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1. Additional Results

In this section, we show the output on the algorithm on
additional images. In figure 1, we show results for the
canonical Stanford Bunny under various lighting arrange-
ments and surface reflectances. In figure 2, we show sur-
face estimates for renderings of elevation data of the Puget
Sound obtained from the United States Geological Survey
(USGS). In this figure, the bottom two rows show the Puget
Sound under oblique lighting both with cast shadows (bot-
tom row) and without (next-to-bottom row). On one hand,
cast shadows contribute to the ambiguity of SfS because the
surface normal within shadowed regions may have any ori-
entation. On the other hand, cast shadows also provide valu-
able depth cues. Here, when cast shadows are simulated
by the renderer, the algorithm is able to infer the height of
mountain peaks with much greater accuracy. By enabling
inference within large cliques, whitened EP permits depth
inference in scenes with cast shadows, which allows SfS to
be applied to more general and more realistic scenes, and
also allows SfS to benefit from an additional depth cue.

2. Quantitative Surface Error Measurements

For all estimated 3D surfaces, we quantify image error
by rendering the estimated surface using the same illumina-
tion arrangement and surface BRDF as the input image, and
then computing the mean squared error between the input
image and the rerendered surface estimate. We will refer to
this measure as image error. This form of error measure-
ment is useful because it quantifies the how faithfully the
inference algorithm was able to adhere to the constraints
imposed by the image. If image error is sufficiently low,
then whitened EP was successfully able to exploit all avail-
able shading cues in the image and to fully optimize the data
likelihood component of the probabilistic model. Further
improvements to the surface reconstruction would require
making improvements to the MRF model, such as the use
of more accurate spatial priors P (Z).

Other error measurements are possible, and many sys-
tems of quantifying error have been proposed for SfS
[1, 5, 6, 10, 4]. Because the paper prioritizes the evalua-
tion of the whitened EP algorithm, and not the evaluation
of the MRF model, we avoided error measures that quan-
tify the accuracy of the inferred surface itself. Instead, we
report the image error, which measures the fidelity of the re-
constructed surface to the constraints imposed by the image.
Because the inferred 3D surfaces render to match the input
image almost exactly, even for non-Lambertian surfaces and
multiple lighting directions, the optimization algorithm has
performed well. Satisfying this constraint does not neces-
sarily imply that the reconstructed 3D surface should match
the ground-truth 3D shape. SfS is known to be an under-
constrained problem: for any input image there are large
families of 3D surfaces which all satisfy the reflectance con-
straints exactly [3]. Selecting the most plausible shape es-
timate among these families requires a strong 3D spatial
prior. Improving the quality of the output of SfS will there-
fore require improvements to the MRF model and the 3D
spatial priors it employs.

In the paper, we show how whitened EP enables several
improvements to the MRF model. Some improvements af-
fect the data likelihood, such as the introduction of shadow
cues, and the generalization to non-Lambertian reflectance.
These improvements entail relaxing the constraints of clas-
sical SfS, and allowing depth inference to occur in more
general scenarios, and to exploit additional depth cues. In
the main paper, we evaluate these improvements by demon-
strating that whitened EP was able to successfully infer
depth from images that had these properties. In supple-
mental section 3, we show how performance is severely de-
graded when algorithms that assume Lambertian reflectance
are applied to images with non-Lambertian surfaces. We
hope that in the future, tthe flexibility of whitened EP will
facilitate the inference of depth under substantially more
general scenarios.

Whitened EP also enabled improvements to the spatial
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Figure 1. Results of whitened EP on the Stanford Bunny, under several reflectances and lighting conditions. The top row shows ground-
truth surface plots and range image (distant points are shown as being brighter). The left column shows the rendering of the ground-truth
3D shape, and the second column shows the inferred shape rendered under equal conditions.
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Figure 2. Results of whitened EP on the Stanford Bunny, under several reflectances and lighting conditions. The top row shows ground-
truth surface plots and range image (distant points are shown as being brighter). The left column shows the rendering of the ground-truth
3D shape, and the second column shows the inferred shape rendered under equal conditions.



Table 1. For each object and reflectance, the percentage of surface normals that lie within the given angular separation of the ground-truth
surface normal.

Reflectance Object Method 1◦ 2◦ 3◦ 4◦ 5◦ 10◦ 15◦ 20◦ 25◦

Lambertian Mozart Worth. & Hand. [10] 2.4 5.8 8.0 10.4 13.4 25.0 33.4 40.5 46.8
Lambertian Mozart Haines & Wilson [5] 0.2 0.8 2.1 4.5 7.9 21.9 33.3 43.1 50.4
Lambertian Mozart Khan et al. [6] 0.6 2.0 4.2 7.0 10.3 26.2 41.3 54.5 65.9
Lambertian Mozart Whitened EP 4.2 9.9 15.1 20.0 24.8 49.1 68.1 80.3 86.4
OrenNayar Mozart Whitened EP 3.7 8.3 12.9 18.0 22.8 42.9 62.9 77.2 87.4
Beckmann Mozart Whitened EP 2.7 6.9 12.1 16.8 21.5 43.4 57.6 67.9 75.2

Doubly Lit Beck. Mozart Whitened EP 4.5 13.0 20.4 26.4 31.4 49.6 61.5 71.0 77.9
Lambertian Penny Potetz [8] 1.4 6.2 13.7 21.6 29.3 55.8 73.5 83.6 89.0
Lambertian Penny Whitened EP 2.8 8.1 13.9 19.6 24.9 51.1 67.7 80.6 87.7
OrenNayar Penny Whitened EP 3.3 9.0 15.5 21.5 27.3 53.0 71.6 83.4 90.3
Beckmann Penny Whitened EP 2.8 7.2 12.3 17.4 22.4 42.8 56.7 65.1 71.9

Doubly Lit Beck. Penny Whitened EP 1.6 4.6 8.0 11.1 14.3 29.4 44.3 56.5 65.7
Lambertian Bunny Whitened EP 2.7 7.3 12.1 17.2 22.6 45.8 63.5 73.4 79.6
OrenNayar Bunny Whitened EP 1.3 3.6 6.8 11.0 16.3 39.5 56.4 68.9 79.0

Beckmann (dull) Bunny Whitened EP 2.6 7.5 12.1 16.8 21.2 39.6 52.1 61.7 69.5
Doubly Lit Beck. Bunny Whitened EP 2.4 6.0 9.4 12.9 16.4 33.3 46.5 57.1 67.6

Beckmann (sharp) Bunny Whitened EP 4.2 11.3 18.6 25.0 30.7 50.6 61.8 69.2 75.6
Doubly Lit Beck. Bunny Whitened EP 1.5 4.5 7.2 10.0 12.8 25.8 39.2 54.2 64.9

Lambertian Puget Whitened EP 15.6 35.4 50.9 62.2 70.4 87.9 94.9 97.9 99.2
Beckmann Puget Whitened EP 18.8 38.8 52.4 61.6 67.6 81.3 88.8 93.8 96.8

Doubly Lit Beck. Puget Whitened EP 7.0 21.2 34.4 45.5 54.2 75.5 84.8 90.7 94.4
Oblique Lambertian Puget Whitened EP 9.7 21.7 34.8 46.1 55.3 77.5 87.9 93.7 97.0

Shadowed Puget Whitened EP 2.5 12.2 24.5 36.6 47.0 71.9 83.3 90.5 94.7

prior. These included the ability to exploit a Gaussian spa-
tial prior of clique size D (where D is the number of pix-
els in the image), and the ability to infer depth directly in-
stead of surface normals p and q. While the performance of
whitened EP and image error is the primary concern of this
paper, in this section, we quantify the quality of the inferred
3D surface of Whitened EP. One measure of surface accu-
racy is to compute the angle between the true surface nor-
mal and the inferred surface normal for each pixel within
an image [5, 6]. In table 1, we provide the percentage of
pixels where the surface normal lies within certain thresh-
olds of the true normal. The surface normals estimated by
whitened EP outperform several past methods [10, 5, 6],
and are competitive with LBP [8].

These changes to the spatial prior demonstrate some of
the novel capabilities of whitened EP. However, they are
only minor improvements; substantial improvement to the
classical Lambertian SfS problem will likely require the de-
velopment of spatial priors that are capable of exploiting
several more sophisticated statistics trends. For example:

• Occlusion: For images of single objects, the silhou-
ette provides important cues to its shape. Additionally,
interior lines within the image can provide evidence of

self-occlusion, cusps, or corners on the surface of the
object [7, 9, 11].

• Latent variables over local surface texture: Regions
of a scene that are rough are likely to lie near other re-
gions that are also rough. A strong spatial prior will
recognize global or regional trends within a surface
and exploit these trends to improve inference. These
latent variables may correlate with external factors that
participated in the creation of the surface, such as man-
ufacturing processes for man-made objects. Cues that
stem from non-local similarity within a scene have
been applied very successfully towards image denois-
ing [2].

• The use of symmetry and other gestalt cues: Hu-
mans are able to better estimate the 3D shape from
images such as the Mozart or Penny image by recog-
nizing and exploiting the symmetry present in those
objects. Strong 3D spatial priors will also incorporate
these cues.

We hope that whitened EP will facilitate new research in
these directions by providing new ways to efficiently per-
form inference over MRFs with large cliques.
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Surfaces inferred by Lambertian SfS given non-Lambertian scenes.

Figure 3. Inferred 3D surfaces when the algorithm assumes Lambertian reflectance despite the surface having non-Lambertian reflectance.
In general, the reconstructed surface is poor when the assumptions of the algorithm are violated.

3. Effectiveness of the Lambertian Assumption
for Non-Lambertian Surfaces

It is reasonable to ask whether non-Lambertian inference
is necessary. In particular, it may not be immediately evi-
dent as to how adversely performance would be affected if
a Lambertian SfS algorithm were naively applied to the im-
age of a non-Lambertian surface. In figure 3 we show the
results of the algorithm when Lambertian reflectance is as-
sumed in spite of non-Lambertian reflectance of the object.
The reconstructed 3D shapes are typically poor in compari-
son to the results when the correct reflectance is used by the
algorithm.
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