with −N and computing
the singular value decomposition of D[r] = USVᵀ, we
have

VS2VᵀC[r] + λVS
SVᵀC[r]

‖SVᵀC[r]‖F
= N. (9)

Multiplying both sides of the above equation with Vᵀ, and
letting Y =

SVᵀC[r]

‖SVᵀC[r]‖F
, κ = ‖SVᵀC[r]‖F, and N̂ =

VᵀN, we have

(κS + λS)Y = N̂ =⇒

Y = (κS + λS)−1N̂, s. t. ‖Y‖F = 1. (10)

Using the same method as in Section 2.2 in the main text,
we can solve for κ first and then compute the iterate of C[r].

1.3. Derivation of ICS-DL algorithm.

Continue from Eq. (17) in Section 2.4 in the main text,
denoting the first two terms with −νi, crc

ᵀ
r with t, and∑

djd
ᵀ
j with Φr, we have

tdr + γ
dr

‖dr‖2
+ βΦrdr = νi =⇒

tUᵀdr + γ
Uᵀdr

‖Uᵀdr‖2
+ βΣΦU

ᵀdr = Uᵀνi, (11)

where UΣΦ Uᵀ is the eigen decomposition of Φr and ΣΦ

is a diagonal matrix only contains the non-zero eigen-values
of Φr and U are the corresponding eigen-vectors. Denoting
Uᵀdr

‖Uᵀdr‖ by y, ‖Uᵀdr‖2 by κ, and Uᵀνi by ν̃i, respectively,
Eq. (11) then becomes

κty + γy + κβ ΣΦy = νi =⇒

y = ((κt+ γ)I + κβΣΦ)
−1
ν̃i, s. t. ‖y‖2 = 1. (12)

We can use the same methods as in previous sections to
solve for the iterate of dr, and if the solution κ is ≤ 0, we
will set dk = 0.

Note that it is not uncommon to add a post-processing
step to make atoms in D to have unit norms or simply re-
quiring ‖dr‖2 to be 1. This changes the iterate of dr to
dr = (tI + βΦr)

−1
νi as ‖dr‖2 = 1. Note that it is not un-

common to add a post-processing step to make atoms in D
to have unit norms or simply constraint ‖dr‖2 to be 1. This
makes the whole algorithm much more efficient as comput-
ing eigen-decomposition of a typically large matrix Φr can
now be avoided.

2. Supplementary Experimental Results
2.1. More results from face recognition

This section shows the supplementary results to Sec. 3.2
in the main text. Fig 1 shows the classification rates with
dimensionality reduced to m = {100, · · · , 500}. The ”λ”
for each algorithm are similar to what are listed in the main
text because we normalized the vectors after the PCA pro-
jection.
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(a) Data dimensionality m=500
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(b) Data dimensionality m=400
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(c) Data dimensionality m=300
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(d) Data dimensionality m=200
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(e) Data dimensionality m=100

Figure 1: Classification rates by different algorithms under different data dimensionality reduction (m = 500 · · · 100).
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