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This supplementary material accompanies the paper “A
Divide-and-Conquer Method for Scalable Low-rank Latent
Matrix Pursuit”. It provides the proofs of Theorem 1 and
Theorem 2 in the main paper.

1. Proof of Theorem 1

To prove Theorem 1, we introduce a key lemma from
[2].

Lemma 1. ( [2], Theorem 2) Let L?, S? ∈ Rm1×m2 . Sup-
pose that L? is (µ, r)-coherent and that the support set of
S? is uniformly distributed among all sets with cardinality
s. Then if m1 ≤ m2 and ||M −L?−S?||F ≤ ∆, there is a
constant cp such that with probability at least 1 − cpm

−β
2 ,

the minimizer (L′, S′) of

min
L′,S′

||L′||∗+λ||S′||1 s.t. ||M−L′−S′||F ≤ ∆ with λ =
1

m2

satisfies

||L′ − L?||2F + ||S′ − S?||2F ≤ c2
εm1m2∆2,

provided that r ≤ prm1µ
−1log−2(m2) and s ≤ (1 −

psβ)m1m2 for β ≥ 2 and some positive constants
pr, ps, cε.

Next we start to prove Theorem 1.

Proof. We denote (T, E(i)) as the minimizer of the general
formulation of the LLMP problem ((11) in the main paper)

min
T,E(i)

||T ||∗ + λ
n∑

i=1

||E(i)||1

s.t. ||T (i) − T − E(i)||F ≤ δ, i = 1, 2, ..., n,

and (T0, E
(i)
0 ) as the ground truth of low-rank and sparse

decomposition of T (i). By the assumptions, T0 is (µ0, r0)-
coherent and T is (µT , rT )-coherent.

For i = 1, 2, ..., n, we denote (T ′i , E
′
i) as the minimizer

of

min
T ′i,E′i

||T ′i ||∗ + λ||E′
i||1

s.t. ||T (i) − T ′i − E′
i||F ≤ δ.

For i = 1, 2, ..., n, by the assumptions in Theorem
1, we have ||T (i) − T0 − E

(i)
0 ||F ≤ ∆. In terms

of Lemma 1 (by replacing (L?, S?, L′, S′, µ, r, s) with
(T0, E

(i)
0 , T ′i , E

′
i, µ0, r0, s0,i)), we have ||T ′i−T0||2F +||E′

i−
E

(i)
0 ||2F ≤ c2

εm1m2∆2 with probability at least 1− cpm
−β
2 .

Similarly, from the general form of the LLMP problem
((11) in the main paper), we have ||T (i) − T − E(i)||F ≤
δ for i = 1, 2, ..., n. In terms of Lemma 1 (by replacing
(L?, S?, L′, S′, µ, r, s) with (T, E(i), T ′i , E

′
i, µT , rT , sT,i)),

we have ||T ′i − T ||2F + ||E′
i − E(i)||2F ≤ c2

εm1m2∆2 with
probability at least 1− cpm

−β
2 .

Denote Ai as the event that ||T ′i − T0||2F + ||E′
i −

E
(i)
0 ||2F ≤ c2

εm1m2∆2 and Bi as the event that ||T ′i −
T ||2F + ||E′

i − E(i)||2F ≤ c2
εm1m2∆2 (i = 1, 2, ..., n).

Then the joint probability of
⋂i=1,2,...,n

Ai,Bi
is at least (1 −

cpm
−β
2 )2n ≥ 1− 2ncpm

−β
2 .

With ||T ′i − T0||2F + ||E′
i − E

(i)
0 ||2F ≤ c2

εm1m2∆2 and
||T ′i − T ||2F + ||E′

i − E(i)||2F ≤ c2
εm1m2∆2, we have:

||T − T0||2F + ||E(i) − E
(i)
0 ||2F

≤||T ′i − T0||2F + ||E′
i − E

(i)
0 ||2F

+ ||T ′i − T ||2F + ||E′
i − E(i)||2F

≤2c2
εm1m2∆2,

(1)

where the first inequality uses the triangle inequality.
Finally, by summing up (1) with i = 1, 2, ..., n and then

averaging by n, we have the desired result: ||T − T0||2F +
1
n

∑n
i=1 ||E(i) − E

(i)
0 ||2F ≤ 2c2

εm1m2∆2 with probability
at least 1− 2ncpm

−β
2 .
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2. Proofs of Theorem 2
The proof is identical to that of the second part of Theo-

rem 12 in [1].

Proof. Remind that we define

T =
[

TS TA

TB TC

]
, R =

[
TS

TB

]
, C =

[
TS TA

]
.

Correspondingly, we also define

T0 =
[

T0,S T0,A

T0,B T0,C

]
, R0 =

[
T0,S

T0,B

]
,

C0 =
[

T0,S T0,A

]
, T̃ =

[
TS TA

TB T0,C

]
.

Define K as the event ||T̃ − T ||F ≤ (1 + ε)2||T0 −
T̃ ||F , and A(X) as the event that a matrix X is ( r0µ2

0
1−ε/2 , r0)-

coherent.
When K holds, by the triangle inequality, we have

||T0 − T ||F
≤||T0 − T̃ ||F + ||T − T̃ ||F
≤(2 + 2ε + ε2)||T0 − T̃ ||F
≤(2 + 3ε)||T0 − T̃ ||F
=(2 + 3ε)

√
||T0,S − TS ||2F + ||T0,A − TA||2F + ||T0,B − TB ||2F

=(2 + 3ε)
√
||T0,S − TS ||2F + 2||T0,A − TA||2F ,

where the last equality uses the facts T0,B = −TT
0,A and

TB = −TT
A .

Since k ≥ cr0µ0log(m2)log(1/δ)/ε2 ≥
cr0µ0log(m1)log(1/δ)/ε2, by Lemma 4 in [1], we
have that AC and AR hold with probability at least
1− δ/(2m2) and 1− δ/(2m2), respectively. By Corollary
7 in [1], the event K holds with probability at least
(1− δ/2)(0.8− δ/2).

Denote Xc as the complementary event of X . Then we
have:

P (K ∩AC ∩AR) ≥ 1− P (Kc)− P (Ac
C)− P (Ac

R)
≥1− (1− (1− δ/2)(0.8− δ/2))− δ/(2m2)− δ/(2m2)
≥(1− δ/2)(0.8− δ/2)− δ/2
≥(1− δ)(0.8− δ)

for all m2 ≥ 2 and δ ≤ 0.8.
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