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1. Proof of Theorem 1

To prove the theorem in the paper, we first prove the fol-
lowing proposition and lemmas.

The definition of the normalized dominant set can be
characterized and represented in terms of determinants. For
S ⊆ V , we denote by AS the submatrix of A formed by the
rows and the columns indexed by the elements of S. Then
we define the matrix BS :

BS =

(
0 (π−1)T

π−1 AS

)
, (1)

and the matrix jBS :

jBS =

(
0 (π−1)T

π−1 A1
S . . . Aj−1S 0 Aj+1

S . . . AmS

)
, (2)

where S = {i1, . . . , im} with i1 < . . . < im and AiS is the
i-th column of AS .

Proposition 1 Let S = {i1, . . . , im} ⊆ V be a nonempty
subset of vertices and assume i1 < . . . < im without loss of
generality. Then for any ih ∈ S,

wS(ih) = (−1)m det(hBS), (3)

and,

WS = (−1)m det(BS). (4)

Proof First we prove (3) holds for m ≥ 1.
1. For m = 1,

1B{i} =

(
0 π−1i
π−1i 0

)
,

It is easy to verify that w{i}(i) = 1
π2
i

= −det(1B{i}).

2. Form > 1 and S = {i1, . . . , im}with i1 < . . . < im,

det(hBS) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 π−1i1 · · · π−1ih · · · π−1im
π−1i1 ai1i1 · · · 0 · · · ai1im
...

... · · ·
... · · ·

...
π−1ih aihi1 · · · 0 · · · aihim
...

... · · ·
... · · ·

...
π−1im aimi1 · · · 0 · · · aimim

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)h+2

πih

∣∣∣∣∣∣∣∣∣∣∣∣

π−1i1 ai1i1 · · · ai1im
...

... · · ·
...

π−1ih aihi1 · · · aihim
...

... · · ·
...

π−1im aimi1 · · · aimim

∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

πih
[
∑

ij∈S\{ih}

πijaihij det(jBS\{ih})

+
1

πih
det(AS\{ih})]

From the fact that∣∣∣∣ (π−1)T1 (AS1)T

π−1 AS

∣∣∣∣ = 0,

we can obtain:∑
ij∈S

1

πij
det(AS) +

∑
ij∈S

(
∑
ik∈S

aijik)πij det(jBS) = 0,

namely

det(AS) = −πih
∑
ij∈S

πijf(S, ij |ih) det(jBS).

Therefore, we can rewrite det(hBS) as

−
∑

ij∈S\{ih}

πij
πih

(aihij − f(S\{ih}, ij |ih)) det(jBS\{ih})

= −
∑

ij∈S\{ih}

φS\{ih}(ij , ih) det(jBS\{ih}).
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According to the recursive definition of wS(ih), we can
conclude that (3) holds for m ≥ 1.

For (4), since det(BS) =
∑
ih∈S det(hBS), then

W (S) = (−1)m det(BS). �

When using the following fact∣∣∣∣ π−1h (AhS)T

π−1 AS

∣∣∣∣ = 0,

we give an alternative way to compute wS(i):

wS(i) =
∑

j∈S\{i}

1

π2
i

(πiπjaij − πhπjahj)wS\{i}(j) (5)

with h as an arbitrary element of S\{i}, and |S| > 1.

Lemma 1 With Â = ΠAΠ, where Π = diag(π), the KKT
equality conditions in (7) in the paper hold, if and only if

Bσ[−λ, πi1xi1 , . . . , πihxih ]T = [1, 0, . . . , 0]T , (6)

where λ is a real constant number, σ = σ(x) =
{i1, . . . , ih} with i1 < . . . < ih, and the matrix Bσ:

Bσ =


0 π−1i1 . . . π−1ih
π−1i1 ai1i1 . . . aihih

...
... . . .

...
π−1ih aihi1 . . . aihih

 .

Proof x ∈ ∆ satisfies the Karush-Kuhn-Tucker (KKT)
conditions for problem (7), if there exist n+1 real constants
(Lagrange multipliers) µ1, . . . , µL and λ, with µi ≥ 0 for
all i = 1 . . . L, such that for all i = 1 . . . L:

(Âx)i − λ+ µi = 0;
xiµi = 0.

Because of the nonnegativity of both xi and µi, it can be
restated as follows:

(Âx)i

{
= λ, if i ∈ σ(x);
≤ λ, otherwise

with some real constant λ = xT Âx.
For σ = σ(x) = {i1, . . . , im} with i1 < . . . < im.

Bσ =


0 π−1i1 . . . π−1im
π−1i1

... Aσ
π−1im

 .

Then Bσ[−λ, πi1xi1 , . . . , πimxim ]T = [1, 0, . . . , 0]T is e-
quivalent to:{ ∑m

h=1 xih = 1;
Aσ[πi1xi1 , . . . , πimxim ]T = λ[π−1i1 , . . . , π

−1
im

]

namely, using Π = diag(π){
1Tx = 1;

(ΠAΠx)i = λ, i ∈ σ(x)

By setting Â = ΠAΠ, we prove Lemma 1. �

Lemma 2 Let σ = σ(x) be the support of a vector x ∈ ∆.
Then, x satisfies the KKT equality conditions in (7) in the
paper if and only if

xi =

{
wσ(i)
W (σ) , if i ∈ σ;

0, otherwise.
(7)

Moreover,

wσ∪{j}(j)

W (σ)
=

1

π2
j

[(Âx)j − (Âx)i] = − 1

π2
j

µj (8)

for all i ∈ σ and j /∈ σ, where the µj are the (nonnegative)
Lagrange multipliers of program (7).

Proof For (6) which is equivalent to the KKT condition-
s Âx)i = λ, if i ∈ σ(x), it can be treated as a linear e-
quation problem with unknowns λ and xi, i ∈ σ. Since
det(Bσ) 6= 0, the problem has an unique solution whose
support denoted by σ = {i1, . . . , im} without loss of gen-
erality. Using Cramer’s rule, we can get

πihxih =
πih det(hBσ)

det(Bσ)
,

Then according to Lemma 1, we have

xih =
(−1)mwσ(ih)

(−1)mW (σ)
=
wσ(ih)

W (σ)
.

for any 1 ≤ h ≤ m. Therefore, x = xσ .
Using Equation (5) in the paper, we obtain:

wσ∪{j}(j)

W (σ)
=

∑
ih∈σ

1
π2
j
(πjπihajih − πikπihaikih)wσ(ih)

W (σ)

=
1

π2
j

∑
ih∈σ

(πjπihajih − πikπihaikih)xσih

=
1

π2
j

[(Âx)j − (Âx)ik ].

We have the fact (Âx)j−(Âx)i = −µj for all i ∈ σ and
j /∈ σ, and πj > 0 for all j. Then we can conclude that

wσ∪{j}(j)

W (σ)
=

1

π2
j

[(Âx)j − (Âx)i] = − 1

π2
j

µj ≤ 0.

for all i ∈ σ and j /∈ σ, where the µj are the (nonnegative)
Lagrange multipliers of quadratic programming problem in
the paper. �
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Table 1. MAP (%) of bit selection over different hashing algo-
rithms using 32 - 128 bits on GIST-1M.

500 BITS 32 BITS 64 BITS 128 BITS

RMMH

LRH [6] 5.85 10.86 16.78
RANDOM 5.81 10.75 16.53
GREEDY 5.74 9.56 15.65
DOMSET 3.78 7.72 13.97

NDOMSET 7.06 11.78 17.56
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Figure 1. Performance comparison of bit selection methods over
multiple hashing methods on SIFT-1M.

Theorem 1 If x∗ is a strict local solution of program (7)
with Â = ΠAΠ, where Π = diag(π), then its support
σ = σ(x) is the normalized dominant set of graph G =
(V,E,A, π), provided that wσ∪{i}(i) 6= 0 for all i /∈ σ.

Proof Using Lemma 1 and 2, the proof can be completed
following that of [7]. �

2. More experimental results
2.1. Bit selection over basic hashing method

Baselines. We still use the learned reconfigurable hash-
ing (LRH) [6] and other naive selection methods as our
baselines. However, here we report more results over the
state-of-the-art hashing method RMMH [3].

The results are shown in Table 1. As we can observe, the
proposed selection (NDomset) attains the best performance
in all cases in terms of MAP with 32, 64 and 128 bits. Fur-
thermore, RMMH generates each hash bit independently,
and thus randomly selecting l bits acts like generating l bits
using RMMH directly. By comparing results using Random
and other bit selection methods, we can conclude that our
bit selection method improves the performance of RMMH
most. Although LRH can obtain performance gains when
using long hash bits, it fails to compete with NDomSet in
terms of both accuracy and speeds (Roughly, NDomSet is
more than five times faster than it).

2.2. Bit selection over multiple hashing methods

Baselines. We consider the scenario using multiple
hashing methods, where our baselines include some hash-
ing methods with the longest codes they can generate.
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Figure 2. Performance comparison of bit selection methods over
multiple bit hashing on GIST-1M.

The scenario derives from the fact that a number of hash-
ing methods can only generate hash codes of limited length,
due to the limited number of the feature dimension [1, 8] or
the landmark number [5]. Using multiple hashing meth-
ods, we can generate any desired number of hash bits, and
meanwhile our bit selection can select the most desired ones
from the pool of bits generated by multiple hashing method-
s. With 128-D SIFT features [2], hashing methods like PC-
AH, PCAR and ITQ can generate at most 128 bits. There-
fore to use longer hash codes, say 196 in our experiment, we
build a large bit pool with 384 bits, of which each 128 bits
are generated respectively by PCAH, PCAR, and ITQ [1].
Then we compare all selection methods picking 196 bits
and basic hashing methods with 128 bits.

Figure 1 show the comparison performances in terms of
P-R curves and MAP. As we can see, bit selection method-
s like Greedy and NDomSet using 196 bits outperform the
three basic hashing methods using their longest hash codes
individually (i.e., 128 bits), and moreover they achieve bet-
ter performances than the native selection methods includ-
ing Random and DomSet using the same number of hash
bits. This observation demonstrates the benefits of a good
bit selection under this specific scenario. Note that our bit
selection obtains the most significant performance gains in
all cases.

2.3. Bit selection over multiple bit hashing

Baselines. We employ another double bit method using
hierarchical hashing (HH) proposed in [4]. Similar to DB in
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the paper, we generate bits by HH over PCAR (PCAR-HH)
and ITQ (ITQ-HH).

A 500 bit pool is first built with 250 bits generated by
PCAR-HH and the rest bits by ITQ-HH on GIST-1M. Fig-
ure 2 shows the results comparing PCAR-HH, ITQ-HH, and
different bit selection methods. In Figure 2 (a) the MAP
of NDomSet increases dramatically when using more bit-
s, and is consistently superior to both the double bit hash-
ing and selection baselines. Figure 2 (c)-(d) plot the recall,
PH2 and P-R curves using 32 bits. In all cases, significan-
t performance improvements are observed, which certainly
supports our conclusion in the paper that our bit selection
method can recognize the bits of good quality and further
improve performances over multi-bit hashing algorithms.
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