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This supplementary material accompanies the paper “A
Divide-and-Conquer Method for Scalable Low-rank Latent
Matrix Pursuit”. It provides the proofs of Theorem 1 and
Theorem 2 in the main paper.

1. Proof of Theorem 1

To prove Theorem 1, we introduce a key lemma from

[2].

Lemma 1. ( [2], Theorem 2) Let L*, S* € R"™*™2_ Syp-
pose that L* is (u, r)-coherent and that the support set of
S* is uniformly distributed among all sets with cardinality
s. Thenifmy < mgand ||M — L* — S*||p < A, thereisa
constant ¢, such that with probability at least 1 — c,my s
the minimizer (L', S") of

1
min ||L||o A5 [1 8.t [[M—L' || < Awith A = —
L',S’ mo

satisfies
1L = L*[|% + 118" = S*[|F < cZmima A2,

provided that r < p,mipu~log=2(ms) and s < (1 —
psB)mims for B > 2 and some positive constants
Pr;Ps; Ce-

Next we start to prove Theorem 1.

Proof. We denote (T, E(V)) as the minimizer of the general
formulation of the LLMP problem ((11) in the main paper)

in ||T]]x + A EW
Trfg}g)\l ||« + ;H 15
st ||TW —T —ED||p <6,i=1,2,...,n,

and (T, Eéi)) as the ground truth of low-rank and sparse
decomposition of 7). By the assumptions, T is (10, 70)-
coherent and T is (p7, r)-coherent.
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Fori = 1,2,...,n, we denote (7}, E!) as the minimizer
of

s ! /
Jmin 1T/ + |

st ||[TW —T'; — E!||p < 6.

For : = 1,2,...,n, by the assumptions in Theorem
1, we have ||T® — Ty — E?||p < A. In terms
of Lemma 1 (by replacing (L*,S*, L', S" p,r,s) with
(To, By T}, B o, 70, 50,0)). we have || T} ~To| [+ | B/ —
ESV |12 < ¢2mymyA? with probability at least 1 — cpmy .

Similarly, from the general form of the LLMP problem
((11) in the main paper), we have ||T?) — T — E®||p <
0 fori = 1,2,...,n. In terms of Lemma 1 (by replacing
(L*,8*, L', S, p,r, s) with (T, EO T/, B!, iz, 7, 57.4))s
we have ||T! — T||% + ||E} — E@||% < c2mymaA? with
probability at least 1 — ¢,my A

Denote A; as the event that ||T] — To||% + ||E] —
ES|2 < 2mimoA? and B; as the event that ||T) —

T||% + 1B - E(i)H% < sz_ﬂngﬁz (G = 1,2,...,n).

Then the joint probability of ﬂ:lj’; ™ s at least (1 —

cymy )2 > 1 — 2ne,my P

With || T} — To|[% + || B} — B |3 < c2mymaA? and
T/ —T||% +||E! — EW||% < ¢2m1myA?, we have:

IT — To|[% + [|ED — E||%
<||T/ — Tol|% + 1B — B |2

+ T = T3 + 1B — BD|[%

SZcfmlmzAQ,

6]

where the first inequality uses the triangle inequality.
Finally, by summing up (1) with ¢ = 1,2, ..., n and then
averaging by n, we have the desired result: ||T" — Tp||% +
Ly NED — EP||% < 2¢2mimaA? with probability
at least 1 — 2ncpymgy A, O



2. Proofs of Theorem 2

The proof is identical to that of the second part of Theo-
rem 12 in [1].

Proof. Remind that we define

| Ts Ta | Ts _
T_[TB TC],R_[TB],C_[TS Ty ]

Correspondingly, we also define

Co= [ Tos TOA],Tz[TS i }

Define K as the event ||[T — T||p < (1 4+ €)?||Tp —

T||. and A(X) as the event that a matrix X is ( 1r_05/32 ,T0)-
coherent.
When K holds, by the triangle inequality, we have

1To = Tllr
<[ To = Tlp + IT = T||r
<2+ 2e+ )Ty — Tl|r
<(2+ 30Ty — Tl|r

=(2+ 36)y/ITo.s — Ts|l% + 1To.a — Tl % + ||To.6 — Tsl%

=(2+ 36)y/IITo.s — Tsl% +2[1To.a — Tul 2,

where the last equality uses the facts Th p = fTOT: 4 and
Tg =-TF.

Since k& > cropiolog(ms)log(1/6) /€2 >
cropolog(my)log(1/8) /€2, by Lemma 4 in [I], we
have that Ao and Ap hold with probability at least
1—48/(2mg) and 1 — §/(2my), respectively. By Corollary
7 in [l], the event K holds with probability at least
(1-6/2)(0.8—14/2).

Denote X € as the complementary event of X. Then we
have:

P(KNAcNAR)>1— P(K®) — P(AG) — P(AR)
>1—(1-(1-6/2)(0.8—146/2)) —3d/(2m2) — /(2mz2)
(1-6/2)(0.8—46/2)—6/2
(1-19)(0.8—-9)
for all mqo > 2 and 6 < 0.8. O

>
>
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