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Supplementary Material

1 Additional Examples
For object motion and defocus blur, we have two categories: real camera data with spatially varying blur and synthetic
experiment with uniform blur. We use Nikon D90 to obtain raw image data for spatially varying blur and point-and-
shoot camera for ground truth of synthetic data. The experiment was developed in Matlab using a Intel core i7 cpu at
3.4GHz and 16GB of RAM. The execution time for deblurring is typically from 1 to 5 seconds according to different
image size.

Figure 1 and 2 are examples of non-uniform and uniform object motion blur, respectively. Figure 3 shows examples
of non-uniform defocus blur. Figure 4 shows uniform defocus blur and figure 5 are examples of camera shake blur.
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Input Blur estimate with [2] Blur estimate with DDWT Proposed Whyte et al. [6] Lucy[4] Chan et al.[3] Shan et al.[5]

Figure 1: Examples with real camera data (spatially varying blur). Output images from the proposed and method in [6] are produced by blind deblurring. The others are non-blind
deblurring based on blur kernel estimated by the DDWT technique
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Ground truth Input Proposed Cai et al.[1] Whyte et al.[6] Lucy[4] Chan et al.[3] Shan et al.[5]

Figure 2: Example of non-blind deblurring using synthetic data (global blur).

3



Input Blur estimate with DDWT Proposed Lucy[4] Chan et al.[3]

Figure 3: Example of using real camera data (spatially varying blur). Output image from the proposed method is
produced by blind deblurring, the others are non-blind deblurring based on blur kernel estimated by the DDWT
technique.

Ground truth input Proposed Lucy[4] Chan et al.[3]

Figure 4: Example of non-blind deblurring using synthetic data (global blur).

4



Ground truth input Proposed Cai et al.[1] Whyte et al.[6] Lucy[4] Chan et al.[3] Shan et al.[5]

Figure 5: Example of non-blind deblurring using synthetic data.
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2 Proof of Claim 1
Claim 1 (Robust Regression). Let
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With the zero mean symmetric probability density function of u, we can have the right side of above equation is equal
to or greater than 1
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3 Modified Bilateral Filter
The autocorrelation function (Equation 11 in the paper) is defined by:
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where Λ defines the local neighborhood, n is the center pixel location, and a(n, `) denotes the averaging weight at
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Notice L,A,B are corresponding channels in CIE-Lab space.
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