Handling Noise in Single Image Deblurring using Directional Filters

Supplemental material (CVPR 2013)

Lin Zhong¹, Sunghyun Cho², Dimitris Metaxas¹, Sylvain Paris², Jue Wang²

¹Rutgers University

²Adobe Research

- Please note that, due to the file size limit, images in this file are compressed, so the image details are slightly different from the original images.
- The bookmark of this PDF file can be used for quick landing.

Table of Contents

- 1 Comparison Results on Real-World Images
 - Comparison with other methods on real-world images
 - Example 1
 - Example 2
 - Example 3
 - Example 4
 - Example 5
 - Comparison with Tai and Lin's method
 - Santorini
 - Books
 - Plant
- 2 Comparison Results on Synthetic Images
 - Comparison with other methods with different noise levels
 - Comparison with Tai and Lin's method
 - Abbey
 - Chalet
 - Aque
- 3 Comparison Results on Nonblind Deconvolution

Comparison results on more real-world images

Comparison results on our real-world images of the state-of-the-art methods:

- Goldstein and Fattal (ECCV 2012)
- Cho and Lee (Siggraph Asia 2009)
- Cho et al. (CVPR 2011)
- Levin et al. (CVPR 2011)
- Our method

Example 1, Input

Goldstein and Fattal (ECCV 2012)

Cho and Lee (Siggraph Asia 2009)

Cho et al. (CVPR 2011)

Levin et al. (CVPR 2011)

Our method

Example 2, Input

Goldstein and Fattal (ECCV 2012)

Cho and Lee (Siggraph Asia 2009)

Cho et al. (CVPR 2011)

Levin et al. (CVPR 2011)

Our method

Example 3, Input

Goldstein and Fattal (ECCV 2012)

Cho and Lee (Siggraph Asia 2009)

Cho *et al.* (CVPR 2011)

Levin et al. (CVPR 2011)

Our method

Example 4, Input

Goldstein and Fattal (ECCV 2012)

Cho and Lee (Siggraph Asia 2009)

Cho et al. (CVPR 2011)

Levin et al. (CVPR 2011)

Our method

Example 5, Input

Goldstein and Fattal (ECCV 2012)

Cho and Lee (Siggraph Asia 2009)

Cho et al. (CVPR 2011)

Levin et al. (CVPR 2011)

Our method

Comparison results on real-world images in Tai and Lin [17]

Results on three real images:

- Example "Santorini"
- Example "Books"
- Example "Plant"

"Santorini", Input

"Santorini", Tai and Lin's method

"Santorini", Our method

"Books", Input

"Books", Tai and Lin's method

"Books", Our method

"Plant", Input

"Plant", Tai and Lin's method

"Plant", Our method

Comparison results with different noise levels

Comparison results on image "Aque" with 1% to 10 % noises using different methods, including:

- Goldstein and Fattal (ECCV 2012)
- Cho and Lee (Siggraph Asia 2009)
- Cho et al. (CVPR 2011)
- Levin et al. (CVPR 2011)
- Our method

Goldstein and Fattal (ECCV 2012)

Estimated PSF and latent images with 1% to 10 % noise (ordered by rows)

Cho and Lee (Siggraph Asia 2009)

Estimated PSF and latent images with 1% to 10~% noise (ordered by rows)

Cho *et al.* (CVPR 2011)

Table of Contents

Estimated PSF and latent images with 1% to 10 % noise (ordered by rows)

Comparison Results on Synthetic Images Comparison Results on Nonblind Deconvolution Levin et al. (CVPR 2011)

Estimated PSF and latent images with 1% to 10 % noise (ordered by rows)

Comparison with other methods with different noise levels Comparison with Tai and Lin's method

Our method

Estimated PSF and latent images with 1% to 10~% noise (ordered by rows)

Comparison results on Synthetic images

Comparison results on synthetic images of Tai and Lin's method and our method:

- Results of "Abbey" with 5% and 10% noise
- Results of "Chalet" with 5% and 10% noise
- Results of "Aque" with 5% and 10% noise

Abbey, 5% noise, Input

Abbey, 5% noise, Tai and Lin's method

Abbey, 5% noise, Our method

Abbey, 10% noise, Input

Abbey, 10% noise, Tai and Lin's method

Abbey, 10% noise, Our method

Chalet, 5% noise, Input

Chalet, 5% noise, Tai and Lin's method

Chalet, 5% noise, Our method

Chalet, 10% noise, Input

Chalet, 10% noise, Tai and Lin's method

Chalet, 10% noise, Our method

Aque, 5% noise, Input

Aque, 5% noise, Tai and Lin's method

Aque, 5% noise, Our method

Aque, 10% noise, Input

Aque, 10% noise, Tai and Lin's method

Aque, 10% noise, Our method

Comparison results on different nonblind deconvolution methods

Comparison results with the state-of-the-art nonblind deconvolution methods: (given blurry and noisy input image, and the estimated kernel)

- Cho et al. (ICCV 2011)
- Zoran and Weiss (ICCV 2011)
- Our method

Given input image and kernel

Cho et al. (ICCV 2011)

Zoran and Weiss (ICCV 2011)

Our method

