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1. Video of Recovered 3D Models

The attached video shows consecutively the results ob-
tained for the laptop example presented in Sec. 9.1 of the
paper (i.e. one axis rotation), then the blackboard example
presented in Sec. 9.2 of the paper (i.e. planar motion and two
axes rotations), and finally the wheel presented in Sec. 9.3
of the paper (i.e. rotation around a translating axis).

As mentioned in the paper, our algorithm enables the
visualization of smooth transitions between observed config-
urations (i.e. interpolated configuration) thanks to extracted
restricted motion parameters. Generating such novel and
unobserved configurations is straight-forward by adapting
these motion parameters, since they represent meaningful
attributes of the restricted motion.

We are using the same color coding as in the paper, but
for completeness we will recall it for each dataset in the
following subsection.

1.1. Hinge Joint : Laptop

We see the feature points of two parts of a laptop (screen
in red, keyboard in blue) animated relatively to each other.
Note that some points on the floor are considered as belong-
ing to the keyboard part since they never moved relatively
to that part. The camera poses are shown both relatively to
the keyboard and the screen, thus observed configurations
correspond to a camera having same pose relatively to both
(i.e. when they overlap in space).

The animated relative motion is around the computed
rotation axis, with angle varying between the minimum and
maximum observed angles.
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1.2. Planar Motion and Two Axes Rotations : Black-
board

We see a blackboard (feature points in pink) moving
relatively to a fixed camera. The axes of rotation are shown
in red, the directions of translation are shown in green.

The animated relative motion is with motion parameters
corresponding to minimum and maximum observed angles
and minimum and maximum observed translations.

1.3. Rotation Around a Translating Axis : Wheel

We see the wheel (feature points in pink) moving rela-
tively to a fixed camera. The axis of rotation is shown in red,
the direction of translation is shown in green and the contact
line with the ground is shown in blue.

The animated relative motion is rendered using the min-
imum and maximum observed translations, and the corre-
sponding angles are computed thanks to the extracted radius
(as explained in Fig. 4 of the paper) with the relation :

αf =
t̃f

R
.

2. Detailed Derivations for Rotations Around
Two Axes

In this section, we are going to show that even for ro-
tations around two non intersecting axes (as considered in
Sec. 6.2 of the paper), the translation subspace spanned by
M∶,10∶12 is entirely contained in the 8 dimensional rotation
subspace spanned by M∶,1∶9. Analogously to the other two
cases in the paper in Sec. 6.1 and Sec. 6.3 this will be shown
by stating a matrix X such that M [XT , I3]

T = 0.
We recall that the motion matrix is defined as

M = [⇓f vec (Rf − I3)T , tTf ] ∈ RF×12.
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According to the notation in Sec. 6.2 in the paper, the relative
transformation around two axes at frame f is given by

[Rf tf
0T 1

] (1)

=[Rb,βf
Ra,αf

tb +Rb,βf
(−tb + ta −Ra,αf

ta)
0T 1

] . (2)

The translation can be rewritten as
tTf = − vec (Rb,βf

− I3)
T [tb ⊗ I3]

− vec (Rb,βf
(Ra,αf

− I3))
T [ta ⊗ I3] . (3)

Interestingly for rotations around two axes, the sub-
space spanned by the rotational part span (M∶,1∶9) can
be decomposed into disjoint subspaces A and B spanned
by the two matrices [⇓f vec (Rb,βf

(Ra,αf
− I3))

T ] and

[⇓f vec (Rb,βf
− I3)

T ] of rank-6 resp. rank-2, i.e.

span (M∶,1∶9) = A + B. (4)

This decomposition together with Eq. (3) already shows that
the translation subspace span ([⇓f tf ]) is entirely contained
in the rotation subspace. The decomposition can be derived
by plugging the axis-angle representation for Rb,βf

and
Ra,αf

into the matrices Rb,βf
Ra,αf

− I3, vectorizing, and
separating time-varying coefficients from static terms. This
leads to

[⇓f vec (Rb,βf
(Ra,αf

− I3))
T ] = (5)

[⇓f cβf
(1 − cαf

), cβf
sαf

, (1 − cβf
)(1 − cαf

), . . . (6)

(1 − cβf
)sαf

, sβf
(1 − cαf

), sβf
sαf

]A, (7)

and
[⇓f vec (Rb,βf

− I3)
T ] = [⇓f 1 − cβf

, sβf
]B (8)

where cβf
= cosβf , cαf

= cosαf , sβf
= sinβf , sαf

=
sinαf , and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec (aaT − I3)
T

vec ([a]
×
)T

vec (bbT (aaT − I3))
T

vec (bbT [a]
×
)T

vec ([b]
×
(aaT − I3))

T

vec ([b]
×
[a]
×
)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R6×9 (9)

B =
⎡⎢⎢⎢⎣
vec (bbT − I3)

T

vec ([b]
×
)T

⎤⎥⎥⎥⎦
∈ R2×9. (10)

Therefore, we make the following choice for X

X =[A
B
]

†

[[ I6
02×6

]A [ta ⊗ I3] + [06×2

I2
]B [tb ⊗ I3]] ,

(11)

where A† denotes the Moore-Penrose pseudo-inverse. This
choice will fulfill the Eq. 5 of the paper : M [XT , I3]

T = 0.


