Blur Processing Using Double Discrete Wavelet Transform
Supplementary Material

1 Additional Examples

For object motion and defocus blur, we have two categories: real camera data with spatially varying blur and synthetic
experiment with uniform blur. We use Nikon D90 to obtain raw image data for spatially varying blur and point-and-
shoot camera for ground truth of synthetic data. The experiment was developed in Matlab using a Intel core i7 cpu at
3.4GHz and 16GB of RAM. The execution time for deblurring is typically from 1 to 5 seconds according to different
image size.

Figure 1 and 2 are examples of non-uniform and uniform object motion blur, respectively. Figure 3 shows examples
of non-uniform defocus blur. Figure 4 shows uniform defocus blur and figure 5 are examples of camera shake blur.
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Figure 1: Examples with real camera data (spatially varying blur). Output images from the proposed and method in [6] are produced by blind deblurring. The others are non-blind
deblurring based on blur kernel estimated by the DDWT technique
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Figure 2: Example of non-blind deblurring using synthetic data (global blur).
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Figure 3: Example of using real camera data (spatially varying blur). Output image from the proposed method is
produced by blind deblurring, the others are non-blind deblurring based on blur kernel estimated by the DDWT
technique.
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Figure 4: Example of non-blind deblurring using synthetic data (global blur).
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Figure 5: Example of non-blind deblurring using synthetic data.



2 Proof of Claim 1
Claim 1 (Robust Regression). Let
0(n) =u(n + (,,)) — u(n = (),))-

Suppose further that the probability density function of u is symmetric (with zero mean), and Plu(n) = 0] = p (u is
said to be “p-sparse”). Then

Plu(n+ (2)) =0

lo(n+ (DIl < ot = ()] = p.
Proof. We have P{u(’n + () = 0} = Pu(n) = 0] = p, andP[u(’n + () # O} =1-p.

Plu(n+ (2)) =0

lo(n+ (DI < lo(n = (5,))]]
B Pllo(r + () < 50 = () [u(n + () = 0] p
Plla(n + () < 50 = () [uln+ (2)) = 0]p+ P[[6(n+ (5,))1 < o(n = (Jo))lur+ () # 0] (1 = p)

We know that o(n + (k%)) =u(n + (2)) —u(n), and 0(n — (k%)) =u(n) —u(n — (2))
Hence

Pllo(m+ () < Io(m = () [u(n + () = 0] = P[llu(m)] < llu(n) — u(n — ()]

With the zero mean symmetric probability density function of u, we can have the right side of above equation is equal
to or greater than 1, so

Pl + () < [5(m = (5,))[u(n + () = 0] = % @
Similarly, 1

Pllot+ (S < ot~ (SD[utn+ () £0] < 5 ?
Thus

Pllo(n+ (I < lotn = () [u(r+ (1)) = 0]

>1
Pllo(n+ (DI < llo(m = () utm+ (2)) = 0o+ P[[5(n+ (J)I < lo(m = () u(r+ (2)) # 0] (1 = p)

which indicates
Plu(n+ (2)) =0

lo(n+ (DIl < ot = (5 ))1] = p.

3 Modified Bilateral Filter

The autocorrelation function (Equation 11 in the paper) is defined by:
Emena(n+m, Ou(n+m+ (,))v(n+m— ()
ZmEA a(n + m, é)

where A defines the local neighborhood, n is the center pixel location, and a(n, £) denotes the averaging weight at
location n:

R,(n,0) =~

—71212 —(L1(n4+m, 02+ A1 (n+m, 02+ B (n+m, )2+ Ly (n+m,0)2+ Ay (n+m,0)2+ By (ntm,0)2)
an+m,0)=e¢ 4 e 203 3)

where 02 and o2 are supported spatial and intensity variance. And Intensity difference of left shifted:
Liin+m,¢)=Lin+m — (292)) — L(n)

Ain+m, ) = An+m — (692)) — A(n)



Bi(n+m,{)=B(n+m — (z?z)) — B(n)

Intensity difference of right shifted:
Lo(n+m,0) =L(n+m+ (;;2)) — L(n)

As(n+m,0) = Al + m+ ([5,) — Aln)
By(n+m,l) = B(n+m+ (Z92)) — B(n)
Notice L, A, B are corresponding channels in CIE-Lab space.
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