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1. Introduction

In the supplementary material we provide the exact form
of the objective function used in the unwrapping of man-
ifolds for visualisation. We also include additional exam-
ples of unwrapped manifolds, high-dimensional data visu-
alisation, and more detailed results of our classification ex-
periments. More specifically, Section 2 explains the map-
ping from the original high-dimensional space into a low-
dimensional one, suitable for data visualisation, and shows
further examples of manifold unwrapping for the visualisa-
tion of synthetic datasets and face datasets (ISOfaces and
Frey faces); Section 3 shows more detailed classification
results on the Semeion dataset and additional results on the
Yale Faces dataset on the data provided by [4].

2. Manifold unwrapping for visualisation

Unlike existing approaches to manifold learning, our
method has no requirement to unwrap the manifold, and af-
ter characterising it as an atlas, we can immediately perform
classification or 3D reconstruction (see main paper). How-
ever, one of the principal uses of manifold learning [2, 3, 5]
is in creating a mapping from a high dimensional space R"
into a low-dimensional one R?, suitable for visualising data.
As a way of illustrating our method’s robustness to sparse
data, the presence of noise and to systematic holes we il-
lustrate 2D unwrapping on standard datasets. The focus on
d = 2 in the mathematical formulation is for the sake of ex-
position, but the approach generalises to any choice of target
dimensionality d, with Fig. 1 and 5 showing unwrapping of
3D manifolds.

Given a partitioning of the data into overlapping charts
isomorphic to R?, it is possible to write down an objective
function. For each affine chart ¢;, we wish to find an affine
mapping E; from R? — R™ into the original space in such a
way that a point is projected into the same location by each
chart that it belongs to (2); the centres of each chart are far
from one another (3); the affine projection is not degenerate
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and distinct points in the chart do not collapse on top of
one another (4); and the reconstruction is as flat as possible,
with most of the coefficients that do not correspond to a
projection into the plane being small (5). As the objective
we are minimising is non-convex, we unwrap the manifold
in the original embedding space, where the extra degrees of
freedom make it less likely that we will get stuck in a poor
quality local minimum.

More formally, given a point p we use p; to refer to its
projection into chart c;,
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where p;, C; are the mean and orthonormal vectors of pro-
jection from the embedding space into chart ¢;. Writing E;

for the n x (2+ 1) affine embedding of chart ¢; into R™, and
E for the set of all E; we minimise the following objective:
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where E"*) refers to the k" horizontal row of matrix E;
and El"* refers to the k™ vertical column. The normalis-
ing constants WO, ;> WA, and wy guarantee that each term
contributes about the same to the cost function regardless of
the size of the overlap, the number of charts, or their local
dimensionality respectively. Specifically,
1
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where O; ; is the number of points that belong to both charts
C; and Cj,
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where |.A| is the total number of charts in the atlas, and
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We initialise E as the embedding learnt in section 2.2 in the
main paper with
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As the final reconstruction is not exactly 2-dimensional, we
apply PCA to the unwrapped data and extract the two main
components. Our approach readily generalises to a mapping
from an embedding space of any dimensionality and to any
choice of target dimensionality, by adjusting terms (4) and
(5) to account for the additional rows and columns.

Toy datasets In the main paper we have illustrated the
failure of existing manifold learning methods (with opti-
mally tuned parameters), versus the success of our method
in unwrapping two manifolds: the Swiss roll dataset with
noise and the Gaussian without noise. Figure 2 shows addi-
tional unwrapping results on the Swiss roll dataset without
noise and the Gaussian with noise. Even in the absence of
noise most methods fail to deal with the geometry of Swiss
roll. While Hessian LLE and LTSA succeed at unfolding
the manifold they do not recover its aspect ratio. Figure 3
shows the effect of creating a hole in the Swiss roll (with
and without noise). Notice how only Atlas succeeds in the
presence of noise in the data. The unwrapping of the Twin-
peaks manifold is shown in Figure 4. Although the peaks
are not as sharp as in the case of the Gaussian, no method
does better than ours in dealing with the non-uniformity of
the sampling and preserving the rectangular shape of the
plane.

ISOMAP faces This dataset, from the original ISOMAP
paper [3], consists of 698 synthetically created 64 x 64
greyscale face images under different pose and illumination
conditions. Specifically, there are three degrees of freedom:
horizontal and vertical orientation, and lighting direction,
with the vertical orientation having a smaller scale than the
other two. Figure 5 shows the visualisation results for all
methods that produced an informative result. The parame-
ters for our method were A = 10% and & = 5. Notice the
success of our method at unfolding the manifold and pre-
serving the correct scaling.

Frey faces Figure | shows the 3D visualisation of the
Frey faces dataset, which consists of 1965 20 x 28 greyscale
face images taken from a video. The variations in the data
include changes in facial expressions and head rotations
along the horizontal and vertical axes. These changes of ori-
entation are captured along the horizontal and vertical axes

Table 1. Yale Faces dataset classification error (%) of NN classifier
on the uncorrected data provided by [4]. The classification error of
NN in the original space is 5.05, and the lowest classification error
of PCA NN is 5.04 for d = 299. For Atlas A\ = 10° and k = 4,
while for Atlas+ A = 800, k = 3, and 8 = 1100. #c denotes the
number of subspaces found.

PCA LLE LTSA wLTSA Atlas Atlas+
C&E[4] | C&E[4] | C&E[4]

d | «% (%) (%) %) | (%) #e | (%) o

8 | 47.12 593 3.88 301 3.04 64 | 188 53

9 | 4330 6.85 4.40 322 298 65 | 1.94 55

10| 39.54 6.59 4.18 3.13 292 65 | 1.93 55

of the figure while similar expressions are captured by each
chart, showing spatial correlation in the low-dimensional
space. The parameters for our method were A = 102 and
k=5.

3. Classification

Extended Yale Face Database B As discussed in the
main paper, careful examination of the data provided by [4]
revealed an “off by one” labelling error in 37 out of the
38 classes (subjects). Nevertheless, for fair and complete
comparison, we ran experiments on the uncorrected data
and verified that the labelling error results in approximately
1% higher error for NN in the original space and NN pre-
ceded by PCA, Atlas, or Atlas+. Table 3 (which corre-
sponds to Table 1(a) in the main paper) shows the scores for
the Extended Yale Face Database B on the uncorrected data
as provided by [4]. Atlas+ significantly outperforms LLE,
LTSA, and wLTSA, while Atlas outperforms LLE, LTSA,
and wLTSA, in all but one cases (d = 8), when it achieves
similar performance to wLTSA. Again, for this Table, we
kept the parameters of Atlas and Atlas+ fixed.

Figure 1. Frey faces Atlas 3D subspace unwrapping and visualisa-
tion. Different colours correspond to different subspaces.



Semeion In the main paper we showed classification re-
sults for d = {12,14,16, 18,20} (Table 2(a)) compar-
ing with LLE, LTSA, and wLTSA from [4] and for d =
21,23, ...,33 (Table 2(b)) comparing with PCA, LLE, and
LTSA from our experiments. In this section we include Ta-
ble 3, which contains the numerical values used to create
Figure 3(a) in the main paper. Therefore this table shows
extended values to those shown in the paper. SMCE [!]
results are also included in the table.
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Table 2. Semeion Classification error for reduced dimensionality 1 to 50. The lowest error is chosen for each row for each method from
our experiments. The classification error of Nearest Neighbour classifier in the original space is 10.92. The lowest classification error
row-wise is highlighted in bold while the lowest column-wise error is underlined.

PCA LLE LTSA SMCE clust SMCE NN Atlas
d (%) (%) k (%) k (%) A (%) A €(%) A k #c
1 7444 | 3545 2 | 53.03 11 - - - - 1852 101 2 93
2 6157 | 2858 2 | 3952 5 | 2856 210 | 75.80 210 | 1516 10~! 2 107
3 4653 | 2071 8 | 3211 19 | 2778 120 | 3161 120 | 13.03 10' 2 110
4 3335 | 1824 5 | 2880 9 | 2780 89 | 2237 100 | 11.82 107! 2 122
5 2590 | 1584 5 | 2394 42 | 2757 77 1853 6l 10.83 1071 2 128
6 19.53 | 1521 10 | 1982 30 | 2891 51 1576 59 | 1111 107' 2 134
7 1707 | 1375 9 | 1728 36 | 2987 46 1244 43 | 1159 107! 2 140
8 1386 | 1379 9 | 1385 39 | 2933 32 | 1133 35 1139 102 2 77
9 1313 | 1334 16 | 1275 39 | 2804 29 | 1010 26 | 1122 102 6 4
10 | 1215 | 1289 10 | 11.78 36 | 28.04 21 9.58 24 1137 102 2 12
11 | 1147 | 1248 14 | 1151 41 | 27.97 17 9.87 20 | 1085 102 6 4
12 | 1137 | 1256 10 | 10.64 44 | 27.58 14 9.26 16 1031 102 2 12
13 | 1094 | 1238 5 | 1052 41 | 27.24 9 10.26 12 | 1015 102 2 12
14 | 1028 | 1202 5 | 1013 41 | 31.44 8 10.77 8 1014 10° 2 12
15| 1031 | 11.70 5 | 1025 39 | 2895 4 11.24 4 996 10° 6 4
16 | 1041 | 1135 5 | 1025 43 | 2805 089 | 11.72 097 | 988 102 6 4
17 | 1008 | 1076 5 998 36 | 2798 082 | 1133 071 | 949 102 5 5
18 | 963 | 1051 9 | 1016 39 | 2861 18 1140 059 | 951 102 6 4
19 | 942 | 1014 9 | 1001 39 | 2870 036 | 1145 045 | 937 10> 5 5
20 | 9.41 1020 9 987 37 | 2864 027 | 1159 032 | 926 10' 5 12
21 | 934 9.80 8 956 34 | 29.17 022 | 1167 02 899 10° 6 4
22 | 917 9.71 8 9.89 41 | 2951 0.1 | 1185 013 | 917 107! 15 1
23 | 923 9.61 8 9.89 33 | 3555 005 | 1202 005 | 88 10! 5 12
24 | 9.11 9.56 8 9.80 39 - - - - 850 102 5 5
25 | 897 9.73 9 975 39 - - - - 862 102 5 5
26 | 8.96 968 16 | 974 43 - - - - 870 10° 6 4
27 | 877 9.57 8 9.86 40 - - - - 861 102 6 4
28 | 882 9.49 8 9.79 40 - - - - 858 102 6 4
29 | 874 941 16 | 975 42 - - - - 848 102 6 4
30 | 874 9.49 8 995 43 - - - - 844 102 6 4
31 | 8.66 9.54 8 | 10.16 43 - - - - 827 102 6 4
32 | 858 | 9.60 8 | 1020 40 - - - - 845 10° 6 4
33 | 8.67 9.69 16 | 1029 44 - - - - 850 10° 6 4
34 | 8.60 954 15 | 1025 42 - - - - 841 10° 6 4
35 | 8.67 943 15 | 10.14 47 - - - - 857 102 6 4
36 | 8.62 943 15 | 1030 49 - - - - 862 102 6 4
37 | 865 9.36 8 | 1023 49 - - - - 862 102 6 4
38 | 885 9.28 7 11037 47 - - - - 878 101 5 12
39 | 8.81 9.26 7 | 1028 48 - - - - 873 10%° 6 4
40 | 885 940 16 | 1054 46 - - - - 876 10° 6 4
41 | 8.85 940 16 | 10.66 48 - - - - 864 10> 6 4
42 | 8.96 947 16 | 1037 50 - - - - 874 108 5 12
43 | 884 950 16 | 1052 50 - - - - 874 101 5 12
44 | 894 954 15 | 11.02 50 - - - - 873 102 6 4
45 | 9.00 9.60 15 | 1098 50 - - - - 883 102 6 4
46 | 9.08 9.63 15 | 11.69 50 - - - - 887 102 6 4
47 | 9.13 956 14 | 1330 50 - - - - 884 10' 5 12
48 | 9.06 9.65 14 | 3478 50 - - - - 891 10" 5 12
49 | 9.06 9.67 7 | 8144 49 - - - - 895 102 6 4
50 | 8.97 9.68 15 | 8129 50 - - - - 897 107! 15 1
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(b) Atlas (c) 27 embedded charts (d) 27 charts unwrapped
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Figure 2. Left: Swiss Roll with no noise Right: Sharply peaked Gaussian manifold with Gaussian noise.
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(b) Atlas (d) 30 charts unwrapped
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(a) Original data (c) 30 embedded charts
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(c) 31 embedded charts
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(d) 31 charts unwrapped
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(f) PCA

(g) Isomap (k = 5)
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(k) Diffusion Maps
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Figure 3. Swiss Roll with a hole Left: with no noise Right:with Gaussian noise.
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Figure 4. Twin Peaks Left: with no noise Right:with Gaussian noise.
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Figure 5. Best viewed in colour. Intrinsic modes of variation of the ISOMAP faces manifold. Left column Lighting direction left (red) to
right (blue). Middle colum Horizontal orientation left (blue) to right (red) pose. Right column Vertical orientation bottom(blue) to top

(red) pose.
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